

Utilisation de la spectroscopie XANES pour sonder la matière sous conditions extrêmes à l'échelle atomique

Fabien Dorchies

CELIA, CNRS – Univ. Bordeaux – CEA UMR 5107, 33405 Talence, France

Introduction (1/2)

- Matière "tiède et dense" (WDM)
 - Entre matière condensée et plasmas cinétiques
 - Requiert souvent une simulation *ab initio*
 - ✓ Ions désordonnés mais corrélés
 - ✓ Traitement quantique des électrons

(échelle atomique)

- Faible connaissance des propriétés de base
 - Equations d'état, phase (solide, liquide, ...)
 - Coefficients de transport (propriétés macroscopiques)

Introduction (2/2)

- Besoin de données expérimentales exploitables
 - Mesure « directe » des propriétés dans des conditions contrôlées (quand cela est possible ...)
 - Et/ou validation de simulations qui calculent ces propriétés (souvent inévitables)
- Beaucoup de résultats issus de diagnostics optiques
 - VISAR (Velocity Interferometer System for Any Reflector)
 - SOP (Streaked Optical Pyrometry)
 - Réflectométrie (*réflectivité*, *phase*)
 - Spectroscopie Raman (spectres de phonons), ...

(données macroscopiques dont l'interprétation repose sur des modèles)

- Développement récent de diagnostics X (~ 10 dernières années)
 - Diffraction X (XRD)
 - Diffusion X inélastique/élastique Compton/Thomson (résolue en énergie)
 - Spectroscopie d'absorption X : XANES and EXAFS

(accès à l'échelle atomique qui est l'échelle naturelle de la physique et des simulations)

Plan

- Principes du XANES et de l'EXAFS
 - Définition
 - Structure électronique & ordre atomique local
- Application à l'étude de la matière sous conditions extrêmes
 - Requis expérimentaux pour effectuer des mesures XANES
 - Simulation de spectres XANES et interprétation
- Quelques exemples et résultats
 - Etudes XANES de la matière comprimée par un choc laser (*haute densité d'énergie*)
 - XANES résolu en temps avec des lasers « de table » (physique hors équilibre)
 - XANES résolu en temps couplant lasers optiques et X-FEL
- Conclusions & perspectives

Définition

- XANES = X-ray Absorption Near-Edge Spectroscopy
- EXAFS = Extended X-ray Absorption Fine Structure

Techniques très courantes en phases condensée et diluée depuis les années 70 – 80

Principe général

Introduction

- Spectroscopie d'absorption X près d'un seuil (*K*, *L*, *M* => *sélectif en élément*)
 - Photo-absorption et transition associée depuis un état de cœur ...
 - ... jusqu'à un état vacant près du continuum

Introduction

Spectre d'absorption X générique (matière condensée)

• Différent motifs peuvent être observés

- Associés à différents phénomènes physiques

1s to continuum

Destructive

Constructive Interference Interference

Extended X-ray Absorbtion Fine Structure (EXAFS)

Front montant ou « flanc »

- Frontière entre états occupés et vacants •
 - Energie dépend de l'écrantage des états de cœur
 - \Rightarrow Diagnostic de l'oxydation / état de charge
 - Pente dépend de durée de vie de l'état de cœur

XANES (1/3)

• Jusqu'à 10 – 20 eV au-delà du seuil

r

0

Sonde de la DOS-projetée vacante Extended X-ray Absorbtion Fine Structure (EXAFS) (e.g. p-DOS est sondée depuis 1s dans le cas du flanc K) Diffusions multiples de la fonction d'onde du Constructive Interference photoélectron sur les premiers voisins, et X-ray Absorbtion Near Edge Structure (XANES) possibles résonances (=> symétrie locale) 1s to (n+1)p $\sigma_{if} = a(h\nu) \left| \left\langle \phi_f R \phi_i \right\rangle \right|^2 \left(1 - f(\varepsilon) \right)$ Е Al solide 1s to nd band Incident Energy (eV) \mathcal{E}_F état vacant $2s^2$ Opérateur dipolaire électrique (=> règle de sélection) K-edge Multiple Scattering $1s^2$

 $2p^6$

DOS

XANES (2/3)

Si K-edge in SiO₂

~ 1 eV

XANES (3/3)

- Exemple: résonances (systèmes tétraédriques, ...)
 - La diffusion multiple peut conduire à des raies de résonance
 - \Rightarrow Géométrie de coordination

