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MOTIVATION

• My motivation: Question of Andre about analyticity of amplitude in a
QFT with compactified spatial coordinate.
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• INTRODUCTION

• A SCALAR FIELD IN D = 5 DIMENSIONS.

• COMPACTIFICATION OF D = 5 THEORY TO R3,1 ⊗ S1

• ANALYTICITY PROPERTIES OF ELASTIC SCATTERING
AMPLITUDE

• SUMMARY AND CONCLUSIONS
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• Let us recapitulate the known rigorous results for D = 4 theories
derived from axiomatic field theory.
The Froissart bound

σt ≤
4π

t0
ln2 s

s0

t0 is a parameter derived from first principle (t0 = 4m2
π) for most

hadronic processes. s0 is energy scale to make argument of log
dimensionless and cannot be determined from axiomatic field
theoretic frame work. The bound is arrived at from the following
ingredients which can be derived from axiomatic field theory.

• 1. Analyticity of scattering amplitude, F (s, t), in the cut s-plane.
|F (s, t)| ≤ sN ,N ∈ Z , it is polynomially bounded (EGM) and it
satisfies dispersion relation for t inside Lehmann-Martin ellipse.
2. Crossing symmetry.
3. Convergence of partial wave amplitude inside Lehmann-Martin
ellipse.
4. Unitarity. The partial wave amplitudes satisfy positivity condition
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•
0 ≤ |fl(s)|2 ≤ Im fl(s) ≤ 1

The statements (1) - (4) have been proved in the frameworks of
axiomatic field theories.

• In order to derive statements (1) to (4) above one adopts following
steps in the frameworks of general field theories, say LSZ.
• The scattering amplitude, F (s, t), is the boundary value of an

analytic function such that

F (s, t) = limε→0F (s + iε, t)

with a right hand cut starting from the threshold, sthr , (say 4m2) and
a left hand cut starting from u = uthr . Partial wave expansion:

F (s, t) =
k√
s

∞∑
l=0

(2l + 1)fl(s)Pl(cosθ)

The partial wave expansion converges inside the Lehmann-Martin
ellipse in the cosθ plane which is larger than the usual domain i.e.
−1 ≤ cosθ ≤ +1. Thus the dispersion relations in s can be proved for
fixed t, lying in the Lehmann-Martin ellipse.
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• Khuri [Ann. Phys. 242, 471(1995)] studied scattering in a quantum
mechanical model where a spatial dimension is compactified on a
circle, S1, of radius R; 1

R << 1. He derived expression for the
scattering amplitude in the frame work of perturbation theory.
The spatial geometry is R3 ⊗ S1. The potential is V (r ,Φ). r ∈ R3,
r = |r| and Φ has period 2π. V (r ,Φ) is such that as
r →∞ V (r ,Φ)→ 0. He showed that in the perturbative frame work
the forward scattering amplitude violates analyticity properties for a
class of potentials in certain situations. However, a model without S1

compactification, with same potential (in d = 3) has good analyticity
properties known from 1957.
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• The scattering amplitude depends on three variables - the momentum
of the particle, k , the scattering angle θ, and an integer n which
appears due to the periodicity of the Φ-coordinate. Thus forward
scattering amplitude is denoted by Tnn(K ), where K 2 = k2 + n2

R2 .
The starting point is the Schrödinger equation[

∇2 +
1

R2

∂2

∂Φ2
+ K 2 − V (r ,Φ)

]
Ψ(r,Φ) = 0

The free plane wave solutions are

Ψ0(x,Φ) =
1

(2π)2
e ik.xe inΦ

and n ∈ Z. The total energy is

K2 = k2 +
n2

R2

He extracted the scattering amplitude adopting the standard Greens
function method.
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• (SKIP IT) The free Green’s function in this case has the following
form

G0(K; x,Φ : x′,Φ′) = − 1

(2π)4

n=+∞∑
n=−∞

∫
d3p

e ip.(x−x′)e in(Φ−Φ′)

[p2 + n2

R2 −K2 − iε]

It satisfies the free Schrödinger equation

G0(K; x− x′; Φ− Φ′) = − 1

(8π2)

n=+∞∑
n=−∞

e i
√

K2−(n2/R2)|x−x′|

|x− x′|
e in(Φ−Φ′)

Khuri’s prescription:
√

K 2 − n2/R2 is defined in such a way that
when n2/R2 > K 2

i
√

K 2 − n2/R2 → −
√
n2/R2 − K 2, n2 > K 2R2

Expansion for G0(K; x− x′; Φ− Φ′) is damped for large enough |n|.
The Green’s function, G0, satisfies the properties satisfied by those in
usual potential scattering for fixed k2.
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• He started from an integral equation as is prescribed in potential
scattering theory. Then extracted the scattering amplitude. He
explicitly showed that for n = 1 the forward amplitude does not have
analyticity properties as was the case with a d = 3 uncompactified
theory.

