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CONCENTRATION-OF-MEASURE PHENOMENON

A random variable that “smoothly” depends on the influence of
many weakly dependent random variables is, on an appropriate
scale, essentially constant (= to its expected value).

GOAL OF THESE LECTURES:
Converting this slogan into maths for independent random
variables, Markov chains, and Gibbs measures.



Plan of the lectures

INDEPENDENT RANDOM
VARIABLES
m A random walk
m Hoeffding’s inequality
m Three applications of
Hoeffding’s inequality
m More on tail probabilities
for sums
m Azuma-Hoeffding

inequality & Gaussian
concentration bound

m Three applications of the
Gaussian concentration

bound



LECTURE I:
INDEPENDENT RANDOM VARIABLES



A RANDOM WALK

Take independent random variables Xi, . . ., X, such that

_ J+1 (right) with probability z
" |1 (left) with probability 1.

Position at 0: Sy := 0.

Position at time n:
Sh=X1+ -+ X,

One has




Basic 1DEA: use Chebyshev’s inequality to get

Var(S,) 1
2

() , VO <u</n.

P (|Sn| > u\/E) <

MucH BETTER BOUND (Chernoff, 1952):

2
IP(|S,,| > u\/ﬁ) < 2exp <—L;> , V0 <u<+/n.

(Example: n =30, u=5,1/u? = 4.1072,2e " %/2 ~ 7.5107)

: though |S,| = O(n), it is sharply concentrated in a
much narrower interval of size O(+/n).



Glimpse into the Gaussian paradise

Zi,. .., Zpiid. with Z; = N(0, 1)

Since % = N(0,1), one gets

IN
®
|

o

P (12 + -+ Zi| > uy/n)

1 2
>max | 0,1 - — e
u’ ) u\/2m

for all u > 0 (the lower bound being non-trivial for u > 1).



Comparison with the central limit theorem & the
Berry-Esseen estimate

Back to the random walk. Take u > 0. One has

. 2 o2
lim PS> uv/i) = = [T ax

and
P(S,| > uy/n) < — /Oo % dx 125 @BerryE
nl = Uy n — e 2 XT—= €Iry-Lsseen
V2T Jy \/ﬁ
u2
Sle_7
u

where C = absolute constant =~ 0.5.

HENCE, one has to take n =~ e* to get back Chernoff’s inequality!
(Example: n ~ 7.10'° for u = 5)



Looking at the scale of the law of large numbers

Rescaling Chernoff’s bound one gets

nu?
P (|Sp| > nu) < 2exp - | Vo < u<1.

Hence

(I ERE gp( 22) < oo, ve >0,

n>1
Y
"

> ¢ infinitely often> =0
n

4
Sn a.s.

o (= B(X))).

n n—+oo




Large deviations: asymptotic & non-asymptotic

Take 0 < u < 1. One has

P(S, > un) < exp(—nl(u)), Vn>1,

I(w) = {1n2+”2r“1n (54 + 5¥In (15%) ifue[-1,1]

400 otherwise.

Moreover



A FIRST UPGRADE OF CHERNOFF’S INEQUALITY:
HOEFFDING’S INEQUALITY

We start with a lemma:

HoOEFFDING (1963)

Let Z be a real-valued random variable with E[Z] = 0 and
o < Z < (3 for some reals @ < 3. Then

N (B = a)?

, VA ER.
8

logE[eAZ] <




Proof of Hoeftfding’s lemma

Set
P(\) =logE[e*], X € R.

By Taylor’s expansion

for some 6 € (0, \).
By elementary computation

U"(A) = Var(Z))
where Zy € [a, 8] is a r.v. with density f(x) = e YN A wrt IP.
Since ‘Z,\ — OH'B‘ < 5 % then

Var(Z)) = Var <Z,\ i —; ﬁ) < (8 _40()2' [




Hoeftding’s inequality

Let {X;}, be independent real-valued random variables and
assume that X; € [a;, b;] (a.s.) for some real numbers {(a;, b;) } 1,
with a; < b;. Then forall A € R

g [eA(Z?ZI(XiE[XiD)} < Zn: (bi_;i)z A2

i=1
In particular, for all u > 0,

n

Z(Xi — E[Xi])

i=1




CAVEAT:
Hoeffding’s inequality is insensitive to the variance of the X;’s.

For all r.v. with a distribution concentrated on, say, [—1, 1] (i.e,
X; € [—1,1] a:s.), we get the same bound as for X; = £1 with
P(X;==+1) = % which are the most spread-out random
variables in this class.



Proof of Hoeffding’s inequality

Set Y; = X; — E[X;]. By independence of the X;’s we get for every
u > 0and every A > 0

(S n0)- <6Xp<@ ) e
NG

< exp(—Au) H E [exp(\Y;)] .

i=1

< exp(—A

For each i < n, Y; is centered (IE[Y;] = 0) and belongs to the
interval
[ai — E[Xl], bi — E[Xl]] .



We apply Hoeffding’s lemma to each Y; with a = a; — E[X]],
B = b; — E[X;], which gives at once the 1st inequality and also

P Yi>ul| <exp| - u+ — b — a;)? | .
S R S 2y
The minimum value of the right hand side is attained for

B 4u

YR



Another look at Hoeffding’s inequality

For concreteness, assume that X, Xy, ... are i.i.d. with
0 < X; < 1. Then
1 n
_ 2
IP(nZXi—E[X] 26) <2e7 c>0,n>1.
i=1
Let
2 <« »
§:=2e 2" (“confidence”)
If

> e (2
m= o % \5 )

then, with probability at least 1 — 9, the difference between the
empirical mean and the true mean is at most €.

