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Concentration-of-measure phenomenon

Slogan
A random variable that “smoothly” depends on the in�uence of
many weakly dependent random variables is, on an appropriate
scale, essentially constant (= to its expected value).

Goal of these lectures:
Converting this slogan into maths for independent random
variables, Markov chains, and Gibbs measures.



Plan of the lectures

1 Independent Random
Variables

A random walk
Hoe�ding’s inequality
Three applications of
Hoe�ding’s inequality
More on tail probabilities
for sums
Azuma-Hoe�ding

inequality & Gaussian
concentration bound
Three applications of the
Gaussian concentration
bound

2 Markov chains

3 Gibbs measures



Lecture I:Independent random variables



A random walk

Take independent random variables X1, . . . ,Xn such that

Xi =

{
+1 (right) with probability 1

2
−1 (left) with probability 1

2 .

Position at 0: S0 := 0.

Position at time n:

Sn = X1 + · · ·+ Xn.

One has

E(Sn) =

n∑
i=1
E[Xi] = 0 and

√
Var(Sn) =

√√√√ n∑
i=1

Var(Xi) =
√
n .



Basic idea: use Chebyshev’s inequality to get

P
(
|Sn| ≥ u

√
n
)
≤ Var(Sn)

(u
√
n)2 =

1
u2 , ∀ 0 < u <

√
n .

Much better bound (Cherno�, 1952):

P
(
|Sn| ≥ u

√
n
)
≤ 2 exp

(
−u2

2

)
, ∀ 0 < u <

√
n .

(Example: n = 30, u = 5, 1/u2 = 4.10−2, 2 e−u2/2 ≈ 7.5 10−6)

Conclusion: though |Sn| = O(n), it is sharply concentrated in a
much narrower interval of size O(

√
n).



Glimpse into the Gaussian paradise

Z1, . . . ,Zn i.i.d. with Zi
law
= N (0, 1)

Since Z1+···+Zn√
n

law
= N (0, 1), one gets

P
(
|Z1 + · · ·+ Zn| ≥ u

√
n
)
≤ 2

u
√

2π
e−

u2
2

≥ max
(

0, 1− 1
u2

)
2

u
√

2π
e−

u2
2

for all u > 0 (the lower bound being non-trivial for u > 1).



Comparison with the central limit theorem & the
Berry-Esseen estimate

Back to the random walk. Take u > 0. One has

lim
n→∞

P(|Sn| ≥ u
√
n) =

2√
2π

∫ ∞
u

e−
x2
2 dx (CLT)

and

P(|Sn| ≥ u
√
n)≤ 2√

2π

∫ ∞
u

e−
x2
2 dx︸ ︷︷ ︸

≤ 1
u

e−
u2
2

+
2C√
n

(Berry-Esseen bound)

where C = absolute constant ≈ 0.5.

Hence, one has to take n ≈ eu2 to get back Cherno�’s inequality!
(Example: n ≈ 7.1010 for u = 5)



Looking at the scale of the law of large numbers

Rescaling Cherno�’s bound one gets

P (|Sn| ≥ nu) ≤ 2 exp
(
−nu2

2

)
, ∀0 < u < 1.

Hence∑
n≥1

P

(∣∣∣∣Snn
∣∣∣∣ ≥ ε) ≤ 2

∑
n≥1

exp
(
−n ε2

2

)
< +∞, ∀ε > 0.

⇓
P

(∣∣∣∣Snn
∣∣∣∣ ≥ ε in�nitely often

)
= 0

⇓
Sn
n

a.s.−−−−→
n→+∞

0 (= E(X1)).



Large deviations: asymptotic & non-asymptotic

Take 0 < u < 1. One has

P(Sn ≥ un)≤ exp(−nI(u)), ∀n ≥ 1,

where

I(u) =

{
ln 2 + 1+u

2 ln
( 1+u

2
)

+ 1−u
2 ln

( 1−u
2
)

if u ∈ [−1, 1]

+∞ otherwise.

and
I(u)≥ u2

2
.

Moreover
lim
n→∞

1
n

lnP(Sn ≥ un) = −I(u)



A first upgrade of Chernoff’s ineqality:
Hoeffding’s ineqality

We start with a lemma:

Hoeffding (1963)
Let Z be a real-valued random variable with E[Z ] = 0 and
α ≤ Z ≤ β for some reals α < β. Then

logE
[

eλZ
]
≤ λ2(β − α)2

8
, ∀λ ∈ R.



Proof of Hoe�ding’s lemma

Set
ψ(λ) = logE

[
eλZ

]
, λ ∈ R.

By Taylor’s expansion

ψ(λ) = ψ(0)︸︷︷︸
=0

+λ ψ′(0)︸ ︷︷ ︸
=E[Z ]=0

+
λ2

2
ψ′′(θ)

for some θ ∈ (0, λ).
By elementary computation

ψ′′(λ) = Var(Zλ)

where Zλ ∈ [α, β] is a r.v. with density f (x) = e−ψ(λ) eλx wrt P.

Since
∣∣∣Zλ − α+β

2

∣∣∣ ≤ β−α
2 then

Var(Zλ) = Var
(
Zλ −

α+ β

2

)
≤ (β − α)2

4
. �



Hoe�ding’s inequality

Let {Xi}ni=1 be independent real-valued random variables and
assume that Xi ∈ [ai, bi] (a.s.) for some real numbers {(ai, bi)}ni=1,
with ai < bi. Then for all λ ∈ R

logE
[

eλ
(∑n

i=1(Xi−E[Xi])
)]
≤

n∑
i=1

(bi − ai)2

8
λ2 .

In particular, for all u ≥ 0,

P

(∣∣∣∣ n∑
i=1

(Xi − E[Xi])

∣∣∣∣ ≥ u

)
≤ 2 exp

(
− 2u2∑n

i=1(bi − ai)2

)
.



Caveat:

Hoe�ding’s inequality is insensitive to the variance of the Xi’s.

For all r.v. with a distribution concentrated on, say, [−1, 1] (i.e.,
Xi ∈ [−1, 1] a.s.), we get the same bound as for Xi = ±1 with
P(Xi = ±1) = 1

2 , which are the most spread-out random
variables in this class.



Proof of Hoe�ding’s inequality

Set Yi = Xi −E[Xi]. By independence of the Xi’s we get for every
u ≥ 0 and every λ > 0

P

(
n∑

i=1
Yi ≥ u

)
= P

(
exp

(
λ

n∑
i=1

Yi

)
≥ exp(λu)

)

≤ exp(−λu)E

[
exp

(
λ

n∑
i=1

Yi

)]

≤ exp(−λu)

n∏
i=1
E [exp(λYi)] .

For each i ≤ n, Yi is centered (E[Yi] = 0) and belongs to the
interval

[ai − E[Xi], bi − E[Xi]] .