EXAFS

- A partir de ~ 20 eV au-delà du seuil
 - Oscillations dominées par les diffusions simples
 - \Rightarrow Traitement analytique possible
 - \Rightarrow Accès direct à l'ordre atomique local (*TF*)

Plan

- Principes du XANES et de l'EXAFS
 - Définition
 - Structure électronique & ordre atomique local
- Application à l'étude de la matière sous conditions extrêmes
 - Requis expérimentaux pour effectuer des mesures XANES
 - Simulation de spectres XANES et interprétation
- Quelques exemples et résultats
 - Etudes XANES de la matière comprimée par un choc laser (*haute densité d'énergie*)
 - XANES résolu en temps avec des lasers « de table » (physique hors équilibre)
 - XANES résolu en temps couplant lasers optiques et X-FEL
- Conclusions & perspectives

Un diagnostic a priori adapté à la WDM

- Le XANES est a priori un diagnostic adapté à l'étude de la WDM
 - Sonde la structure électronique
 - Sonde l'ordre atomique local

- Les propriétés physiques macroscopiques dérivent de la structure électronique
- L'ordre atomique à longue portée n'est pas garanti, mais les ions sont fortement couplés (*ordre local*)

Technique expérimentale standard (sur synchrotrons)

• Le spectre d'absorption X est construit à partir d'un scan en énergie X

Spécificité des expériences WDM

- La WDM est produite en laboratoire le plus souvent de façon transitoire
 - Durée de vie très courte
 - ✓ Compression par choc => ~ 100 ps / 1 ns
 - ✓ Détente hydro après chauffage laser => $\sim 1 10$ ps
 - ⇒ XANES résolu en temps => Impulsion X brève et synchronisée (pompe-sonde)
- L'échantillon est souvent détruit après « tir »
 - \Rightarrow XAS dispersif (un spectre entier enregistré par tir)
 - \Rightarrow Défi = obtenir un rapport signal/bruit élevé en quelques tirs

Interprétation des spectres XANES en régime WDM ?

- Les spectres XANES portent plusieurs informations enchevêtrées
 - Structure électronique (DOS)
 - Ordre atomique local
- Le XANES a été étudié en profondeur en physique des solides
 - Base solide de connaissances pour interpréter les spectres
- Dans le régime WDM, ce travail reste essentiellement à faire
 - Des situations exotiques spécifiques peuvent être rencontrées
 - Une approche intuitive et des extrapolations sont possibles ...
 - ... mais des calculs sont nécessaires, au moins pour valider l'interprétation

Spécificité des calculs XANES en régime WDM

- Les hypothèses simplificatrices de la physique des solides ne sont plus valables (périodicité, potentiels atomiques « isolés », ...)
- On a recours à des simulations *Ab initio (QMD = Quantum Molecular Dynamic)*

- Calcul Ab initio (basé sur DFT)
 - \Rightarrow Distribution spatiale des noyaux (*classique*)
 - \Rightarrow Structure électronique (quantique)
- Calcul de spectre d'absorption X
 - ⇒ Théorie de la réponse linéaire (formulation de Kubo-Greenwood)
 - \Rightarrow Moyenne sur plusieurs distributions
 - ⇒ Très couteux en temps de calcul mais testé avec succès dans plusieurs situations WDM
- Travail nécessaire d'interprétation

S. Mazevet et al. Phys. Rev. Lett. 101, 155001 (2008)

Plan

- Principes du XANES et de l'EXAFS
 - Définition
 - Structure électronique & ordre atomique local
- Application à l'étude de la matière sous conditions extrêmes
 - Requis expérimentaux pour effectuer des mesures XANES
 - Simulation de spectres XANES et interprétation
- Quelques exemples et résultats
 - Etudes XANES de la matière comprimée par un choc laser (HDE)
 - XANES résolu en temps avec des lasers « de table » (physique hors équilibre)
 - XANES résolu en temps couplant lasers optiques et X-FEL
- Conclusions & perspectives

 Helmholtz-Zentrum

 Geesthacht

 Zentrum für Material- und Küstenforschung

Matière comprimée par choc laser (LULI2000)

La pente du flanc K est un diagnostic de T_e

- Flanc K = frontière entre états occupés et inoccupés
 - Piloté par le facteur de Fermi-Dirac

 \Rightarrow Pente \Leftrightarrow T_e tant que l'enveloppe de la DOS varie « peu » avec l'énergie