Now, imagine that we want 10 times more accuracy: one can
check that for &’ = /10 we need 100n samples.



THREE APPLICATIONS OF HOEFFDING’S INEQUALITY

I. BINOMIAL CONFIDENCE INTERVALS.

GoAL: estimate the parameter p € |0, 1] of a Bernoulli
r.v. X by observing the realizations of independent copies

X1, X, ... of X.

Empirical estimator:

X1+ + X
n

Xy =

which converges a.s., as n — 400, to p, by the strong law of
large numbers.

Confidence intervals for X, at a confidence level 1 — «, such as
95%: the resulting intervals bracket the parameter p with
probability at least 0.95.



Usually: one applies the CLT... which is an asymptotic result! For
every a € |0, 1],

lim P e |X 4 X, + a >1

1m — - —
n—r+00 p " 2\/ﬁ’ " 2\/5 -

a

u2
where a solves 1 — a = / (ZW)*% ez du.

—a



Let’s apply Hoeffding’s inequality: for all a > 0
P (|X, —p| > a) <2e72@
This ensures that, for all n > (24*)"'In2,
P(‘Yn—p‘ Sa) > 1—2e2 —1_ ¢

where o = 2e 2" lies in |0, 1.

Therefore we obtain an

e ) -

— (.



II. THE EHRENFEST MODEL.

container A container B

Total of N molecules of gas



N)

Zt( : number of molecules in container A at time t € IN

Evolution rule: for i € {1,...,N — 1},

P(z) = i+1|z =) = X

N
and ;
1

Pz =i-1|z" = i) = <.

Gugss: after a long time, there will be, on average, N/2
molecules in each container (thermal equilibrium).

No time to wait? start with the probability distribution ensuring
that: B(N, 1/2), so the number of molecules in container A will
be i with probability

N
w(i):< )z—N, 0<i<N.
1



Look at the “temperature” in container A:

7(N)

N
where Z™N) 2 B(N, 1/2) = SN X; with X; = Bernoulli(1/2)

Now apply Hoeffding’s inequality:

]P (
Typically N = 6.10%,

Take, e.g., : the probabilty of observing a fluctuation of
more than one billionth is less than 2 e~1-2%10" 111

ZN) g

N

> ) §2672N“2, u>0.



III. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION.

Suppose we observe the realizations of i.i.d. r.v. Xj,..., X, witha
common cumulative distribution function (CDF, for short)

F(x) =P(X <x),x€R.

Empirical CDF:

l n
Fulx; X1, .., Xy) = - Zl ]l{Xin}.
The 1(x,<y}’s are independent Bernoulli r.v. with parameter
P(X < x) = F(x), so E[]l{x,-gx}] = F(x).

By the strong law of large numbers, for each x € R,

lim Fu(x; Xq,...,Xn) = F(x), as..

n—-400



By Hoeftding’s inequality, for all # > 0 and for all n € IN

(&) supP (| Fu(x; X1, .., Xp) — F(x)| > u) < 262
x€R

This is not really satisfactory in view of Glivenko-Cantelli
theorem:

lim sup |[Fn(x; X1,...,X,) — F(x)| =0, a.s..
n—+00 JeR

QuEesTiOoN: Can we put the supremum over x inside the
probability in (&)? This means that we want to consider the
random variable

F(Xl,...,Xn) = Sup ’fn(x;Xh-"aXn) _‘F(x)’
x€R

which is not a sum of random variables.



MORE ON TAIL PROBABILITIES FOR SUMS: LINK WITH
LARGE DEVIATION THEORY & NON-(GAUSSIAN TAILS

Let X1, X, . .. be independent random variables.
Using Cramér-Chernoff method: Vu > 0,Vn > 1,

IP(X1+~~+X,,
n

~Ex) > )

< exp (—nsup {Au+E[Xi]) —x (A) })

A>0

where

Ux, () :== logE[e)‘Xl] :

The bound is non-trivial if there exists b > 0 such that
le(b) < +o00.



If X; is a bounded random variable, then by Hoeftfding’s lemma

)\2
logE[e)‘Xl] < AE[X ] + gosc(Xl)2

which gives Hoeffding’s inequality.

Now take for instance X; = Poisson(6) (§ > 0). One gets

P<X1+-~-+Xn
n

—0> u) < exp [—n@h (g)] ,u>0,

where
h(u) .= (14 u)log(l+u) —u, u>—1



To compare more easily with Hoeffding’s inequality, observe that

forallu >0 ,

u
>_
hw) 2 o

Hence

Xy 4o+ X 2
n 2014‘@

There are two regimes: if u < 36 we recover a Gaussian bound
of the form exp(—nu?), whereas if u > 360 we get a bound of the
form exp(—c'nu).



LEcTURE II:
INDEPENDENT RANDOM VARIABLES

(continuation & ending)



From X; + - - + X,
TO NONLINEAR FUNCTIONS OF X, ..., X},

Take independent random variables X, Xz, . .., Xj,.
Aim: generalize Hoeffding’s inequality in replacing
X1+ -+ X, (linear function of Xi, ..., X,)
by
F(Xi,...,X,) (typically a nonlinear function of X, ...

under mild assumptions on F.