We apply Hoe�ding’s lemma to each Yi with α = ai − E[Xi],
β = bi − E[Xi], which gives at once the 1st inequality and also

P

(
n∑

i=1
Yi ≥ u

)
≤ exp

(
−λu +

λ2

8

n∑
i=1

(bi − ai)2

)
.

The minimum value of the right hand side is attained for

λ =
4u∑n

i=1(bi − ai)2 ·

�



Another look at Hoe�ding’s inequality

For concreteness, assume that X1,X2, . . . are i.i.d. with
0 ≤ Xi ≤ 1. Then

P

(∣∣∣∣∣1n
n∑

i=1
Xi − E[X ]

∣∣∣∣∣ ≥ ε
)
≤ 2 e−2n ε2

, ε > 0, n ≥ 1.

Let
δ := 2 e−2n ε2

(“con�dence”)

If
n ≥ 1

2ε2 log
(

2
δ

)
,

then, with probability at least 1− δ, the di�erence between the
empirical mean and the true mean is at most ε.
Now, imagine that we want 10 times more accuracy: one can
check that for ε′ = ε/10 we need 100n samples.



Three applications of Hoeffding’s ineqality

I. Binomial confidence intervals.

Goal: estimate the unknown parameter p ∈ ]0, 1[ of a Bernoulli
r.v. X by observing the realizations of independent copies
X1,X2, . . . of X .
Empirical estimator:

Xn :=
X1 + · · ·+ Xn

n

which converges a.s., as n→ +∞, to p, by the strong law of
large numbers.
Con�dence intervals for Xn at a con�dence level 1− α, such as
95%: the resulting intervals bracket the parameter p with
probability at least 0.95.



Usually: one applies the CLT... which is an asymptotic result! For
every α ∈ ]0, 1[ ,

lim
n→+∞

P

(
p ∈

[
Xn −

a
2
√
n
,Xn +

a
2
√
n

])
≥ 1− α

where a solves 1− α =

∫ a

−a
(2π)−

1
2 e−

u2
2 du.



Let’s apply Hoe�ding’s inequality: for all a > 0

P
(∣∣Xn − p

∣∣ ≥ a
)
≤ 2 e−2na2

.

This ensures that, for all n > (2a2)−1 ln 2,

P
(∣∣Xn − p

∣∣ ≤ a
)
≥ 1− 2 e−2na2

= 1− α

where α = 2 e−2na2 lies in ]0, 1[.

Therefore we obtain an exact (i.e., non-asymptotic):

P

p ∈

Xn −

√
ln
( 2
α

)
2n

,Xn +

√
ln
( 2
α

)
2n

 ≥ 1− α .



II. The Ehrenfest model.

container A container B

Total of N molecules of gas



Z (N)
t : number of molecules in container A at time t ∈ N

Evolution rule: for i ∈ {1, . . . ,N − 1},

P
(
Z (N)
t+1 = i + 1

∣∣Z (N)
t = i

)
=

N − i
N

and
P
(
Z (N)
t+1 = i − 1

∣∣Z (N)
t = i

)
=

i
N
.

Guess: after a long time, there will be, on average, N/2
molecules in each container (thermal equilibrium).

No time to wait? start with the probability distribution ensuring
that: B(N , 1/2), so the number of molecules in container A will
be i with probability

π(i) =

(
N
i

)
2−N , 0 ≤ i ≤ N .



Look at the “temperature” in container A:

Z (N)

N

where Z (N) law
= B(N , 1/2)

law
=
∑N

i=1 Xi with Xi
law
= Bernoulli(1/2)

Now apply Hoe�ding’s inequality:

P

(∣∣∣∣∣Z (N)

N
− 1

2

∣∣∣∣∣ ≥ u

)
≤ 2 e−2Nu2

, u > 0.

Typically N = 6.1023.
Take, e.g., u = 10−9: the probabilty of observing a �uctuation of
more than one billionth is less than 2 e−1.2×106 !!!



III. Empirical cumulative distribution function.

Suppose we observe the realizations of i.i.d. r.v. X1, . . . ,Xn with a
common cumulative distribution function (CDF, for short)
F(x) := P(X ≤ x), x ∈ R.
Empirical CDF:

Fn(x;X1, . . . ,Xn) =
1
n

n∑
i=1
1{Xi≤x}.

The 1{Xi≤x}’s are independent Bernoulli r.v. with parameter
P(X ≤ x) = F(x), so E[1{Xi≤x}] = F(x).

By the strong law of large numbers, for each x ∈ R,

lim
n→+∞

Fn(x;X1, . . . ,Xn) = F(x), a.s..



By Hoe�ding’s inequality, for all u ≥ 0 and for all n ∈ N

(♣) sup
x∈R

P (|Fn(x;X1, . . . ,Xn)−F(x)| ≥ u) ≤ 2 e−2nu2
.

This is not really satisfactory in view of Glivenko-Cantelli
theorem:

lim
n→+∞

sup
x∈R
|Fn(x;X1, . . . ,Xn)−F(x)| = 0, a. s..

�estion: Can we put the supremum over x inside the
probability in (♣)? This means that we want to consider the
random variable

F(X1, . . . ,Xn) := sup
x∈R
|Fn(x;X1, . . . ,Xn)−F(x)|

which is not a sum of random variables.



More on tail probabilities for sums: link with
large deviation theory & non-Gaussian tails

Let X1,X2, . . . be independent random variables.
Using Cramér-Cherno� method: ∀u > 0, ∀n ≥ 1,

P

(
X1 + · · ·+ Xn

n
− E[X1] ≥ u

)
≤ exp

(
−n sup

λ≥0

{
λ(u + E[X1])− ψX1 (λ)

})

where
ψX1(λ) := logE

[
eλX1

]
.

The bound is non-trivial if there exists b > 0 such that
ψX1(b) < +∞.



If X1 is a bounded random variable, then by Hoe�ding’s lemma

logE
[

eλX1
]
≤ λE[X1] +

λ2

8
osc(X1)

2

which gives Hoe�ding’s inequality.

Now take for instance Xi
law
= Poisson(θ) (θ > 0). One gets

P

(
X1 + · · ·+ Xn

n
− θ ≥ u

)
≤ exp

[
−nθh

(u
θ

)]
, u > 0,

where
h(u) := (1 + u) log(1 + u)− u, u ≥ −1



To compare more easily with Hoe�ding’s inequality, observe that
for all u ≥ 0

h(u) ≥ u2

2 + 2u/3
·

Hence

P

(
X1 + · · ·+ Xn

n
− θ ≥ u

)
≤ exp

(
− n

2θ
u2

1 + u
3θ

)
, u > 0.

