

Planckian dissipation in a strange metal Gaël Grissonnanche

College de France - Workshop on Strange Metals

What is a strange metal?

Daou et al. Nat. Phys. 2009

Daou et al. Nat. Phys. 2009

Daou et al. Nat. Phys. 2009

Bruin et al. Science 2013

Planckian limit $\frac{1}{\tau} = \alpha \frac{k_{\rm B}T}{\hbar}$ with $\alpha \approx 1$

Material	Doping ^a	α
Bi2212	p = 0.23	1.1 <u>+</u> 0.3
Bi2201	<i>p</i> ~ 0.4	1.0 ± 0.4
LSCO	p = 0.26	0.9±0.3
Nd-LSCO	p = 0.24	0.7 ± 0.4
РССО	x = 0.17	0.8 ± 0.2
LCCO	x = 0.15	1.2 <u>+</u> 0.3
TMTSF	P = 11 kbar	1.0 <u>+</u> 0.3

Bruin et al. Science 2013

Legros et al. Nature Physics 2019

QUESTION

With such strong scattering on electrons, what remains of what is known for metals?

QUESTIONS

Is the Fermi surface strange? Is the scattering rate strange? Are the other transport properties strange?

Daou et al. Nat. Phys. 2009 Proust et al. PRL 2002

Abdel-Jawad et al. Nat. Phys. 2006

Daou et al. Nat. Phys. 2009 Proust et al. PRL 2002

Abdel-Jawad et al. Nat. Phys. 2006

Daou et al. Nat. Phys. 2009 Proust et al. PRL 2002

Daou et al. Nat. Phys. 2009 Proust et al. PRL 2002

Part 1: Is the Fermi surface strange?

Part 2: Is the scattering rate strange?

Part 3: Is the magnetoresistance strange?

Part 4: Is the Seebeck coefficient strange?

Part 1: Is the Fermi surface strange?

Part 2: Is the scattering rate strange?

Part 3: Is the magnetoresistance strange?

Part 4: Is the Seebeck coefficient strange?

Part 1 The Fermi surface

Grissonnanche et al., Nature 595, 667 (2021)

Fang*, Grissonnanche* et al., Nat. Phys. 18, 558 (2022)

Collaborators

Anaëlle Legros Simon Verret Francis Laliberté Clément Collignon Louis Taillefer

Jianshi Zhou

Paul Goddard

David Graf

Angle Dependent MagnetoResistance

CONCLUSION

No matter how strong interactions are between electrons, there is a well-defined Fermi surface in the strange metal

Part 1: Is the Fermi surface strange?

Part 2: Is the scattering rate strange?

Part 3: Is the magnetoresistance strange?

Part 4: Is the Seebeck coefficient strange?

Part 2 The scattering rate

Grissonnanche et al., Nature 595, 667 (2021)

Scattering rate
$$1/\tau(k) = 1/\tau_{iso}$$

$$1/\tau(k) = 1/\tau_{iso} + 1/\tau_{aniso} (k)$$

$$\frac{1}{\tau(k)} = \frac{1}{\tau_{iso}} + \frac{1}{\tau_{aniso}} (k)$$

$$1/\tau(k) = 1/\tau_{iso} + 1/\tau_{aniso}(k)$$

$$1/\tau(k) = 1/\tau_{iso} + 1/\tau_{aniso}(k)$$

$$1/\tau(k) = 1/\tau_{iso} + 1/\tau_{aniso}(k)$$

Part 2 - Scattering rate

Scattering rate

$$\frac{1}{\tau(k)} = \frac{1}{\tau_{iso}} + \frac{1}{\tau_{aniso}} (k)$$

Part 2 - Scattering rate

- 1st result: anisotropy is elastic
- 2nd result: Isotropic T-linear scattering rate
- 3rd result: Planckian limit

$$\frac{1}{\tau} = \alpha \frac{k_{\rm B}T}{\hbar}$$

$$\alpha = 1.2 \pm 0.4$$

Scattering rate

$$\frac{1}{\tau(k)} = \frac{1}{\tau_{iso}} + \frac{1}{\tau_{aniso}} (k)$$

To Planckian scattering

CONCLUSIONS

- 1. ADMR directly measures the momentum-dependent scattering rate and finds an isotropic, 7-linear scattering rate of Planckian magnitude.
- 2. Pure 7-linear resistivity occurs when the scattering rate reaches the Planckian limit for all directions of electron motion
- 3. The semi-classical approach seems to work to describe the ADMR of the strange metal in cuprates

Part 2 - Scattering rate

Boltzmann transport

Part 1: Is the Fermi surface strange?