A KEY ABSTRACT RESULT

NoO INDEPENDENCE NEEDED!

Let
o Y:(Q,5,P) — R be an integrable random variable;
o {0,Q}=F,C T, C - CTF, =7 afiltration;
o Y —E[Y] =3k (BIY|FY] — E[Y|Th]) = 2% Ak

AzuMA-HOEFFDING INEQUALITY

VA€ R, log E[exp(A(Y ~E[Y])] < & ZOSC(Ai)z

whence

2u?
> _ > u) < A )
u>0, P(|Y E[Y”—”)—Ze"p( Z?zlosc(Ai)2>

Note: osc(A;) = sup A; —inf A; < 2[[Aj|| .



Proof of Azuma-Hoeftding inequality

Take A > 0 (to be chosen later on):

P(Y—E[Y] > u) = ]P(exp (\(Y — E[Y])) > exp(Au))
< exp(—Au) Efexp (\(Y — E[Y]))].

=Efexp(A(Ant-+41))]

Now
E [exp (AM(A1 + -+ Ay))]
=FE [E[exp (A(A1+ -+ + Ap1)) }"J'“,,,lH
= E[exp AAL + -+ Apy)) E[exp()\An)}?n_l)]].



Proof of Azuma-Hoeftfding inequality (continued)
By (a slightly modified version of) Hoeffding’s Lemma
B [exp(030)|9i)] < xp (§ ose(a0))
Take Z = Ay (so 8 — o = osc(Ay)), E[-] = E[-|Fx_1] and observe

that E[Ax|Fx_1] = 0.
By induction one gets

2 n
Elexp (A(A1+ -+ Ay))] < exp </; osc( )
i=1

Hence, setting ¢ = Y 1, osc(A;)?,
cA?
P(Y—TE(Y)>u) <exp| —-Au+ Y

X 2u?
<o (g (-2es )~ ()

The same holds for —Y. [ |



BACK TO BUSINESS:
The bounded differences property

Let . be a set (think of a subset of R).

F: %" — R satisfies the bounded differences property if
there are some positive constants ¢;(F), ..., ¢,(F) such that

‘F(xl,...,x,-,...,xn)—F(xl,...,xl{,...,xn){ < li(F)

/ .
forall xq,...,x,x;,...,x,in.7.



GAUSSIAN CONCENTRATION BOUND (McD1ARMID, 1989)

Let Xi, ..., X, be independent random variables taking values in a set .&.
Then, for all functions with the bounded differences property, for all A € R,

P
log E[exp (A(F(X1, ..., Xx) — E[F(X1,...,X)]))] < 5 Zgi(p)Z.
In particular, for all u > 0,

P(F(Xi,...,Xa) — E[F(X3,...,X,)] > u) < exp (gy_lzz(zr)Z) '

Hence

P(‘F(Xla"wxn) _E[F(Xh"‘vxﬂ)” > u) < 2€Xp <Z”_IZZ(F)2)



We have

n

Var (F(Xi, ..., X)) < EZ&(F)Z.

i=1

Proof. Let Z a r.v. such that IE[Z] = 0 and such that there exists
v > 0 such that

E[e’\z] Se"’\z,V)\E]R.
Then \ .
E[e?] -1 <E[e” ]—1.
A2 - A2

Then write Taylor’s expansion and A | 0 to get
Var(Z) = E[Z?] < 2v. [ ]




Little checking with our random walk

Back to our random walk:

S ={-1,+1}
F(Xl,...,Xn):X1+"'+Xn:Sn

E[F(Xi,...,Xn)] = zn:IE(Xi) =0
¢;(F) =2, henceiﬁi(F)2 = 4n.

Hence we get back Chernoff’s inequality: Vu > 0

2
P(|Sy| > nu) < 2exp <_2n> .



Two remarks

e The above concentration bound, and more generally, any
concentration bound, is concerned with the fluctuations of
F(Xi,...,X,) around its expected value E[F(X, ..., X,)].

In general, those bounds don’t provide any information on the
magnitude of E[F(Xi,...,X,)].
e We do have to normalize in some sense F(Xj, ..., X,) to control

E [eAF(Xl,...,X,,)]

since otherwise one can make this quantity arbitrarily large by
adding a large number to F(Xj, ..., X,), which does change the
¢;(F)’s. Substracting E[F(X, ..., X,)] to F(X;,...,X;,) is a
natural way to avoid thar.



Proof of the Gaussian concentration bound (without the optimal

constant)

Apply Azuma-Hoeffding inequality with

Y = F(Xi, ..., X,
Fe=0(X1,...,Xk), Fo={0,Q} (trivial sigma-field)
E[Y|F] = E[Y] and E(Y|F,) =Y.

{E[F(Xi,...,Xa)|Fk]}{_, is usually called the Doob martingale
associated to F(Xp, ..., Xy).

Observe that Ay = E[F(X1, ..., X,)|Fk] — E[F(X1, ..., Xn)|Fk-1]
is a random variable as a function of X, ..., Xj.