There are two regimes: if u� 3θ we recover a Gaussian bound
of the form exp(−nu2), whereas if u� 3θ we get a bound of the
form exp(−c′nu).



Lecture II:Independent random variables
(continuation & ending)



From X1 + · · ·+ Xn

to nonlinear functions of X1, . . . ,Xn

Take independent random variables X1,X2, . . . ,Xn.

Aim: generalize Hoe�ding’s inequality in replacing

X1 + · · ·+ Xn (linear function of X1, . . . ,Xn)

by

F(X1, . . . ,Xn) (typically a nonlinear function of X1, . . . ,Xn)

under mild assumptions on F .



A key abstract result
No independence needed!

Let
Y : (Ω,F,P)→ R be an integrable random variable;
{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F a �ltration;
Y − E[Y ] =

∑n
k=1 (E[Y |Fk]− E[Y |Fk−1]) =

∑n
k=1 ∆k .

Azuma-Hoeffding ineqality

∀λ ∈ R, logE
[

exp(λ(Y − E[Y ])
]
≤ λ2

8

n∑
i=1

osc(∆i)
2

whence

∀u ≥ 0, P (|Y − E[Y ]| ≥ u) ≤ 2 exp
(
− 2u2∑n

i=1 osc(∆i)2

)
.

Note: osc(∆i) = sup ∆i − inf ∆i ≤ 2‖∆i‖∞.



Proof of Azuma-Hoe�ding inequality

Take λ > 0 (to be chosen later on):

P (Y − E[Y ] ≥ u) = P
(

exp (λ(Y − E[Y ])) ≥ exp(λu)
)

≤ exp(−λu) E [exp (λ(Y − E[Y ]))]︸ ︷︷ ︸
=E[exp(λ(∆n+···+∆1))]

.

Now

E [exp (λ(∆1 + · · ·+ ∆n))]

= E
[
E
[

exp (λ(∆1 + · · ·+ ∆n−1))
∣∣Fn−1

]]
= E

[
exp (λ(∆1 + · · ·+ ∆n−1)) E

[
exp(λ∆n)

∣∣Fn−1)
]]
.



Proof of Azuma-Hoe�ding inequality (continued)

By (a slightly modi�ed version of) Hoe�ding’s Lemma

E
[
exp(λ∆k)

∣∣Fk−1)
]
≤ exp

(
λ2

8
osc(∆k)

2
)

Take Z = ∆k (so β − α = osc(∆k)), E[·] = E[·|Fk−1] and observe
that E[∆k|Fk−1] = 0.
By induction one gets

E [exp (λ(∆1 + · · ·+ ∆n))] ≤ exp

(
λ2

8

n∑
i=1

osc(∆i)
2

)
.

Hence, setting c =
∑n

i=1 osc(∆i)
2,

P (Y − E(Y) ≥ u) ≤ exp
(
−λu +

cλ2

8

)
≤ exp

(
inf
λ>0

(
− λu +

cλ2

8

))
= exp

(
−2u2

c

)
.

The same holds for −Y . �



Back to business:
The bounded di�erences property

Let S be a set (think of a subset of R).

F : S n → R satis�es the bounded di�erences property if
there are some positive constants `1(F), . . . , `n(F) such that∣∣F(x1, . . . , xi, . . . , xn)− F(x1, . . . , x′i , . . . , xn)

∣∣ ≤ `i(F)

for all x1, . . . , xi, x′i , . . . , xn in S .



Gaussian concentration bound (McDiarmid, 1989)
Let X1, . . . ,Xn be independent random variables taking values in a set S .
Then, for all functions with the bounded di�erences property, for all λ ∈ R,

logE
[

exp
(
λ(F(X1, . . . ,Xn)− E[F(X1, . . . ,Xn)])

)]
≤ λ2

8

n∑
i=1

`i(F)2 .

In particular, for all u ≥ 0,

P
(
F(X1, . . . ,Xn)− E[F(X1, . . . ,Xn)] ≥ u

)
≤ exp

(
−2u2∑n
i=1 `i(F)2

)
.

Hence

P
(
|F(X1, . . . ,Xn)− E[F(X1, . . . ,Xn)]| ≥ u

)
≤ 2 exp

(
−2u2∑n
i=1 `i(F)2

)



Corollary
We have

Var
(
F(X1, . . . ,Xn)

)
≤ 1

4

n∑
i=1

`i(F)2 .

Proof. Let Z a r.v. such that E[Z ] = 0 and such that there exists
v > 0 such that

E
[

eλZ
]
≤ evλ

2
,∀λ ∈ R.

Then
E
[

eλZ
]
− 1

λ2 ≤
E
[

evλ2 ]− 1
λ2 .

Then write Taylor’s expansion and λ ↓ 0 to get
Var(Z) = E[Z2] ≤ 2v. �



Little checking with our random walk

Back to our random walk:

S = {−1,+1}
F(X1, . . . ,Xn) = X1 + · · ·+ Xn = Sn

E[F(X1, . . . ,Xn)] =

n∑
i=1
E(Xi) = 0

`i(F) = 2, hence
n∑

i=1
`i(F)2 = 4n.

Hence we get back Cherno�’s inequality: ∀u ≥ 0

P
(
|Sn| ≥ nu

)
≤ 2 exp

(
−u2

2n

)
.



Two remarks

• The above concentration bound, and more generally, any
concentration bound, is concerned with the �uctuations of
F(X1, . . . ,Xn) around its expected value E[F(X1, . . . ,Xn)].

In general, those bounds don’t provide any information on the
magnitude of E[F(X1, . . . ,Xn)].

•We do have to normalize in some sense F(X1, . . . ,Xn) to control

E
[
eλF(X1,...,Xn)

]
since otherwise one can make this quantity arbitrarily large by
adding a large number to F(X1, . . . ,Xn), which does change the
`i(F)’s. Substracting E[F(X1, . . . ,Xn)] to F(X1, . . . ,Xn) is a
natural way to avoid thar.



Proof of the Gaussian concentration bound (without the optimal

constant)

Apply Azuma-Hoe�ding inequality with

Y = F(X1, . . . ,Xn)

Fk = σ(X1, . . . ,Xk), F0 = {∅,Ω} (trivial sigma-�eld)
E[Y |F0] = E[Y ] and E(Y |Fn) = Y .

{E[F(X1, . . . ,Xn)|Fk]}nk=0 is usually called the Doob martingale
associated to F(X1, . . . ,Xn).

Observe that ∆k = E[F(X1, . . . ,Xn)|Fk]−E[F(X1, . . . ,Xn)|Fk−1]
is a random variable as a function of X1, . . . ,Xk .