Part 2: Is the scattering rate strange?

Part 3: Is the magnetoresistance strange?

Part 4: Is the Seebeck coefficient strange?

Part 3 Magnetoresistance

Ataei et al., arXiv:2203.05035

Collaborators

Amirreza Ataei Adrien Gourgout Lu Chen Jordan Baglo Marie-Eve Boulanger Francis Laliberté Sven Badoux Nicolas Doron-Leyraud Louis Taillefer

Vincent O liviero Siham Benhabib David Vignolles Cyril Proust

Jianshi Zhou

Shimpei Ono

Hidenori Takagi

Part 3 - Magnetoresistance

7-linear R B-linear MR

Cooper et al., Science 2009

Giraldo-Gallo et al., Science 2018

Quadrature scaling

$$\rho(H,T) - \rho(0,0) \propto \sqrt{(\alpha k_{\rm B}T)^2 + (\gamma \mu_{\rm B} \mu_0 H)^2}$$
BaFe₂(As_{1-x}P_x)₂
BaFe₂(As_{1-x}P_x)₂

Hayes et al., Nat. Phys. 2016

$$\rho_{ab}(H,T) = \mathcal{F}(T) + \sqrt{(\alpha k_{\rm B}T)^2 + (\gamma \mu_{\rm B}\mu_0 H)^2}$$

Ayres et al., Nature 2021

QUESTION

Is B-linear MR another facet of Planckian dissipation?

Part 3 - Magnetoresistance

Boltzmann transport

Hinlopen et al., arXiv:2201.03292

CONCLUSION

Electrons with Planckian scattering seem to obey standard orbital motion in a magnetic field

Part 1: Is the Fermi surface strange?

Part 2: Is the scattering rate strange?

Part 3: Is the magnetoresistance strange?

Part 4: Is the Seebeck coefficient strange?

Part 4 Seebeck coefficient

Gourgout*, Grissonnanche* et al., PRX 12, 011037 (2022) Georges & Mravlje PRR 3, 043132 (2021)

Collaborators

Experiment

Adrien Gourgout Francis Laliberté Amirreza Ataei Lu Chen Simon Verret Nicolas Doiron-Leyraud Louis Taillefer

Theory

Antoine Georges

Boltzmann transport

The band structure ALONE fails to explain Seebeck

To tune the sign of Seebeck the scattering rate must be energy dependent

$$\frac{1}{\tau(T)} = \frac{\alpha k_B T}{\hbar}$$

To tune the sign of Seebeck the scattering rate must be energy dependent

$$1/\tau_{\rm MFL}(\epsilon,T) = \sqrt{\left(\frac{\alpha k_B T}{\hbar}\right)^2 + (a\epsilon)^2}$$

Marginal Fermi Liquid

To tune the sign of Seebeck the scattering rate must be particle-hole asymmetric!

$$1/\tau_{\rm SMFL}(\epsilon,T) = \sqrt{\left(\frac{\alpha k_B T}{\hbar}\right)^2 + (a_{\pm}\epsilon)^2}$$

Skew Marginal Fermi Liquid

 $a_+ \neq a_-$ for $\epsilon > 0$ and $\epsilon < 0$ and $\alpha = 1.2$ from ADMR

To tune the sign of Seebeck the scattering rate must be particle-hole asymmetric!

$$1/\tau_{\rm SMFL}(\epsilon,T) = \sqrt{\left(\frac{\alpha k_B T}{\hbar}\right)^2 + (a_{\pm}\epsilon)^2}$$

The Seebeck coefficient has now the right SIGN and AMPLITUDE

The ANISOTROPY of the elastic scattering rate is essential to explain c-axis Seebeck

CONCLUSION

The Seebeck coefficient reflects another aspect of the strange metal and the Planckian dissipation, with an addition of an intrinsic particle-hole asymmetry and that obeys ϵ/T scaling.

Conclusion

Part 1: Is the Fermi surface strange? No

Part 2: Is the scattering rate strange? Yes

Part 3: Is the magnetoresistance strange? No(?)

Part 4: Is the Seebeck coefficient strange? Yes