Now let be an independent copy of X, ..., Xj; then

E[Y|Fi1] = B[F(X, ..., X, ..., X)|F4]

Then

= Ap = E(Y|Fy) — E(Y|Fk-1)
=E[F(X1,..., Xk, .. Xn) = F(X1,. .., X[, .., Xn) | Fk]

= [[Aglloo < Li(F). u



Looking back at the proof of Azuma-Hoefding inequality we get
at once

log E[exp (A(F(X1,...,Xa) — E[F(X1,..., Xa)]))]
=logIE [exp (A(A1 + - + Ap))]

PR )
> E 1Al
i=1

n

A2 2
i=1

IN

IN

Hence

P(|F(X1,.... Xa)~E[F(X1,....Xa)]| > u) < 2exp (M)



THREE APPLICATIONS

1. FATTENING PATTERNS & MEASURE CONCENTRATION

Let .# be a measurable set (e.g., a finite set, like {0, 1}).
Fix n € IN.

Let Xi, ..., X, be i.i.d. r.v. taking values in ..

Let

w(x,y) = Z]].{xﬁgy} (Hamming distance)
where x = (x1,..., %),y = (V1,---,yn) € S
Pick aset A C " with P(A) > 0

Concentration on very small subsets

For every u > 0, one has

IP{dH((Xl,...,Xn),A) > (u—i— zlnIP(lA)> \/ﬁ} Se—zuz .




Interpretation:

Define the r-fattening of A as

(4], = {z € S dy(z, A) < 1}

1

P {dH((Xl,...,Xn),A) > <u+ ;hl]P(A)) ﬁ} = 1-P([A],)

with
1l 1 \f
r=\|u+ 2 ni() n.

Numerical example: take IP(A) = 107°, u such that
u++/(1/2)In(1/P(A)) = 10, then e 2* ~ 18,




Proof

Take F(xi,...,%,) = dy(x, A). Check that ¢;(F) = 1, Vi.
Apply the Gaussian concentration bound to Y = F(Xi, ..., X;):

P(Y > +u) < exp <—2:2> (Vu > 0).

Apply again the Gaussian concentration
bound to —\Y with A > 0:

)\2
exp(AE[Y]) E [exp(—AY)] < exp <r18> .
But Y = 0 on A, hence

E [exp(—AY)] > E[14 exp(—\Y)] = E[14] = P(A)-



THREE APPLICATIONS

2. PLUG-IN ESTIMATOR OF SHANNON ENTROPY

Take a finite set . = {1,...,Card(.¥)} (“alphabet”).
Let Xi, X5, ... beiid. r.v. taking values in .%.

Let X = X; with distribution {p(1), ..., p(Card())}.
SHANNON ENTROPY of this distribution:

Card(.%)

- Z p(s)log p(s) € [0,log Card(.)].

Two extreme cases:

1. There is s* such that p(s*) = 1: no indeterminacy at all, the
next symbol is always s* ;

2. p(s) = 1/card(#), Vs € 5” maximal indeterminacy.



Asymptotic equipartition property

By using the strong law of large numbers, one has
1
—=logP(Xy,...,X,) = H(X) almost surely.
n

CONSEQUENCES: Let p(x1,...,x,) :=P(X; = x1, ..., Xy, = xp).
Given € > 0 and n large enough,

plxi, ... x,) =< e MHX)ES)

forall (x1,...,%,) € Gpe C " withP(Gpe) = 1.
Hence

Card(Gy,)

Card(.#™) = exp ( — n(log Card(.) — H(X) %e) .

>0




Empirical entropy

Empirical distribution:

. . 1
Dn(s) = pn(s; X1,..., Xy) = - Z]l{xj.:s}, se /.

j=1

Card(.%)

= Hy(X1, ., Xa) == > puls)logpu(s).

:;)



By the strong law of large numbers, p,(s) —— p(s), almost
n—o0
surely, for each s € ., thus

T

» — H(X), almost surely.
n—oo

One has 0 < H, < lognand 0 < E[H,] < H(X) for every n € IN.



Fluctuation bounds for empirical entropy

Forall u > 0

P = nu2
“E[H,) >u) <2 S ed—
IP(|Hn E[H]|_u)_ exp< 2(1+logn)2)

In particular
(1+log n)

Var(H,) < -




Proof

Let

Card( 5/’) n
Flx,.. Z Zﬂ{x, s} log (,11 > 11{xj=s}> :
j= =1

Claim (homework!):

2(1+1
&(F)gw,izl,...,n.
n

Conclude by the Gaussian concentration bound



THREE APPLICATIONS
3. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION & DVORETSKY-KIEFER-WOLFOWITZ
INEQUALITY

SETTING (RECAP):
Lid v, (X5, Xz, Xy ), X = X, Fx) = P(X < x).

Given x € R and Xj, ..., X, define

1 n
.Fn(x):fn(x;Xh...,Xn):; Zl]l{xlsx}
Can we get the following?

P (sup | Frn(x; X1,y ..o, Xn) — F(x)| > u> <2e ™ n>1u>0.
xeR



We are interested in the r.v.

K8y = KS8p(Xi, ..., Xn) = sup|Fu(x) — F(x)|.
x€R

By Glivenko-Cantelli theorem

XS, —— 0 almost surely,
n—o00

and for all u > 0

IP(\/EJCSH > u) mZZ(_l)Pl exp(—2u2r?).

r>1

(Kolmogorov-Smirnov test)



The easy part

Consider
Check that
Thus, by the Gaussian concentration bound, for all u > 0, for all
ne N,
P (|XS, — E[XS,]| > u) < 2 exp(—2nu?)

and

P (|vnXS, — E[V/nKS,]| > u) < 2 exp(—2u*).



The tricky part: Getting rid of [E[\/nX8,]

Dvoretsky-Kiefer-Wolfowitz inequality

P (VnX8, > u) <4exp(—u"/8), VYu>o.