Now let X ′1, . . . ,X ′n be an independent copy of X1, . . . ,Xn; then

E[Y |Fk−1] = E[F(X1, . . . ,X ′k, . . . ,Xn)|Fk]

Then

⇒ ∆k = E(Y |Fk)− E(Y |Fk−1)

= E
[
F(X1, . . . ,Xk, . . . ,Xn)− F(X1, . . . ,X ′k, . . . ,Xn)|Fk

]
⇒ ‖∆k‖∞ ≤ `k(F). �



Looking back at the proof of Azuma-Hoefding inequality we get
at once

logE
[

exp
(
λ(F(X1, . . . ,Xn)− E[F(X1, . . . ,Xn)])

)]
= logE [exp (λ(∆1 + · · ·+ ∆n))]

≤ λ2

2

n∑
i=1
‖∆i‖2

≤ λ2

2

n∑
i=1

`i(F)2.

Hence

P
(
|F(X1, . . . ,Xn)−E[F(X1, . . . ,Xn)]| ≥ u

)
≤ 2 exp

(
−u2

2
∑n

i=1 `i(F)2

)



Three applications
1. Fattening patterns & measure concentration

Let S be a measurable set (e.g., a �nite set, like {0, 1}).
Fix n ∈ N.
Let X1, . . . ,Xn be i.i.d. r.v. taking values in S .
Let

dH(x, y) =

n∑
i=1
1{xi 6=yi} (Hamming distance)

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ S n.

Pick a set A ⊂ S n with P(A) > 0.

Concentration on very small subsets
For every u > 0, one has

P

{
dH

(
(X1, . . . ,Xn),A

)
≥

(
u +

√
1
2

ln
1

P(A)

)
√
n

}
≤ e−2u2

.



Interpretation:

De�ne the r-fattening of A as

[A]r := {z ∈ S n : dH(z,A) ≤ r}

P

{
dH

(
(X1, . . . ,Xn),A

)
≥

(
u +

√
1
2

ln
1

P(A)

)
√
n

}
= 1−P([A]r)

with

r =

(
u +

√
1
2

ln
1

P(A)

)
√
n.

Numerical example: take P(A) = 10−6, u such that
u +

√
(1/2) ln(1/P(A)) = 10, then e−2u2 ≈ e−108.



Proof

Take F(x1, . . . , xn) = dH(x,A). Check that `i(F) = 1, ∀i.
Apply the Gaussian concentration bound to Y = F(X1, . . . ,Xn):

P(Y ≥ E[Y ] + u) ≤ exp
(
−2u2

n

)
(∀u > 0).

Upper bound for E[Y ]? Apply again the Gaussian concentration
bound to −λY with λ > 0:

exp(λE[Y ])E [exp(−λY)] ≤ exp
(
nλ2

8

)
·

But Y ≡ 0 on A, hence

E [exp(−λY)] ≥ E
[
1A exp(−λY)

]
= E[1A] = P(A)·

⇒ E[Y ] ≤ inf
λ>0

{
nλ
8

+
1
λ

ln
1

P(A)

}
=

√
n
2

log
1

P(A)
· �



Three applications
2. Plug-in estimator of Shannon entropy

Take a �nite set S = {1, . . . ,Card(S )} (“alphabet”).
Let X1,X2, . . . be i.i.d. r.v. taking values in S .
Let X law

= Xi with distribution {p(1), . . . , p(Card(S ))}.

Shannon entropy of this distribution:

H(X) = −
Card(S )∑
s=1

p(s) log p(s) ∈ [0, log Card(S )].

Two extreme cases:
1. There is s∗ such that p(s∗) = 1: no indeterminacy at all, the
next symbol is always s∗ ;
2. p(s) = 1/Card(S ), ∀s ∈ S : maximal indeterminacy.



Asymptotic equipartition property

By using the strong law of large numbers, one has

−1
n

logP(X1, . . . ,Xn) = H(X) almost surely.

Conseqences: Let p(x1, . . . , xn) := P(X1 = x1, . . . ,Xn = xn).
Given ε > 0 and n large enough,

p(x1, . . . , xn) � e−n(H(X)±ε)

for all (x1, . . . , xn) ∈ Gn,ε ⊂ S n with P(Gn,ε) ≈ 1.
Hence

Card(Gn,ε)
Card(S n)

� exp
(
− n( log Card(S )− H(X)︸ ︷︷ ︸

>0

±ε
)
.



Empirical entropy

Empirical distribution:

p̂n(s) = p̂n(s;X1, . . . ,Xn) =
1
n

n∑
j=1
1{Xj=s}, s ∈ S .

Plug-in estimator:

Ĥn = Ĥn(X1, . . . ,Xn) = −
Card(S )∑
s=1

p̂n(s) log p̂n(s).



By the strong law of large numbers, pn(s) −−−→
n→∞

p(s), almost
surely, for each s ∈ S , thus

Ĥn −−−→
n→∞

H(X), almost surely.

One has 0 ≤ Ĥn ≤ log n and 0 ≤ E[Ĥn] ≤ H(X) for every n ∈ N.

How does Ĥn concentrate around E[Ĥn] ?



Fluctuation bounds for empirical entropy
For all u ≥ 0

P
(
|Ĥn − E[Ĥn]| ≥ u

)
≤ 2 exp

(
− nu2

2(1 + log n)2

)
·

In particular

Var(Ĥn) ≤
(1 + log n)2

n
·



Proof

Let

F(x1, . . . , xn) = −
Card(S )∑
s=1

1
n

n∑
j=1

1{xj=s} log

(
1
n

n∑
j=1
1{xj=s}

)
.

Claim (homework!):

`i(F) ≤ 2(1 + log n)

n
, i = 1, . . . , n.

Conclude by the Gaussian concentration bound



Three applications
3. Empirical cumulative distribution function & Dvoretsky-Kiefer-Wolfowitz
ineqality

Setting (recap):
i.i.d. r.v. (X1,X2, . . . ,Xn, . . .), Xi

law
= X , F(x) = P(X ≤ x).

Given x ∈ R and X1, . . . ,Xn de�ne

Fn(x) = Fn(x;X1, . . . ,Xn) =
1
n

n∑
i=1
1{Xi≤x}.

Can we get the following?

P

(
sup
x∈R
|Fn(x;X1, . . . ,Xn)−F(x)| ≥ u

)
≤ 2 e−2nu2

, n ≥ 1, u > 0.



We are interested in the r.v.

KSn = KSn(X1, . . . ,Xn) = sup
x∈R
|Fn(x)−F(x)|.

By Glivenko-Cantelli theorem

KSn −−−→
n→∞

0 almost surely,

and for all u > 0

P
(√

nKSn > u
)
−−−→
n→∞

2
∑
r≥1

(−1)r−1 exp(−2u2r2).

(Kolmogorov-Smirnov test)



The easy part

Consider
F(X1, . . . ,Xn) = sup

x
|Fn(x)−F(x)|.

Check that
`i(F) =

1
n
, i = 1, . . . , n.

