Betatron radiation in Laser Plasma Accelerators

Antoine ROUSSE Kim TA PHUOC Victor MALKA Romuald FITOUR Rahul SHAH Felicie ALBERT Sébastien CORDE Cédric THAURY Agustin LIFSCHITZ Stephane SEBBAN Julien GAUTIER Emilien GUILLAUME Andreas DOEPP Fabien DORCHIES Ludovic LECHERBOURG Noémie JOURDAIN

Why do we need x-ray sources ?

Multidisciplinary, novel and fundamental applications

loa

Femtosecond x-ray sources

K-alpha Plasma Source

- Compact
- Low cost
- Isotropic
- « long » 100s fs

Free Electron Lasers

- Very high brightness
- high repetition rate
- Very high cost
- Poor spectral properties

Synchrotron radiation in a laser produced plasma?

Nonlinear Thomson Scattering

Few 10s degrees, up to a few 100s eV

First observation of Betatron radiation

Outline

- Principle of laser Plasma Accelerator
- Principle of Betatron radiation source
- Characterization of the Betatron radiation source
- Applications of the Betatron radiation
- Latest improvements of the source

Laser Plasma Accelerator

Electron bunch

Relativistic electrons from a Laser Plasma Accelerator

 Electron beam features : Charge : few hundreds pC Energy : 100s MeV - GeV Divergence : few mrad Duration : few fs

loa

Betatron radiation = synchrotron radiation from laser produced plasma

loa

Electron orbit in the ion cavity: Betatron oscillations

Example for $a_0=4$, $n_e=10^{19}$ cm⁻³

Characteristics of the trajectory

γ ≈ 300 (150 MeV)

 $\lambda_u \approx 150 \ \mu m$

Betatron radiation features: for one electron

Example for $a_0=2$, $n_e=10^{19}$ cm⁻³

loa

Spatial distribution (beam profile)

 $\Theta = K/\gamma$ ~3 degrees for K = 10 and 100 MeV e-

 $\varphi = |/\gamma|$ ~0.3 degree

Spectrum

Energy $\propto \gamma n_e r_\beta$

Photons \propto K

Production of Betatron radiation

X-ray beams profiles

- Radiation is emitted in the forward direction. The beam divergence is typically 20 mrad.
 - The beam profile significantly fluctuates shot-to-shot.
 - Higher quality beams profile can be obtained but with lower x-ray flux.

Spectrum measurement: @ 50 TW

Source size measurement : knife edge

Source size < 2 microns

Initial traverse positon of injected electrons

Initial traverse positon of injected electrons

It becomes stable when it is produced in a gas mixture

Fluctuation of the beam pointing is about 10% of the beam diameter

Flux and energy become stable as well

Flux and energy stability are of the order of 10%

X-ray beam profiles as a function of laser polarization

Radiation is polarized

75% of x-ray photons follow the laser polarization

Summary of the source features

- 10⁵ photons/shot/0.1% BW @ 1 keV
- collimated: 10's mrad
- ultrashort: 10's fs
- broadband: I-10 keV
- source size: I 2 microns
- 10% flux variation
- 10% energy variation

- The source has been used for applications:
- Phase contrast radiography
- Femtosecond x-ray diffraction
- Femtosecond x-ray absorption

Absorption and phase constrast radiography

- High brightness (10²⁰ ph/s/mm²/mrad²/0.1%bw @1 keV)
- Micron source size
- Coherence length is a few tens microns at 1 m and 5 keV

Radiograph of a bee (Phase contrast)

Bone tomography (constrast absorption)

Betatron x-ray beam

X-ray

Femtosecond x-ray diffraction/absorption

loa

Femtosecond x-ray diffraction: Non thermal melting (InSb)

Delay **∆**t (ps)

0.8

0.4

0

-0.4

1.2

1.6

2

Fs X-ray absorption: Warm Dense Matter application

loa

How can we improve the source features ?

Radiation energy increases with: γ , λ_{u}^{-1} , r

Flux increases with: γ , r and the number of periods

- But, in a laser plasma accelerator, if $m{\gamma}$ increases, r is decreases and $m{\lambda}_{u}$ is increased - Decoupling acceleration and oscillation

loa

►Z

loa

Numerical simulations of Betatron radiation

loa

• We expect an increase of the electron energy

We expect a shift of the x-ray spectrum towards higher energies

loa

- Significant increase of the x-ray signal
- Decrease of the beam divergence

Electron beam spectrum

Signal as a function of nozzle angle

- Signal above 3 keV can be increased up to 20x !
 - This method consists in increasing electron energy and reducing the oscillation period

How can we control electron transverse motion and further increase the flux ?

Angular distribution

Spectrum

Energy (keV)

How can we increase the radiation energy ?

Integrated signal is increased by a factor 2

Conclusion & perspectives

Conclusion:

- We significantly increased the flux of the Betatron source.
- The source has been used for pioneering applications in fs x-ray science.

Perspectives:

- Laser Salle Jane has been improved. We expect even higher Betatron flux and energy.
- Keep developing methods to increase efficiency of the mechanism (use multiple laser beams to control electrons orbits, design gas targets with appropriate density profiles (cryogenic),...)
- Produce keV Betatron radiation using few TW class lasers with high repetition rate (100 Hz kHz).
- Produce bright, tens keV Betatron radiation using PW class lasers.

And :

- Built a Betatron beam line for Femtosecond x-ray applications

Femtosecond X-ray sources from LPA

	2000	2005		2010	2015
I0 eV	Nonlinear Thomso S-Y Chen, Nature 1998	on scatterii	ng		
100 eV	Nonlinear Thor K. Ia Phuoc et al, PRL 200	nson scatte	ering Betatron as	a diagnostic for LPA	
l keV	A. Rousse et d	n radiation	fs x-ray diffraction Phase co	fs x-r nstrast imaging	ay absorption
10 keV	-	Thomson b 1. Schwoerer PRL	ackscattering		
100 keV			Betatron ra S. Kneip et al, Natur	diation e Phys 2010	aphy
l MeV				Thomson backscatter (single beam method) <i>K Ta Phuoc et al, Nature Phot.</i> 2012	ing Radiography
10 MeV				Thomson bac (two beams metho S. Chen, PRL 2013	kscattering