Clever proof only using elementary steps such that one boils

down to
E[e™¥ 8] <4E[eP X)X >0,

where P(¢; = £1) = 1/2 (our initial example!).
OPTIMAL BOUND (Massart, 1990):
P (VnX8, > u) <2 exp(—2u®), Vu>0.

Proof: very technical.



A remark

Given two probability distributions Px and Py on R with
cumulative distribution functions Fx and Fy,

dKolmo(]PX7 ]PY) = Sup |§X(x) - ?Y(x)|
x€R

is the Kolmogorov distance between them.

Another possible distance is the Kantorovich distance:

(P Py) = sup { [ g~ [apy s g0 - 5] < b1}

= / ‘EFx(X) — EFy(X)’ dx < dKDlmo(]PX7]PY> :



LecTURE III:

MARKOV CHAINS



Plan of the lectures

concentration bound:
moment concentration
bounds & the
house-of-cards process

m A characterization of the
Gaussian concentration
bound

MARKOV CHAINS
m The coupling matrix
m Markov chains with a
countable state space
m Beyond the Gaussian



Recap of LECTUREs I & 11

SO FAR:

@ Xi,X,,...independent r.v. taking values in ., i.e. product
measures on .\

]P(Xl :xl,...,Xn:xn) :]P(Xl :xl)x-~~><]P(Xn:x,,).

e Martingale decomposition:
F(Xi,...,X,) — E[F(Xi,...,Xp)] = ZAi

where the A;’s are the increments of the Doob martingale
associated to F(Xi, ..., X,): This is completely general.

{X;} form a Markov chain (non-product measure).



Preliminaries

We start in a rather abstract context: let . be a metric space
with distance d.

SEPARATELY LIPSCHITZ FUNCTIONS:
F:.% — R such that

|[F(x) — F(y)] }
ei F) = su — ! Xj = Y, VJ i; Xi i
) =sup{“5 L=y i £y
where x = (..., x_3,x_1, X0, X1, X3, ...) € .FZ
One can think of a function F(xi, . . ., x,) as a function on .7%

with ¢;(F) = 0 for i > nand i < 0.



Preliminaries: continuation & ending

Let {X;}icz be a stationary process where the X;’s take values in
. Denote by P its joint distribution.

Let:
o F' __ be the sigma-field generated by {X; : k < i} ;
o F=0 (U F ) ;

o F_oo =();, T (tail sigma-field).

Assume that P is tail-trivial (i.e, VA € F_,P(A) € {0,1}).



The basic telescoping

Recall that in general
F-E(F) =) A,
i€Z

where

Aj = Ai(XL) = E[F|F)] — E[F|Fi]
with F; = o (X" ).

Technical remark: one needs F € L'(PP) to use Lévy Upward and
Downward theorems.



Some notations

Py: _: the joint distribution of {X;,j > i+ 1} given XL .

]lgxi yi _cacouplingof Pyi and Py: .

—o0

For —oco < i< j < 4o0:
X{ = Xi7Xi+17~~-7)(j andxf = Xi,xi+1,...,3(']'.



The second telescoping

Ai=Ai(XL) =

/d]Pxf—Olo(Zi)/dIPxioo,xi—o;zi()/?ipZ?il)[F(XiooY?_ﬁl) — F(XZoziziy)]-

Now insert the inequality
<> 0(F) d(x, i)
keZ

to get

o0
A <) Diijliss(F)
=0



The coupling matrix D

We have introduced the upper-triangular random matrix

X!
— 00
Diivj = Dy =

[ [Py o 07 dloi s

where i € Z,j € IN,and D;; = 1 (Vi € Z).



MARKOV CHAINS

FOR THE SAKE OF CONCRETENESS:
consider a Markov chain {X,},cz with discrete state space .
equipped with the discrete distance d(x, y) = dyy.

Moreover assume that the transition kernel
P = (p(x,¥))(x,y)c.#x. is irreducible and aperiodic.

Finally, assume positive recurrence, i.e., for some (hence, all)
x € 7, Ey[Ty] < 400, where Ty = inf{n € N : X,, = x}.

Therefore, there is a unique invariant probability distribution 7
for the chain, so

P(Xo = x0, X1 = X1, ..., Xpn = xp) = 7(x0)p(x0, %1) - - - p(Xn—1, Xn)-



The Markovian case

Take a Markovian coupling and use stationarity:
XLO(} 1 Xl
Di,i-i—j = 11+; = ZP i—1,% /dIPX 2(up”, v(‘)’o)d(uj, Vj)-
zeS
Defining the COUPLING TIME
T(ug°, vg°) =inf{k > 0: u; = v;, Vi > k}
we have
d(w, ) < Uyr(uge vpo)= )

whence

lle
Dll-‘rj <ZP i—1, % )IPXZ(T>])
ze€S



Gaussian concentration bound

REcap:
= Z A; and
i€
o0
Xl IX ZP i—15 % Z T>] H—j(F)
z€S =0

Now apply Azuma-Hoeffding inequahty:
1
log B exp(F — E(F))] < 2> [18:(Xim1, X%
€7,

After some (uninteresting) work, one gets

1+ ~
Z 1A(Xim1, X012 < C(ze) < sup By, (T1) ) XZE

icZ, u,veS icZ

where € > 0 is arbitrary.