Thus, by the Gaussian concentration bound, for all u > 0, for all
n ∈ N,

P (|KSn − E[KSn]| ≥ u) ≤ 2 exp(−2nu2)

and

P
(
|
√
nKSn − E[

√
nKSn]| ≥ u

)
≤ 2 exp(−2u2).



The tricky part: Getting rid of E[
√
nKSn]

Dvoretsky-Kiefer-Wolfowitz inequality

P
(√

nKSn ≥ u
)
≤ 4 exp

(
− u2/8

)
, ∀u > 0.

Clever proof only using elementary steps such that one boils
down to

E
[

enλKSn
]
≤ 4E

[
e2λ

∑n
i=1 εi

]
, λ > 0,

where P(εi = ±1) = 1/2 (our initial example!).

Optimal bound (Massart, 1990):

P
(√

nKSn ≥ u
)
≤ 2 exp(−2u2), ∀u > 0.

Proof: very technical.



A remark

Given two probability distributions PX and PY on R with
cumulative distribution functions FX and FY ,

dKolmo(PX ,PY ) = sup
x∈R
|FX (x)− FY (x)|

is the Kolmogorov distance between them.

Another possible distance is the Kantorovich distance:

dKanto

(
PX ,PY

)
= sup

{∫
g dPX −

∫
g dPY : |g(x)− g(y)| ≤ |x − y|

}
=

∫
|FX (x)− FY (x)| dx ≤ dKolmo(PX ,PY ) .



Lecture III:Markov chains



Plan of the lectures

1 Independent Random
Variables

2 Markov chains
The coupling matrix
Markov chains with a
countable state space
Beyond the Gaussian

concentration bound:
moment concentration
bounds & the
house-of-cards process
A characterization of the
Gaussian concentration
bound

3 Gibbs measures



Recap of Lectures I & II

So far:
X1,X2, . . . independent r.v. taking values in S , i.e. product
measures on SN:

P(X1 = x1, . . . ,Xn = xn) = P(X1 = x1)×· · ·×P(Xn = xn).

Martingale decomposition:

F(X1, . . . ,Xn)− E[F(X1, . . . ,Xn)] =

n∑
i=1

∆i

where the ∆i’s are the increments of the Doob martingale
associated to F(X1, . . . ,Xn): This is completely general.

Now: {Xi} form a Markov chain (non-product measure).



Preliminaries

We start in a rather abstract context: let S be a metric space
with distance d.

Separately Lipschitz functions:
F : S Z → R such that

`i(F) = sup
{ |F(x)− F(y)|

d(xi, yi)
: xj = yj, ∀j 6= i, xi 6= yi

}
where x = (. . . , x−2, x−1, x0, x1, x2, . . .) ∈ S Z

One can think of a function F(x1, . . . , xn) as a function on S Z

with `i(F) = 0 for i > n and i ≤ 0.



Preliminaries: continuation & ending

Let {Xi}i∈Z be a stationary process where the Xi’s take values in
S . Denote by P its joint distribution.

Let:
Fi
−∞ be the sigma-�eld generated by {Xk : k ≤ i} ;

F = σ
(
∪+∞
i=−∞Fi

−∞
)

;
F−∞ =

⋂
i F

i
−∞ (tail sigma-�eld).

Assume that P is tail-trivial (i.e., ∀A ∈ F−∞,P(A) ∈ {0, 1}).



The basic telescoping

Recall that in general

F − E(F) =
∑
i∈Z

∆i

where
∆i = ∆i(X i

−∞) = E[F |Fi]− E[F |Fi−1]

with Fi = σ(X i
−∞).

Technical remark: one needs F ∈ L1(P) to use Lévy Upward and
Downward theorems.



Some notations

PX i
−∞

: the joint distribution of {Xj, j ≥ i + 1} given X i
−∞.

P̂X i
−∞,Y

i
−∞

: a coupling of PX i
−∞

and PY i
−∞

.

For −∞ ≤ i < j ≤ +∞:
X j
i := Xi,Xi+1, . . . ,Xj and x ji := xi, xi+1, . . . , xj .



The second telescoping

∆i = ∆i(X i
−∞) =∫

dPX i−1
−∞

(zi)
∫

dP̂X i
−∞,X

i−1
−∞zi(y

∞
i+1, z

∞
i+1)

[
F(X i

−∞y∞i+1)− F(X i−1
−∞ziz∞i+1)

]
.

Now insert the inequality

F(x)− F(y) ≤
∑
k∈Z

`k(F) d(xk, yk)

to get

∆i ≤
∞∑
j=0

Di,i+j `i+j(F)



The coupling matrix D

We have introduced the upper-triangular random matrix

Di,i+j = D
X i
−∞

i,i+j =∫
dPX i−1

−∞
(zi)

∫
dP̂X i

−∞,X
i−1
−∞zi(y

∞
i+1, z

∞
i+1) d(yi+j, zi+j)

where i ∈ Z, j ∈ N, and Di,i = 1 (∀i ∈ Z).



Markov chains

For the sake of concreteness:
consider a Markov chain {Xn}n∈Z with discrete state space S
equipped with the discrete distance d(x, y) = δxy .

Moreover assume that the transition kernel
P = (p(x, y))(x,y)∈S×S is irreducible and aperiodic.

Finally, assume positive recurrence, i.e., for some (hence, all)
x ∈ S , Ex [Tx ] < +∞, where Tx = inf{n ∈ N : Xn = x}.

Therefore, there is a unique invariant probability distribution π
for the chain, so

P(X0 = x0,X1 = x1, . . . ,Xn = xn) = π(x0)p(x0, x1) · · · p(xn−1, xn).



The Markovian case

Take a Markovian coupling and use stationarity:

D
X i
−∞

i,i+j = DXi−1,Xi
i,i+j =

∑
z∈S

p(Xi−1, z)
∫

dP̂Xi,z(u
∞
0 , v

∞
0 )d(uj, vj).

De�ning the coupling time

T(u∞0 , v
∞
0 ) = inf{k ≥ 0 : ui = vi, ∀i ≥ k}

we have
d(uj, vj) ≤ 1{T(u∞0 ,v∞0 )≥ j}

whence
DXi−1,Xi
i,i+j ≤

∑
z∈S

p(Xi−1, z) P̂Xi,z(T ≥ j).



Gaussian concentration bound

Recap:
F − E(F) =

∑
i∈Z

∆i and

∆i(Xi−1,Xi) ≤
∑
z∈S

p(Xi−1, z)
∞∑
j=0
P̂Xi,z(T ≥ j) `i+j(F)

Now apply Azuma-Hoe�ding inequality:

logE
[

exp(F − E(F))
]
≤ 1

2
∑
i∈Z
‖∆i(Xi−1,Xi)‖2

∞ .

