ESRF towards dynamic compression

Raffaella Torchio

scientist responsible of HPLF-I European Synchrotron Radiation Facility torchio@esrf.fr

The HPLF project

First dynamic compression experiments at the ESRF

HPLF-I Technical design

Future perspectives

HIGH POWER LASER FACILITY PROJECT

Coupling of a ns powerful laser to synchrotron XAS, XDR, XRI and XES

HPLF-0 (2014-2018) :

Technical project evaluation Single X-ray pulse XRD/XRI/XAS Scientific project evaluation Workshops and Conceptual Design

HPLF-I (2018-2021) : installation of a ~100J laser and coupling ti the ED-XAS beamline ID24;

HPLF-II (from 2023):

extension of the facility to offer additional X-ray diagnostics: XRD, XRI, XES as part of the Extremely Brilliant Source (EBS) upgrade. An upgrade of the laser power to 200 J, is also envisaged.

From very big to very small

minimize the experimental setup (laser + target) to reduce the energy needed to reach extreme states

□ install a compact powerful and focusing laser at a high brilliance X-ray facility

Few KJ lasers on mm targets

few 10 J lasers on 100 µm targets

GCLT 40J

PROJECT HISTORY: FIRST DYNAMIC EXPERIMENTS

OPEN Probing the early stages of shockinduced chondritic meteorite formation at the mesoscale

Received: 28 November 2016 Mic Accepted: 20 February 2017 Phil

4.02 μ

3.59 µs

Michael E. Rutherford¹, David J. Chapman¹, James G. Derrick², Jack R. W. Patten¹, Philip A. Bland³, Alexander Rack⁴, Gareth S. Collins² & Daniel E. Eakins¹

Forum ILP 2018, 10-15/06/2018

t = 0

1.10 µs

1.47 µs

1.90 µs

3.22 µs

HIGH POWER LASER FACILITY AT ESRF: SCIENCE CASE

Workshop on Studies of Dynamically Compressed Matter with X-rays

Monday 16 and Tuesday 17 February 2015

Venue: ILL Chadwick Amphitheatre

march 2017

march 2016

many of the science cases call for the development of dynamic compression at ESRF and require the use of high power lasers

Extreme conditions for geophysics and planetary science

extra solar planets, warm dense matter

Dynamic behavior of matter and materials under high strain rates

impacts, spallation, materials synthesis, plasticity, phase transitions kinetics, nucleation...

DYNAMIC COMPRESSION: LASER SHOCK AND RAMP EXPERIMENTS

Time

laser ablation technique

shock or ramp compression

synchrotron temporal resolution: 100 ps

SCIENTIFIC COMMUNITY

static high pressure community

dynamic high pressure community

Matériaux sous Hautes Vitesses de Déformation

Groupe de recherche CIIIS

13 laboratories working on laser plasmas, shock wave physics, materials and applications

HPLF PROJECT - PHASE I TIMELINE

2016 - 2017: Phase I (2018-2021) approved CFT awarded to

Page 9

2018: Delivery and commissioning of the laser front end vertice of the laser front end

2019: EBS upgrade - Infrastructure realization ID24 upgrade for EBS

15J, 10ns 40-200 GPa

2020: Full HPLF laser delivery, ID24 re-commissioning 100 J ns-shaped laser, transport, interaction chamber, diagnostics

First laser shock experiment at the ESRF

XRD XRI XAS

Imperial College London

ID09 - DIFFRACTION AND DYNAMIC COMPRESSION

ID19 - IMAGING AND DYNAMIC COMPRESSION

Laser-induced compression of a polymer foam:

elastic compression, compaction, pore collapse, fracture, and fragmentation

- Laser shock, 6J @ 532nm, 10 ns FWHM
- Single bunch 100 ps phase contrast imaging
- HPV-X2 Shimadzu camera

Olbinado et al., J. Phys. D: Appl. Phys., (2018)