Gaussian concentration bound

THEOREM

Let { X, } ncz be a Markov chain as above. There exists a constant
D > 0 such that, for all separately bounded Lipschitz functions
F: . 9% 5 R, we have

log E[ exp(F — E(F <DZ€
i€Z

2
D= 4(1:6) < sup IAEuVV(THE)) .

u,veS

where




The simplest example: .7 finite

Use Doeblin’s coupling: let {(X,, Y,)}» be the Markov chain on
the state space . x . which evolved in the following way:

e {X;} and {Y,} evolve independently according to the
transition kernel P until the first (random) time X,, = Y, and

o they evolve together with the same transition kernel after
that time.

Equivalently, define the transition kernel on . x . by

plxe, X)p(y,y") if x#y
q((x,y), (x,)) = p(x,x) if x=yandx =y
0 otherwise.

The diagonal {(x, y) € . x . : x = y} is an absorbing set.



LEmMA (Doeblin)

Jp € (0,1),3c>0 suchthat sup I@u’v(T >j)<cp,Vje NN
u,v €Y

This is more than enough to get sup,, c B, (T) < +oc.



Proof of the lemma

Recall that T is the coupling time (“coalescence” time).
Irreducibility and aperiodicity of P mean that there exists m > 1
such that

min p"™(x,y) =:¢ > 0.

x, Y€
Then
IP(uv) T<m Zp (v,z)Z€Zp(m)(v,z):z—:
€S zes

for all (u, v) € .¥ x .. The Markov property yields

I/E\)(um)(T < km) >1— (1 — €)k .



LEcCTURE IV:
MARKOV CHAINS

(continuation & ending)



Beyond the Gaussian concentration bound:
moment concentration bounds

What happens if we don’t get a uniform (in X;_;, X;) decay of
Xi—1,X; . .

D; ;" as a function of j ?

This means that [|A;(X;_1, X;)||cc = +00, hence

Azuma-Hoeffding inequality is not applicable, hence a Gaussian

concentration bound is out of hope.

ANSWER: we may obtain only moment bounds. We have to
replace Azuma-Hoeffding inequality by another martingale
inequality, namely Burkholder inequality: for p € IN,

B [(r- )] < o v | (S at)

i€Z

(The constant (2p — 1)? is optimal.)



Moment concentration bound of order p

THEOREM

Let p € IN and let F be separately Lipschitz and L?”(IP)-integrable. Then,
for every € > 0,

E|(F-EF)”] <G (Z &mz)p

i€Z




If, for some p € IN, the previous inequality holds then, by
Markov’s inequality,

(Ziez 6i(P)?)"

P (|[F - E[F]| >u) <G i

, u>0.

We get an algebraic decay.



An instructive example: the “house-of-cards” process

o ./ =1{0,1,2,...};

e Forallk € Z,,P(Xp11 = x+ 1|Xx = x) =1 — g and
P(Xit1 =0|Xx =x) = gy, x € S

0 0<gr <l xeZ.

The transition kernel is irreducible and aperiodic.

One can prove that it is a positive recurrent Markov chain if and

only if
S T - @) < +oo.

n k=0



The three different concentration regimes

THREE CASES:
(1) g := inf{gy : x € .} > 0 = Gaussian concentration bound.
(2) o € (0,1)s.t. g = x~ @

P
= , B[(F - E(F))*] < G, (Z&(Ff)

where C, grows too fast with p to get a Gaussian concentration
bound.

(3) Iy > 0s.t. g« = 7/x = moment concentration bound up to some
critical p(7).



One can construct a coupling such that

j—1

P.y(T > j) < H(l — Qi) X2y
k=0

where ¢& = inf{q : s < n}.



The coupling

It is based of the representation of the chain as a random
recursion: take Uy, Uy, . .. iid. r.v. uniformly distributed on [0, 1];
then

Xk+1 = (Xk + l)l{Uk+1ZCIXk} '

The coupling works as follows: run two copies of the chain
starting from different initial states; when they hit the ground
(state 0) together for the first time, then they stay together
forever.



A final remark on Markov chains

TaEOREM (Dedecker-Gouézel, 2015)

For an irreducible aperiodic Markov chain with a general state
space ., the Gaussian concentration bound holds
the chain is geometrically ergodic.

(Based on coupling ideas.)



LECTURE V:
GIBBS MEASURES



Plan of the lectures

m The ferromagnetic Ising
model

m Concentration
inequalities for the Ising
model: two regimes

m Two applications:

empirical measure &
GIBBS MEASURES ASCLT

m Some generalities



GIBBS MEASURES

PREVIOUSLY:
Markov chains with state space . ~» non-product measures on

I
GIBBS MEASURES, which are non-product measures on . Zd,
d > 2, where we take . = {—1, +1} (spins) for definiteness.

STRATEGY: same as for Markov chains, that is, introduce a
“coupling matrix” (D;j); jez« indexed by d-dimensional integers.



The basic telescoping & the coupling “matrix”

Enumeration of Z4:

e: 7% 5 N

(<) :={j € Z: e(j) < e(i)}

F<i: o—field generated by wj,j < i

F.. 7% R, we? Zd(“conﬁguration”)
F-E[F =) A; A;=E[F|F<] - E[F|F
i€z:?
w<i _ B (1) (2)
Di; =P, (wj # w; )
where we couple

P(“w<i,+i) and P(“w<i7—i)'



Boltzmann-Gibbs kernel

exp (—BHa(w|1))
Z0)

B (wly) = A€z w e P

~+ Gibbs measures on .7%" depending on 7 in general (DLR equation)
Parameter 8 > 0: inverse temperature

SPEcIAL cASE: § = 0 (infinite temperature)
~ uniform product measure (~» Gaussian concentration bound).

