Produire des radioisotopes dans l'interaction laser-plasma et les utiliser

Medhi Tarisien & Fazia Hannachi

CENBG IN2P3-CNRS Université de Bordeaux

Plan

1) Généralités

2) Production

3) Mesures d'activités

4) Utilisation auprès des lasers

5) Conclusion

Carte des Noyaux

1) Généralités

Le noyau atomique

Décroissance radioactive

 $\tau = 1/\lambda$ vie moyenne $T_{1/2} = \ln 2/\lambda$ demie vie λ : constante de désintégration radioactive en s⁻¹ Activité à l'instant t: $dN/dt = -\lambda N(t)$ en becquerel 1 curie (Cu)= 3,7 10¹⁰ Bq : activité de 1 g de radium N(t)=N₀. exp(- λ t) Nombre de noyaux restants à l'instant t Au bout de 6 demies vies: N(t=6 $T_{1/2}$) =N₀/2⁶ = 1,5% N₀ Au bout de 10 demies vies: N(t=10 $T_{1/2}$) = N₀/2¹⁰ ~ 0,1% N₀ saturation de la production de radio isotopes

1) Généralités

Utilisation des radioisotopes naturels

DATATION:

EN RECHERCHE MEDICALE: mesure de très faibles activités naturelles (Ch Marquet, CENBG)

Momcilovic et al, 2001 C.J. Groves-Kirkby et al, 2006

Recherche du ²¹⁰Pb dans des échantillons de cerveaux (Alzheimer, glioblastomes, témoins)

Utilisation des radio isotopes artificiels

1) Généralités

Industrie: sources radioactives très intenses: ⁶⁰Co produites par ⁵⁹Co (n,g) auprès de réacteurs pour la stérilisation de légumes...

Médecine: radioisotopes pour l'imagerie/diagnostics et les soins (radiothérapie vectorisée, curiethérapie): Production auprès de cyclotrons, accélérateurs linéaires et réacteurs...

Recherche fondamentale: physique nucléaire auprès d'accélérateurs conventionnels et auprès d'A.L.P (cibles plasmas), physique des plasmas (diagnostiques des faisceaux d'ions)

¹¹C, ¹³N, ¹⁵O, ¹⁸F. ⁶⁴Cu

11 MeV

⁶⁷Ga, ¹¹¹In, ¹²³I,

⁸²Sr, ^{117m}Sn,...

⁸²Sr, ^{117m}Sn, ²²⁵Ac...

70 MeV

INR-RAS

Linear accelerator 160 MeV

Taux de production

si le faisceau de particules est monoénergétique: R =nombre de réactions $= \sigma I d\rho$

<u>Section efficace</u>: σ "portion d'un noyau cible effectivement vue par un projectile"

<u>Unités:</u> 1 barn = 10^{-24} cm² (= 10^{6} fm²) ~ Section d'un noyau d'Uranium ~ 100 fm²

Rayon nucléaire: ~1.3 A^{1/3} [fm] ~ 6 fm pour l'uranium, 3 fm pour l'aluminium

Cas 1 : cibles monoisotopiques : plusieurs isotopes formés

Institut Laser Plasma – Belgodère - septembre 2021

Mesure activité Υ

Mesure d'activité Y in-situ

M.Tarisien, et al., IEEE Transactions on Nuclear Science, Vol 65, issue 8, p.2216-2219 (2018)

Mesure activité β^+

Mesure de l'énergie déposée [511 keV] Mesure en coïncidence (>1b+.s-1) Grande gamme d'activité + mesure de période Mesure du temps mort instantané

Système électronique compact *

M.Tarisien, et al., Rev.Sci.Instr. 82, 023302 (2011)

• Financé par l' ANR N° ANR-07-JCJC-0158 M. le contract IN2P3/ Région Aquitaine/Université Bordeaux 1 n° 20071304005

Institut Laser Plasma – Belgodère - septembre 2021

Simulation des efficacités de détection de sources étendues

Efficacité de détection non mesurable : sources de dimensions (de qq mm à qq cm) et de natures non standards

Commerciale de ²²Na afin de valider la simulation

Simulées pour toutes les autres sources radioactives non ponctuelles.