After some (uninteresting) work, one gets

∑
i∈Z
‖∆i(Xi−1,Xi)‖2

∞ ≤
ζ(1 + ε)

2

(
sup

u,v ∈S
Êu,v

(
T 1+ε

))2

×
∑
i∈Z

`i(F)2

where ε > 0 is arbitrary.



Gaussian concentration bound

Theorem
Let {Xn}n∈Z be a Markov chain as above. There exists a constant
D > 0 such that, for all separately bounded Lipschitz functions
F : S Z → R, we have

logE
[

exp(F − E(F))
]
≤ D

∑
i∈Z

`i(F)2

where

D =
ζ(1 + ε)

4

(
sup

u,v ∈S
Êu,v

(
T 1+ε

))2

.

Back to H-of-C



The simplest example: S �nite

Use Doeblin’s coupling: let {(Xn, Yn)}n be the Markov chain on
the state space S ×S which evolved in the following way:
{Xn} and {Yn} evolve independently according to the
transition kernel P until the �rst (random) time Xn = Yn and
they evolve together with the same transition kernel after
that time.

Equivalently, de�ne the transition kernel on S ×S by

q((x, y), (x′, y′)) :=


p(x, x′)p(y, y′) if x 6= y
p(x, x′) if x = y and x′ = y′

0 otherwise.

The diagonal {(x, y) ∈ S ×S : x = y} is an absorbing set.



Lemma (Doeblin)

∃ ρ ∈ (0, 1), ∃c > 0 such that sup
u,v ∈S

P̂u,v(T ≥ j) ≤ c ρj, ∀j ∈ N.

This is more than enough to get supu,v ∈S Êu,v
(
T 1+ε

)
< +∞.



Proof of the lemma

Recall that T is the coupling time (“coalescence” time).
Irreducibility and aperiodicity of P mean that there exists m ≥ 1
such that

min
x,y∈S

p(m)(x, y) =: ε > 0.

Then

P̂(u,v)(T ≤ m) ≥
∑
z∈S

p(m)(u, z)p(m)(v, z) ≥ ε
∑
z∈S

p(m)(v, z) = ε

for all (u, v) ∈ S ×S . The Markov property yields

P̂(u,v)(T ≤ km) ≥ 1− (1− ε)k .



Lecture IV:Markov chains
(continuation & ending)



Beyond the Gaussian concentration bound:
moment concentration bounds

What happens if we don’t get a uniform (in Xi−1,Xi) decay of
DXi−1,Xi
i,i+j as a function of j ?

This means that ‖∆i(Xi−1,Xi)‖∞ = +∞, hence
Azuma-Hoe�ding inequality is not applicable, hence a Gaussian
concentration bound is out of hope.

Answer: we may obtain only moment bounds. We have to
replace Azuma-Hoe�ding inequality by another martingale
inequality, namely Burkholder inequality: for p ∈ N,

E
[(
F − E(F)

)2p
]
≤ (2p − 1)2p E

[(∑
i∈Z

∆2
i

)p ]
.

(The constant (2p − 1)2p is optimal.)



Moment concentration bound of order p

Theorem
Let p ∈ N and let F be separately Lipschitz and L2p(P)-integrable. Then,
for every ε > 0,

E
[(
F − E(F)

)2p
]
≤ Cp

(∑
i∈Z

`i(F)2

)p

where

Cp = (2p − 1)2p
(
ζ(1 + ε)

2

)p

×
∑

x,y∈S

π(x)p(x, y)

(∑
z∈S

p(x, z)Êy,z
[
(T + 1)1+ ε

2
])2p

.



If, for some p ∈ N, the previous inequality holds then, by
Markov’s inequality,

P (|F − E[F ]| ≥ u) ≤ Cp

(∑
i∈Z `i(F)2)p
u2p , u > 0.

We get an algebraic decay.



An instructive example: the “house-of-cards” process

S = {0, 1, 2, . . .} ;
For all k ∈ Z+, P(Xk+1 = x + 1|Xk = x) = 1− qx and
P(Xk+1 = 0|Xk = x) = qx , x ∈ S ;
0 < qx < 1, x ∈ S .

The transition kernel is irreducible and aperiodic.

One can prove that it is a positive recurrent Markov chain if and
only if ∑

n

n∏
k=0

(1− qk) < +∞ .



The three di�erent concentration regimes

Three cases:
(1) q := inf{qx : x ∈ S } > 0⇒ Gaussian concentration bound. GCB

(2) ∃α ∈ (0, 1) s.t. qx = x−α

⇒ ∀p ∈ N, E
[
(F − E(F))2p] ≤ Cp

(∑
i

`i(F)2

)p

where Cp grows too fast with p to get a Gaussian concentration
bound.

(3) ∃γ > 0 s.t. qx = γ/x ⇒ moment concentration bound up to some
critical p(γ).



One can construct a coupling such that

P̂x,y(T ≥ j) ≤
j−1∏
k=0

(1− q∗x+k), x ≥ y

where q∗n = inf{qs : s ≤ n}.



The coupling

It is based of the representation of the chain as a random
recursion: take U1,U2, . . . i.i.d. r.v. uniformly distributed on [0, 1];
then

Xk+1 = (Xk + 1)1{Uk+1≥qXk}
.

The coupling works as follows: run two copies of the chain
starting from di�erent initial states; when they hit the ground
(state 0) together for the �rst time, then they stay together
forever.



A �nal remark on Markov chains

Theorem (Dedecker-Gouëzel, 2015)
For an irreducible aperiodic Markov chain with a general state
space S , the Gaussian concentration bound holds if, and only if,
the chain is geometrically ergodic.

(Based on coupling ideas.)



Lecture V:Gibbs measures



Plan of the lectures

1 Independent Random
Variables

2 Markov chains

3 Gibbs measures
Some generalities

The ferromagnetic Ising
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Concentration
inequalities for the Ising
model: two regimes
Two applications:
empirical measure &
ASCLT



Gibbs measures

Previously:
Markov chains with state space S  non-product measures on
S Z.

Now:
Gibbs measures, which are non-product measures on S Zd ,
d ≥ 2, where we take S = {−1,+1} (spins) for de�niteness.

Strategy: same as for Markov chains, that is, introduce a
“coupling matrix” (Di,j)i,j∈Zd indexed by d-dimensional integers.



The basic telescoping & the coupling “matrix”

1 2

45 3

6

7 8 9 10

Enumeration of Zd :

e : Zd → N

(≤ i) := {j ∈ Zd : e(j) ≤ e(i)}

F≤i : σ−�eld generated by ωj, j ≤ i

F : S Zd → R, ω ∈ S Zd
(“con�guration”)

F − E[F ] =
∑
i∈Z2

∆i, ∆i = E[F |F≤i]− E[F |F<i]

Dω≤i
i,j = P̂i,+,−

(
ω

(1)
j 6= ω

(2)
j
)

where we couple

P(·|ω<i,+i) and P(·|ω<i,−i).