4+ -+ - - -

- 4+ + &
w

+ - 4+ - &

.

—4—/\4—4-4—
+ =X - s

4 - 4+ + + -




Ising model (Markov random field)

Ha(w]n) = — Z wiwj — Z w;j

ijeA i€OA, j¢ A
lli—jlli=1 li—illi=1

,Vj € Z¢ (“+-boundary condition”), gives rise to u+.
FAcrT: there exists a unique Gibbs measure (. for all 8 < ., whereas there

are several ones for all 8 > (3., depending on 1), in fact, two extremal ones:
pand p.

4+ - + - - =

- 4+ + &+ - 4+
w

+ - 4+ -+ -

—4-/\4—4—4—4»

4+ == - 4




Phase transition in the Ising model for d = 2

B increases from left to right
‘+’: black, ‘—’: white
B. = (1/2) sinh (1) ~ 0.4407



The magentization

Let My(w) = > e, So(Tiw), where so(w) = wo, be the total
magnetization in Cp, and where (T; w); = wj—; (shift operator).

Then
My(w)

(2n+1)¢
is the magnetization per spin in C,. For any shift-invariant
.1 d
probability measure v on .#%,

2n+1)4

is the mean magnetization per site (magnetization, for short) wrt
v.
The following is well-known for the Ising model (d > 2):

o for B < fBc, Eufso) =0
o for 8> B, £+ [s0] # 0.



Concentration for the Ising model

C-‘G"‘M“""; wb‘h. o ¢{ ":;M"'J“itt»
T ERrE
mT»A-W )



Let F:.%Z s R and

ti(F) = sup |F(w) - F(w)|, i€z’
we.7zd

where w(? is obtained from w by flipping the spin at i.

TuEOREM: Gaussian concentration bound (8 < f3)

Let u be the (unique) Gibbs measure of the Ising model. There
exists a constant D > 0 such that, for all functions F with
> icza li(F)? < 400, one has

E, [exp(F — E,(F))] < exp ( Z 4i(F )

icz4

Remark. As shown by C. Kiilske, the Gaussian concentration
bounds holds in the Dobrushin uniqueness regime with

D = 2(1 — ¢(7)) % where c(7) is Dobrushin’s contraction
coefficient.



Recall that the Gaussian concentration implies that for all u > 0
one has

M(W c .72 |F(w)—IE,[F]| > u) < 2exp <4DZ;;12&(F)2) )



At sufficiently low temperature, we can gather all moment bounds to ob-
tain the following. We denote by p* the Gibbs measure for the +-phase
of the Ising model.

THEOREM: Stretched-exponential concentration bound (3 > )

There exists o = () € (0,1) and ¢, > 0 such that for all functions F
with Y, .4 li(F)* < 400, for all u > 0, one has

+w€,§”Zd:|F(w)—EH+[F]|Zu <4dex < LS )
i )=\ i

(SIS




Some applications

Other models besides the standard Ising model: Potts, long-range
Ising, etc.

Ergodic sums in arbitrarily shaped volumes;
Fluctuations in the Shannon-McMillan-Breiman theorem:;

First occurrence of a pattern of configuration in another
configuration;

Bounding d-distance by relative entropy;
Fattening patterns;
Almost-sure central limit theorems;

Speed of convergence of the empirical measure.



Application 1: ALMOST-SURE CENTRAL LIMIT THEOREMS
(only part of the story)

This application shows that one can also get limit theorems out of
concentration inequalities.

INFORMAL STATEMENT:

If you know that the central limit theorem holds for some
function f : . Z% _y R wrt to a shift-invariant probability
measure, and if you can prove that this measure satisfies a
moment concentration bound of order 2, then the almost-sure
central limit theorem holds in the sense of Kantorovich distance.

(Cf. Chazottes-Collet-Redig 2016-paper for a precise statement.)



Given f : .7 Z* _; R and v a shift-invariant probability measure
on de, the usual form of the CLT is: forall u € R

: T,
lim v weﬂzd:wgu = Go,o; ((—00, )
n— o0 (2n+1)g If ’
where

of = Z/f.fondue (0, 400).

iczd
and where Go,o; is the Gaussian measure with mean 0 and
variance of.



The CLT can be re-written as

lim E,

e {Zlecn T;- )/(2n+1)% } = GO,Uf((—OO, u])

The ASCLT consists in replacing £, by a
and get an almost-sure version of the CLT: for all u € R

lim

1 == —
N=reo {Ziecnf(Ti )/(2n+1)g } GO,q(( oo,u])

for



ASCLT FOR THE MAGNETIZATION IN THE ISING MODEL

We will only formulate two results for f = s, (magnetization).
To state the theorems, define
dKanto(Vla V2) = sup (]EVI (g) - ]EVZ (g))

where the sup is taken over all functions g : R — R that are
1-Lipschitz.

Metrizes the weak topology on the set of probability measures on
R with a first moment.