• Andre (Martin) brought this paper to my attention. He was
concerned. If the analyticity of a scattering amplitude breaks down in
a relativistic local field theory then it has serious consequences.
What will be fate of all rigorous results derived from axiomatic field
theory and which have been tested experimentally?
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• Analyticity and causality are deeply connected in QFT. In special
theory of relativity, c is the limiting velocity - no signal travels faster
then light. In case of potential scattering there is only Galilean
invariance. Thus violation of analyticity in potential scattering is not
such a matter of concern as in QFT.

• I systematically studied this problem for a field theory in the LSZ
formulation.
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Analyticity Property of Forward Amplitude in a
Compactified Field Theory

• How do we proceed?

• Consider a D = 5 flat spacetime, R4,1, with a neutral, scalar massive
field theory with mass m0.

• Compactify one spatial dimension on S1. The geometry is R3,1 ⊗ S1.
The Spectrum: A massive scalar field of the original theory (mass m0)
and tower of KK states.
Goal: To derive analyticity properties of the amplitude without
appealing to any specific model.

• Assumptions: In the resulting compactified theory with above
spectrum, all particles are stable, there are no bound states, the
vacuum is unique.

• We work in the LSZ formulation. Start with the five dimensional
uncompactified theory; in the 5-D theory all variables are denoted
with a hat. The postulates are:
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• A1. The states of the system are represented in a Hilbert space, Ĥ.
All the physical observables are self-adjoint operators in the Hilbert
space, Ĥ.
A2. The theory is invariant under inhomogeneous Lorentz
transformations.
A3. The energy-momentum of the states are defined. It follows from
the requirements of Lorentz invariance that we can construct a
representation of the orthochronous Lorentz group. The
representation corresponds to unitary operators, Û(â, Λ̂), and the
theory is invariant under these transformations. Thus there are
hermitian operators corresponding to spacetime translations, denoted
as P̂µ̂, with µ̂ = 0, 1, 2, 3, 4. [P̂µ̂, P̂ν̂ ] = 0 If translation operators are
chosen to be diagonal we have basis vectors span the Hilbert space

P̂µ̂|p̂, α̂ >= p̂µ̂|p̂, α̂ >

The vacuum is Lorentz invariant. Another important postulate is
microcausality.
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• A4.. The microcausality: for two bosonic local operators
O(x) and O(x ′)[

O(x̂),O(x̂ ′)

]
= 0, for (x̂ − x̂ ′)2 < 0

• The asymptotic fields: define φ̂(x̂)in,out which satisfy free field
equations. We may construct complete set of states from φ̂in or φ̂out .
φ̂(x̂) is the interacting field; φ̂(x̂)in,out are defined with suitable
limiting procedure from φ̂(x̂). The vacuum is unique. Single particle
states created by φ̂(x̂)in and φ̂(x̂)out are the same.
• R-products

R φ̂(x̂)φ̂1(x̂1)...φ̂n(x̂n) = (−1)n
∑
P

θ(x̂0 − x̂10)...θ(x̂n−10 − x̂n0)

[[...[φ̂(x̂), φ̂i1(x̂i1)], φ̂i2(x̂i2)]..], φ̂in(x̂in)]

R φ̂(x̂) = φ̂(x̂); the field is kept where it is. R-product is Lorentz
invariant. The VEV of R-product is translationally invariant;
consequentsly, R(x̂ , ..x̂n) depends on difference of coordinates:
ξ̂1 = x̂ − x̂1, ξ̂2 = x̂1 − x̂2....
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• R4,1 → R3,1 ⊗ S1

Decompose the 5-dimensional spacetime coordinates as:
x̂ µ̂ = (xµ, y), µ = 0, 1, 2, 3, y ∈ S1. Periodicity of y : y + 2πR = y ,
R is radius of compactification. Consider, φ̂(x̂)in which satisfies free
field equation: [�5 + m2

0]φ̂in,out(x̂) = 0. We expand the field

φ̂in,out(x̂) = φ̂in,out(x , y) = φin,out0 (x) +
+n=∞∑
n=−∞

φin,outn (x)e
iny
R

φin,out0 (x) has no y -dependence, it is called zero mode. For n 6= 0

[�− ∂

∂y2
+ m2

n]φin,outn (x , y) = 0

where φin,outn (x , y) = φin,outn e
iny
R and n = 0 term is

φin,out0 (x) = φin,out(x) from now on. Here m2
n = m2

o + n2

R2 .
Momentum associated along y -direction is quantized: qn = n

R ; it is
additive conserved quantum number.