Laser

ID24 - XAS AND DYNAMIC COMPRESSION

Laser shocked iron

Imperial College

ESRF

e European Synchrotron

London

X-RAY ABSORPTION SPECTROSCOPY

IRON: SOLID-SOLID AND SOLID-LIQUID TRANSITIONS

the data quality allows for the comparison to theoretical models

Page 15 Forum ILP 2018, 10-15/06/2018

R. Torchio et al. Scientific Reports 2016

XAS STUDIES ON LASER SHOCKED FE

only EXAFS cost and availability (8 shots/day/245K\$/shot) Page 16

photon flux

energy range beam instability cost (204K\$/day)

limited P,T range diagnostics

availability and stability

DIFFERENT TIMING MODES AND DIFFERENT ENERGIES

Single bunch XAS at Ni, Ta and Mo

O. Mathon et al., HPR 36, 404 (2016)

Local Structure of laser shocked Ta A. Sollier et al., to be published

Local structure of laser shocked Fe-6.6%wtO M. Harmand et al., to be published

RF

Forum ILP 2018, 10-15/06/2018 Page 18

HPLF I Technical design

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

LASER CHARACTERISTICS

LASER provided by Amplitude Laser Group (Lisses, Fr. and San Jose, USA)

Front-end

- Pulse generation (CW laser)
- Pulse shaping
- Spectral broadening
- Pre-amplification stages

Amplification chain

- Nd:Glass DAH
- Liquid cooled amplifiers
- Pumped by flash lamps
- 3 DAHs for HPLF1
- Compatible 5 DAHs (upgrade)

Output

- 1-100 J adjustable
- Top-hat spatial profile N>8
- Adjustable temporal profile flat top variable (2-15ns) ramps t², t³, t⁴
- 1 shot every 4 minutes
- Jitter < 26 ps RMS

LASER CHARACTERISTICS : FRONT-END

LASER provided by Amplitude Laser Group (Lisses, Fr. and San Jose, USA)

ESRF

The European Synchrotron

LASER provided by Amplitude Laser Group (Lisses, Fr. and San Jose, USA)

The European Synchrotron

ESRF

ID24 ENERGY DISPERSIVE BEAMLINE

at each different E the sample environment has to rotate around the crystal

LASER ENVIRONMENT AND TRANSPORT

Interaction Chamber

DIAGNOSTICS

Velocity Interferometer System for any Reflector (VISAR) Streaked Optical Pyrometry (SOP)

Ρ, Τ, ρ

measure the spatial and temporal evolution of hydrodynamic parameters \rightarrow full compression history of the sample and planarity of the shock propagation

the future: EBS and HPLF II

Page 28 Forum ILP 2018, 10-15/06/2018

HPLF-I AND HPLF-II TOWARD EBS

ESRF Extremely Brilliant Source (EBS)

The European Synchrotron

ESRF Extremely Brilliant Source (EBS)

Dynamic compression drivers at modern X-ray light sources 1 working – 4 becoming operational

ESRF facility the only one to offer multiple techniques

+ 1 ID24 dedicated scientist 1 laser engineer shock diagnostics second harmonic (LBO crystal) deformable mirror targets

ELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

ESRF

High Power Laser Facility (HPLF) is an ESRF initiative to develop instrumentation to study matter under dynamic compression.

It includes:

HPLF-0 (2014-2018) Evaluation tests in XRD/XRI/XAS and conceptual design

HPLF-I (2018-2021)

Installation of a 100 J pulsed shaped laser on ED-XAS ID24 beamline 2018: laser front-end (15J, 10ns) 2021: laser amplifier (100J, 4 ns)

HPLF-II (from 2023)

Extension of the facility to offer additional X-ray diagnostics: XRD, XRI, XES Upgrade of the laser power to 200 J

EBS will improve the flux for single bunch XAS/XRD/XRI

ACKNOWLEDGMENTS

Thank you for your attention

O. Mathon, N. Sevelin-Radiguet R. Briggs, S. Pascarelli A. Rack, M. Olbinado M. Wulff, N. Kretzschmar F. Villar, C. Clavel, P. Ponthenier

Matériaux sous Hautes Vitesses de Déformation

Imperial College London