La position du flanc K dépend de la densité

- Deux contributions se compensent partiellement
 - L'énergie de Fermi évolue en $E_F \sim \rho^{2/3}$ (gaz d'électrons libres)
 - L'écrantage dépend de la densité et modifie l'énergie de l'état de cœur (1s)

Transition de Mott métal – non-métal à basse densité

- Relocalisation progressive des électrons
 - Depuis une bande de conduction vers des orbitales atomiques
 - Révélée par une transition progressive de flanc K à raies d'absorption 1s 3p (pré-seuil)

Transition de Mott métal – non-métal à basse densité

- Relocalisation progressive des électrons
 - Depuis une bande de conduction vers des orbitales atomiques
 - Révélée par une transition progressive de flanc K à raies d'absorption 1s 3p (pré-seuil)

A. Lévy et al., Phys. Rev. Lett. 108, 055002 (2012)

Métallisation de la silice WDM

- Le gap se remplit quand la température augmente
 - Transition depuis un isolant vers un semi-métal
 - Révélé par le décalage du flanc K

Physique hors équilibre de la transition solide – WDM

Physique hors équilibre de la transition solide – WDM

XANES et WDM

Premières expériences au CELIA (Eclipse – 10 Hz)

A. Lévy et al., Rev. Sc. Instrum. 81, 063107 (2010)

F. Dorchies et al., Phys. Rev. Lett. 107, 245006 (2011); P.M. Leguay et al., Phys. Rev. Lett. 111, 245004 (2013)

Conclusion

Développement d'une station XANES dédiée (*Eclipse – 10 Hz*)

Plan

- Principes du XANES et de l'EXAFS
 - Définition
 - Structure électronique & ordre atomique local
- Application à l'étude de la matière sous conditions extrêmes
 - Requis expérimentaux pour effectuer des mesures XANES
 - Simulation de spectres XANES et interprétation
- Quelques exemples et résultats
 - Etudes XANES de la matière comprimée par un choc laser (HDE)
 - XANES résolu en temps avec des lasers « de table » (physique hors équilibre)
 - XANES résolu en temps couplant lasers optiques et X-FEL
- Conclusions & perspectives

Conclusion (1/2)

- Le XANES est un diagnostic puissant pour étudier la matière sous conditions extrêmes, à l'échelle atomique
 - Structure électronique
 - Ordre atomique à courte portée (ou ordre local)
- Une analyse attentive est nécessaire pour désentrelacer et interpréter les différents motifs des spectres
 - L'interprétation dépend du matériau
 - Elle se base sur les connaissances acquises, mais aussi sur des calculs appropriés (DFT)
- Applications à la planétologie (intérieurs de planètes à haute pression)
 - SiO₂, MgO, Fe, ...

A. Denoeud et al., Phys. Rev. Lett. 113, 116404 (2014)
M. Harmand et al., Phys. Rev. B 92, 024108 (2015)
A. Denoeud et al., Phys. Rev. E 94, 031201 (2016)
R. Bolis et al., submitted to Phys. Rev. Lett. (2018)

Conclusion (2/2)

- Démonstrations expérimentales de XANES résolu en temps
 - Schéma tout-optique avec des sources X laser-plasma « classiques »
 - \Rightarrow Dispositif « de table » (en mode cumulé)
 - \Rightarrow Résolution temporelle limitée à ~ 1 ps (durée de l'impulsion X)
 - Couplage laser optique (pompe fs) avec X-FEL (sonde X fs) => exposé M. Harmand \Rightarrow Démontré mais pas le spectre le plus adapté Voir exposé suivant de Noémie Jourdain
 - Schéma tout-optique avec une source X Bétatron => exposé K. Ta Phuoc
 - \Rightarrow Spectre plus adapté et dispositif « de table »
 - \Rightarrow Résolution temporelle femtoseconde démontrée
- Applications à la physique des transitions de phase ultra-rapides
 - Transitions « non-thermiques » dans les matériaux covalents
 - Renforcement du réseau attendu dans les métaux nobles très hors équilibre, ...
 - Possibilité de coupler XANES Bétatron fs / XRD XFEL fs

J. Gaudin et al., Scientific Report 4 4724 (2014) F. Dorchies et al., Phys. Rev. B 92, 144201 (2015)

B. Mahieu et al., submitted to Nature Communications (2018)

Merci de votre attention !