Boltzmann-Gibbs kernel

γ
(β)
Λ (ω|η) =

exp
(
− βHΛ(ω|η)

)
Z (β)

Λ (η)
, Λ b Zd , ω, η ∈ S Zd

.

 Gibbs measures on S Zd depending on η in general (DLR equation)

Parameter β ≥ 0: inverse temperature

Special case: β = 0 (in�nite temperature)
 uniform product measure ( Gaussian concentration bound).



Ising model (Markov random �eld)

HΛ(ω|η) = −
∑
i,j∈Λ
‖i−j‖1=1

ωi ωj −
∑

i∈∂Λ, j/∈Λ
‖i−j‖1=1

ωi ηj

ηj = +1, ∀j ∈ Zd (“+-boundary condition”), gives rise to µ+.

Fact: there exists a unique Gibbs measure µ for all β < βc , whereas there
are several ones for all β > βc , depending on η, in fact, two extremal ones:
µ+ and µ−.



Phase transition in the Ising model for d = 2

β increases from left to right
‘+’: black, ‘−’: white

βc = (1/2) sinh−1(1) ≈ 0.4407



The magentization

Let Mn(ω) =
∑

i∈Cn
s0(Ti ω), where s0(ω) = ω0, be the total

magnetization in Cn, and where (Ti ω)j = ωj−i (shift operator).
Then

Mn(ω)

(2n + 1)d

is the magnetization per spin in Cn. For any shift-invariant
probability measure ν on S Zd ,

Eν

[
Mn(ω)

(2n + 1)d

]
= Eν [s0]

is the mean magnetization per site (magnetization, for short) wrt
ν.
The following is well-known for the Ising model (d ≥ 2):

for β < βc , Eµ[s0] = 0 ;
for β > βc , Eµ+ [s0] 6= 0.



Concentration for the Ising model



Let F : S Zd → R and

`i(F) = sup
ω∈S Zd

|F(ω(i))− F(ω)|, i ∈ Zd ,

where ω(i) is obtained from ω by �ipping the spin at i.

Theorem: Gaussian concentration bound (β < β)

Let µ be the (unique) Gibbs measure of the Ising model. There
exists a constant D > 0 such that, for all functions F with∑

i∈Zd `i(F)2 < +∞, one has

Eµ
[

exp(F − Eµ(F))
]
≤ exp

(
D
∑
i∈Zd

`i(F)2
)
.

Remark. As shown by C. Külske, the Gaussian concentration
bounds holds in the Dobrushin uniqueness regime with
D = 2(1− c(γ))−2, where c(γ) is Dobrushin’s contraction
coe�cient.



Recall that the Gaussian concentration implies that for all u ≥ 0
one has

µ
(
ω ∈ S Zd

: |F(ω)−Eµ[F ]| ≥ u
)
≤ 2 exp

(
− u2

4D
∑

i∈Zd `i(F)2

)
.



At su�ciently low temperature, we can gather all moment bounds to ob-
tain the following. We denote by µ+ the Gibbs measure for the +-phase
of the Ising model.

Theorem: Stretched-exponential concentration bound (β > β)
There exists % = %(β) ∈ (0, 1) and c% > 0 such that for all functions F
with

∑
i∈Zd `i(F)2 < +∞, for all u ≥ 0, one has

µ+
(
ω ∈ S Zd

: |F(ω)− Eµ+ [F ]| ≥ u
)
≤ 4 exp

(
− c% u%(∑

i∈Zd `i(F)2
) %

2

)
.



Some applications

Other models besides the standard Ising model: Potts, long-range
Ising, etc.

Ergodic sums in arbitrarily shaped volumes;
Fluctuations in the Shannon-McMillan-Breiman theorem;
First occurrence of a pattern of con�guration in another
con�guration;
Bounding d-distance by relative entropy;
Fattening patterns;
Almost-sure central limit theorems;
Speed of convergence of the empirical measure.



Application 1: Almost-sure central limit theorems
(only part of the story)

This application shows that one can also get limit theorems out of
concentration inequalities.

Informal statement:
If you know that the central limit theorem holds for some
function f : S Zd → R wrt to a shift-invariant probability
measure, and if you can prove that this measure satis�es a
moment concentration bound of order 2, then the almost-sure
central limit theorem holds in the sense of Kantorovich distance.

(Cf. Chazottes-Collet-Redig 2016-paper for a precise statement.)



Given f : S Zd → R and ν a shift-invariant probability measure
on S Zd , the usual form of the CLT is: for all u ∈ R

lim
n→∞

ν

{
ω ∈ S Zd

:

∑
i∈Cn

f (Tiω)

(2n + 1)
d
2
≤ u

}
= G0,σf

(
(−∞, u]

)
where

σ2
f =

∑
i∈Zd

∫
f · f ◦ Ti dν ∈ (0,+∞).

and where G0,σf is the Gaussian measure with mean 0 and
variance σf .



The CLT can be re-written as

lim
n→∞

Eν

[
1{∑

i∈Cn f (Ti·)/(2n+1)
d
2≤u
}] = G0,σf

(
(−∞, u]

)
.

The ASCLT consists in replacing Eν by a point-wise logarithmic
average and get an almost-sure version of the CLT: for all u ∈ R

lim
N→∞

1
logN

N∑
n=1

1
n
1{∑

i∈Cn f (Ti ω)/(2n+1)
d
2≤u
} = G0,σf

(
(−∞, u]

)
for ν-a.e. ω.



ASCLT for the magnetization in the Ising model

We will only formulate two results for f = s0 (magnetization).

To state the theorems, de�ne

dKanto(ν1, ν2) = sup (Eν1(g)− Eν2(g))

where the sup is taken over all functions g : R→ R that are
1-Lipschitz.

Metrizes the weak topology on the set of probability measures on
R with a �rst moment.



High-temperature Ising model

Theorem
Let β < β. Then

lim
N→∞

dKanto

 1
logN

N∑
n=1

1
n
δ
Mn(ω)/(2n+1)

d
2
,G0,σ2

 = 0

where
σ2 =

∑
i∈Zd

∫
s0 · s0 ◦ Ti dµ ∈ (0,∞).



Low-temperature Ising model

Theorem
Let β > β. Then

lim
N→∞

dKanto

 1
lnN

N∑
n=1

1
n
δ

(Mn(ω)−Eµ+ [s0])/(2n+1)
d
2
,G0,σ2

 = 0

where
σ2 =

∑
i∈Zd

∫
s0 · s0 ◦ Ti dµ+ ∈ (0,∞).