Institut Laser Plasma -Belgodère- septembre 2021

Mesure du taux de production: Y

à taux constant par unité de charge du faisceau incident (Q) et par seconde

Mesure du nombre d'isotopes produits

• Pendant n tirs laser: on mesure le nombre de radioisotopes présents à la fin du tir (T_n)

Cas n=3

Manip elfie 2015 (C Baccou): ${}^{10}B(p,\alpha)^{7}Be$

	Production de 7Be							
	tir	date tir	date compt	t start sec	tmes sec	ncounts	efficacités	N(t=0)
10B	60	27-oct	29 dec	5443200	595988	6411	0,0835	1,94E+07
10B	122	04-nov	15 dec	3542400	58907	1076	0,0835	2,38E+07
nat B	124	04-nov	24 dec	4320000	433114	2991	0,0771	1,13E+07
nat B	128	04-nov	22 dec	4147200	161514	767	0,0782	7,30E+06
10B	131	06-nov	21 dec	3888000	101787	709	0,0839	9,55E+06
10B plasma	132	06-nov	16 dec	3456000	83666	0	0,0839	0,00E+00
10B	138	06-nov	18 dec	3628800	256312	2677	0,0835	1,40E+07

Mesurer le ⁷Be == Mesurer le nombre de particules α produites Mesure de neutrons avec ⁷Li(p,n)⁷Be

Diagnostic de faisceaux de protons

3) Utilisation

Institut Laser Plasma – Belgodère - septembre 2021

3) Mesures d'activités

Aucune ambiguité sur la nature des radioisotopes détectés et donc sur les particules incidentes sur les RCF

Diagnostic de faisceaux d'électrons

Faisceaux d'électrons convertis en photons par Bremsstrahlung:

Les réactions possibles :

La différence des seuils de réactions permet d'avoir une relation <u>bijective</u> entre le rapport ¹¹C/⁶²Cu et la température T de la distribution

$$\frac{dN}{dE}(\theta, E) = 2\pi \sin(\theta) K e^{-\frac{E}{T}} e^{\frac{-(\theta-\overline{\theta})^2}{2\sigma_{\theta}^2}}$$

Institut Laser Plasma – Belgodère - septembre 2021

4) Utilisation des RI

4) Utilisation des RI

Programme RX2 : Produire et caractériser des sources brillantes de photons de haute énergie obtenues par conversion de faisceaux d'électrons en fonction du profil de densité de la cible.

Délai entre les faisceaux ns(1) et ps(2) jusqu'à 12 ns pour changer le profil de densité de la cible

Comparaison entre les nombres d'isotopes radioactifs mesurés et simulés pour une distribution en énergie donnée:

Lasers Pico2000 116 J et Nano2000 726 J, délai entre les faisceaux de 4 ns

$$\frac{dN}{dE}(\theta, E) = 2\pi \sin(\theta) K e^{-\frac{E}{T}} e^{\frac{-(\theta-\theta)^2}{2\sigma_{\theta}^2}}$$

4) Utilisation des RI

Bonne reproduction dans la simulation des nombres d'isotopes radioactifs produits dans les échantillons de carbone et de cuivre lors de ce tir laser

$$K = (9,1 \pm 0,7) \cdot 10^{11} e^{-} \cdot MeV^{-1} \cdot sr^{-1}$$

$$T = (6,5 \pm 0,3) MeV$$

$$\overline{\theta} = (37 \pm 3)^{\circ}$$

$$\sigma_{\theta} = (20 \pm 3)^{\circ}$$

4) Utilisation des RI

Physique nucléaire dans les plasmas

Les RI produits par les faisceaux obtenus par Accélération Laser Plasma sont intéressants pour la physique fondamentale :

→ Modifications de propriétés nucléaires dans un plasma

D.Denis-Petit et al., **Ch.21, Applications of Laser-Driven Particle Acceleration, CRC press, ISBN 9781498766418 (5th june 2018)** F. Negoita et al. , **Romanian Reports in Physics, Vol. 68, Supplement, P. S37–S144, 2016**

4) Utilisation des RI

Modification des $T_{1/2}$ en milieu plasma

Demi-vies apparentes modifiées en milieu plasma →astrophysique: désexcitations rapides des états isomériques

D.Denis-Petit et al., ALPA book, Eds. Parodi, Bolton, Schreiber, CRC press, Taylor&Francis Group (2017)

Conclusion

• On produit des radio-isotopes avec les faisceaux de particules accélérées par laser

Ils sont déjà utilisés pour diagnostiquer de façon quantitative ces faisceaux

 Leurs applications dépendent des quantités produites (cadence de tir) et de la pureté isotopique requise (dépend de la capacité de sélection de la réaction nucléaire de production et de la distribution en énergie des particules accélérées utilisées)