High-temperature Ising model

THEOREM

Let 8 < . Then

N
. 1 1
N B | Tog N 27 Funrsameyt Gt | =0
n=1

where

o = Z/so-sooTid,u,e (0,00).

icZd




Low-temperature Ising model

THEOREM

Let 5 > f. Then

N
1 1
Em de | — Y - 4,Gop2 | =0
Nooo lnNZn5(Mn(w)*]EM+[30])/(2"+1)g 0.0%
n=1
where

o? = Z/SO'SOOTid,u+ € (0,00).

icZd




Application 2: “SPEED” OF CONVERGENCE OF THE
EMPIRICAL MEASURE

Take A € Z¢ and w € .#%" and let
1
En(w) =D Oru
AR
where (T;w); = wj—; (shift operator).

Let 1 be an ergodic measure on LI (Ay)n is a sequence of
cube 1 Z¢ (more generally, a van Hove sequence), then

E, (w) ==
weakly

Question: If 4 is a Gibbs measure, what is the “speed” of this
convergence?



KANTOROVICH DISTANCE on the set of probability measures on

ST

deano(p11, p12) = sup (B, (G) — E,,(G))

G LR
G 1—Lipshitz

where |G(w) — G(w')| < d(w,w’) = 27, where k is the
sidelength of the largest cube in which w and w’ coincide.

Lemma. Let i be a probability measure and

Fw) = sup (Z G(Tw) — EM(G)> .

7% SR \ieA
G 1—Lipshitz

Then
D GlF)? < A

iczd

where c¢; > 0 depends only on d.



Ising model at high & low temperature

Gaussian concentration for the empirical measure (3 < )

Let p be the (unique) Gibbs measure of the Ising model. There
exists a constant C > 0 such that, for all A € Z¢ and for all
u > 0, one has
,u‘{w S yZ dKanto(SA( ) ,U/> - ]Ep, [dKanto(gA ‘ > u}
<2exp(— C|AlW?).




We denote by u" the Gibbs measure for the +-phase of the Ising
model.

Stretched-exponential concentration for the empirical measure
(B> B)

There exist o = o(/5) € (0,1) and a constant ¢, > 0 such that, for
all A @ Z4 and for all u > 0, one has

;ﬁ{w e 72,

eanoE0 (), 1) = By [deana (A (), 11)]| 2 )

< 4 exp (—CQ|A|§u9) .




Can we estimate [, [dKa,,m(SA(-), ,u)} ?

Let
Z = {G ST LSRG 1—Lipschitz}
and
. d
z4 .= \A!Z (GoT; —E,(G), A € 7%
ieA
Then

Ey [deano( €0 (), 1)] = Ep ( Zé) '

Notice that we have functions defined on a Cantor space, which
is really different from the case of, say, [0, 1]k C Rk,



THEOREM

Let 1 be a probability measure on . z satisfying the Gaussian
concentration bound. Then

| A2 (g7~ if d=1
E/J, [dKanto (5/\()7 lu)] j 10 A 1/d .
o (1 (2" it 422

For (ay) and (by) indexed by finite subsets of Z? we denote

ap = by if, for every sequence (A,) such that |A,| — 400 as

log an,, <1

n — +o0, we have limsup, Toghy =
n

It is possible to get bounds but they are really messy.
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https://arxiv.org/pdf/1212.4663.pdf

Geometrically ergodic irreducible aperiodic Markov
chain

There exists a set C C . (“small set”), an integer m > 0, a
probability measure v, and ¢ € (0,1), k > 1, such that

e Forall x € C one has P™(x,-) > dv;

@ The return time 7¢ to C is such that sup, . Ex(x7) < oo.

If .7 is countable then this is equivalent to the fact that the
return time to some (or equivalently any) point has an
exponential moment.



DLR equation

1 is a Gibbs measure for a given potential @ if, for all A € Z¢
and for all A € B(.2")

u(A) = [ ) Y 0) Latein)
w'eA

where @ is a real-valued function having two arguments: a finite
. d
subset of Z¢ and a configuration w € .#%", and where

Halwln) = 3 B, wr )

AN NAAD

where A’ runs through the set of finite subsets of Z.



Dobrushin contraction coefficient

Let

Cij(v) = sup [y (lw) = v (o) lloo-
w,wleyzd
de\j:wizd\j

Then in our context C; j only depends on i — j and we define
) =Y Coily).
i€z

Dobrushin’s uniqueness regime: ¢(y) < 1.



van Hove sequence

A sequence (A,), of nonempty finite subsets of Z¢ is said to tend
to infinity in the sense of van Hove if, for each i € 74, one has

An+ i)\A,
lim A, =400 and lim w:

n—-4o0o n—-4o00 |An’

0.



Proof of the Lemma

Letw,w' € 2 and G : 2 = Rbea 1-Lipschitz function.
Without loss of generality, we can assume that £, (G) = 0. We
have

> G6(Tiw) <> G(Tiw) + Y d(Tiw, Tiw').

icA icA icA

Taking the supremum over 1-Lipschitz functions thus gives

F(w) = F(w') £ d(Tiw, Tw').
icA

We can interchange w and w’ in this inequality, whence

[F(w) = F)| <) d(Tiw, Tiw).
icA



Now we assume that there exists k € Z¢ such that wj = wj/. for
all j # k. This means that d(T;w, T;w’) < 2~ IIk=lle for all

i € 74, whence
(1(F) < szﬂk*illoo_
icA
Therefore, using Young’s inequality,

S aErs Y | 3 iz i

iczd keczd \ iczd

< Z 1A (i) x Z P ILIES

iczd kczd

We thus obtain the desired estimate with

2
Cd = (ZkGZd 2‘”"”“) : u
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