Application 2: “speed” of convergence of the
empirical measure

Take Λ b Zd and ω ∈ S Zd and let

EΛ(ω) =
1
|Λ|
∑
i∈Λ

δTi ω

where (Ti ω)j = ωj−i (shift operator).

Let µ be an ergodic measure on S Zd . If (Λn)n is a sequence of
cube ↑ Zd (more generally, a van Hove sequence), then

EΛn(ω)
n→∞−−−−→
weakly

µ.

Question: If µ is a Gibbs measure, what is the “speed” of this
convergence?



Kantorovich distance on the set of probability measures on
S Zd :

dKanto(µ1, µ2) = sup
G:S Zd→R
G 1−Lipshitz

(Eµ1(G)− Eµ2(G))

where |G(ω)− G(ω′)| ≤ d(ω, ω′) = 2−k , where k is the
sidelength of the largest cube in which ω and ω′ coincide.

Lemma. Let µ be a probability measure and

F(ω) = sup
G:S Zd→R
G 1−Lipshitz

(∑
i∈Λ

G(Tiω)− Eµ(G)

)
.

Then ∑
i∈Zd

`i(F)2 ≤ cd |Λ|

where cd > 0 depends only on d. Proof



Ising model at high & low temperature

Gaussian concentration for the empirical measure (β < β)

Let µ be the (unique) Gibbs measure of the Ising model. There
exists a constant C > 0 such that, for all Λ b Zd and for all
u ≥ 0, one has

µ
{
ω ∈ S Zd

:
∣∣∣dKanto(EΛ(ω), µ)− Eµ

[
dKanto(EΛ(·), µ)

]∣∣∣ ≥ u
}

≤ 2 exp
(
− C |Λ|u2).



We denote by µ+ the Gibbs measure for the +-phase of the Ising
model.

Stretched-exponential concentration for the empirical measure
(β > β)
There exist % = %(β) ∈ (0, 1) and a constant c% > 0 such that, for
all Λ b Zd and for all u ≥ 0, one has

µ+
{
ω ∈ S Zd

:
∣∣∣dKanto(EΛ(ω), µ+)− Eµ+

[
dKanto(EΛ(·), µ+)

]∣∣∣ ≥ u
}

≤ 4 exp
(
−c%|Λ|

%
2 u%
)
.



Can we estimate Eµ
[
dKanto(EΛ(·), µ)

]
?

Let
L =

{
G : S Zd → R : G 1-Lipschitz

}
and

ZΛ
G :=

1
|Λ|
∑
i∈Λ

(G ◦ Ti − Eµ(G)) , Λ b Zd .

Then
Eµ
[
dKanto(EΛ(·), µ)

]
= Eµ

(
sup
G∈L
ZΛ
G

)
.

Notice that we have functions de�ned on a Cantor space, which
is really di�erent from the case of, say, [0, 1]k ⊂ Rk .



Theorem

Let µ be a probability measure on S Zd satisfying the Gaussian
concentration bound. Then

Eµ [dKanto (EΛ(·), µ)] �

|Λ|
− 1

2 (1+log |S |)−1 if d = 1

exp
(
− 1

2

(
log |Λ|
log |S |

)1/d
)

if d ≥ 2.

For (aΛ) and (bΛ) indexed by �nite subsets of Zd we denote
aΛ � bΛ if, for every sequence (Λn) such that |Λn| → +∞ as
n→ +∞, we have lim supn

log aΛn
log bΛn

≤ 1.

It is possible to get bounds but they are really messy.
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Geometrically ergodic irreducible aperiodic Markov
chain

There exists a set C ⊂ S (“small set”), an integer m > 0, a
probability measure ν, and δ ∈ (0, 1), κ > 1, such that

For all x ∈ C one has Pm(x, ·) ≥ δν;
The return time τC to C is such that supx∈C Ex(κ

τC ) <∞.

If S is countable then this is equivalent to the fact that the
return time to some (or equivalently any) point has an
exponential moment.

Dedecker-Gouëzel Theorem



DLR equation

µ is a Gibbs measure for a given potential Φ if, for all Λ b Zd

and for all A ∈ B(S Zd
)

µ(A) =

∫
dµ(η)

∑
ω′∈Λ

γΛ(ω′|η)1A(ω′ΛηΛc)

where Φ is a real-valued function having two arguments: a �nite
subset of Zd and a con�guration ω ∈ S Zd , and where

HΛ(ω|η) =
∑

Λ′∩Λ6=∅

Φ(Λ′, ωΛηZd\Λ)

where Λ′ runs through the set of �nite subsets of Zd .

Boltzmann-Gibbs kernel



Dobrushin contraction coe�cient

Let
Ci, j(γ) = sup

ω,ω′∈S Zd

ω
Zd\j=ω

′
Zd\j

‖γ{i}(·|ω)− γ{i}(·|ω′)‖∞.

Then in our context Ci,j only depends on i − j and we de�ne

c(γ) =
∑
i∈Zd

C0,i(γ).

Dobrushin’s uniqueness regime: c(γ) < 1.

Gaussian concentration bound



van Hove sequence

A sequence (Λn)n of nonempty �nite subsets of Zd is said to tend
to in�nity in the sense of van Hove if, for each i ∈ Zd , one has

lim
n→+∞

|Λn| = +∞ and lim
n→+∞

|(Λn + i)\Λn|
|Λn|

= 0.

Empirical measure



Proof of the Lemma

Let ω, ω′ ∈ S Zd and G : S Zd → R be a 1-Lipschitz function.
Without loss of generality, we can assume that Eµ(G) = 0. We
have ∑

i∈Λ

G(Ti ω) ≤
∑
i∈Λ

G(Ti ω′) +
∑
i∈Λ

d(Ti ω, Ti ω′).

Taking the supremum over 1-Lipschitz functions thus gives

F(ω)− F(ω′) ≤
∑
i∈Λ

d(Ti ω, Tiω′).

We can interchange ω and ω′ in this inequality, whence

|F(ω)− F(ω′)| ≤
∑
i∈Λ

d(Ti ω, Ti ω′).



Now we assume that there exists k ∈ Zd such that ωj = ω′j for
all j 6= k. This means that d(Ti ω, Ti ω′) ≤ 2−‖k−i‖∞ for all
i ∈ Zd , whence

`k(F) ≤
∑
i∈Λ

2−‖k−i‖∞ .

Therefore, using Young’s inequality,

∑
i∈Zd

`i(F)2 ≤
∑
k∈Zd

∑
i∈Zd

1Λ(i) 2−‖k−i‖∞

2

≤
∑
i∈Zd

1Λ(i)×

 ∑
k∈Zd

2−‖k‖∞

2

.

We thus obtain the desired estimate with
cd =

(∑
k∈Zd 2−‖k‖∞

)2
. �

Kantorovich distance
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