13 / 26



• Let us look at Källen-Lehmann spectral reprsentation for the
5-dimensional theory

< 0|[φ̂(x̂), φ̂(ŷ)]|0 >=
∑
α̂

(
< 0|φ̂(0)α̂ > e−i p̂α̂.(x̂−ŷ)

× < α̂|φ̂(0)|0 > −(x̂↔ŷ)

)
If we expand φ̂(x̂) in fourier modes as we have done for φ̂(x , y)in

earlier then we arrive at

< 0|[φ̂(x , y), φ̂(x ′, y ′)]|0 >= < 0|[φ0(x) +
+∞∑
−∞

φn(x , y), φ0(x ′) +

+∞∑
−∞

φl(x
′, y ′)]|0 >

The VEV of a commutator of two φ̂ fields in the (KL) representation
decompose as sums of several VEV’s. Vacuum has qn = 0 thus terms
like < 0|[φn, φ−n]|0 > are admissible

< 0|[φ0(x), φ0(x ′)]|0 >, < 0|[φn(x), φ−n(x ′)]|0 >, ... 14 / 26



• The interacting field satisfies equations of motion with a source
current, ĵ(x̂) and it can be expanded as

ĵ(x , y) = j(x) +
n=+∞∑
n=−∞

Jn(x)e iny/R

φ(x) and φn(x) interpolate to corresponding in and out fields. φin,out

and each of the fields φin,outn (x) create their Fock spaces. For example
the single particle (say ’in’) states are:

a†,ink)|0 >= |k, k0, in >, k0 > 0; A†,in(p, qn|0 >= |p, p0; qn, in >, p0 > 0

Each sector contains a complete set of states is designated with a
conserved charge qn = n

R . Thus < p′, q′n|p, qn >= δ3(p′ − p)δn′, n.

Thus Ĥ decomposes as

Ĥ =
∑
⊕Hn
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• Definitions and conventions

• Field and four momenta associated with n = 0 charge are respectively
denoted as φ(x) and k. Fields carrying nonzero charges and four
momenta are: χ(x) and p. The elastic scattering between particles
(with charge conservation) are of following types:
(i) φ+ φ′ → φ+ φ′

(ii) φ+ χ(n)→ φ′ + χ′(n)
(iii)χ(m) + χ(n)→ χ′(m) + χ′(n). We shall consider scattering of
particles with equal charge reaction (iii) without any loss of
generality; with this choice (i) and (iii) describe equal mass scattering
whereas (ii) is unequal mass scattering. We don’t deal with (i) and
(ii) in this talk. Details are in arXiv 1810.11275
• The Mandelstam variables are:

s = (p̃a + p̃b)2, t = (p̃a − p̃d)2, u = (p̃a − p̃c)2

M2
a, M2

b, M2
c , M2

d , are two or more particle states carrying same
quantum number as a, b, c , d .
(Mab,Mcd), (Mac ,Mbd), (Mad ,Mbc) two or more particle states
having quantum numbers of (ab, cd), (ac, bd), (ad , bc) respectively.
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• Elastic Scattering of n(pa) + n(pb)→ n(pc) + n(pd)

• We can proceed by adopting LSZ reduction technique. The fields are
denoted by χa, χb, χc , χd with respective momenta pa, pb, pc , pd .
Following standard prescription

< pd , pc out|pb, pa in >= < pd , pc in|pb, pa in >

− 1

(2π)3

∫
d4x

∫
d4x ′e−i(pa.x−pc .x

′)

< pd |θ(x ′0 − x0)[Jc(x ′), Ja(x)]|pb >

Ja(x) is source current for χa(x) and similarly for Jc(x ′). Invoke
unitarity,

F (s, t) = i

∫
d4xe i(pa+pc ). x

2 θ(x0) < pd |[Ja(x/2), Jc(−x ′/2)]|pb >

We evaluate the imaginary part of this amplitude, F (s, t, )
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•

Im F (s, t) =
1

2i
(F − F ∗)

=
1

2

∫
d4xe i(pa+pc ). x

2 < pd |[Ja(x/2), Jc(−x/2)]|pb >

We use the fact that F ∗ is invariant under interchange pb → pd and
also pd → pb; θ(x0) + θ(−x0) = 1. Open up the commutator of the
two currents; introduce a complete set of states

∑
N |N >< N| = 1.

implement translation operations in each of the (expanded) matrix
elements to express arguments of each current as Ja(0) and Jc(0)
finally integrate over d4x to get the δ-functions. Then

F (pd , pc ; pb, pa)− F ∗(pb, pa; pc , pd) = 2πi
∑
N

[
δ(pd + pc − pn)

F (pd , pc ; n)F ∗(pa, pb; n)

−δ(pa − pc − pn)

F (pd ,−pa; n)F ∗(pb,−pc ; n)

]
Generalized unitarity relation. Forward case: implies optical theorem.18 / 26



• Look at the first term: δ function implies pa + pb = pn = pc + pd .
This is s-channel process, p2

n =M2
n = s.

Look at second term: pb + (−pc) = pn = pd + (−pa):
p2
n =M2

n = (pb − pc)2. Go to a Lorentz frame pb = (mb, 0), then

M2
n = 2mb(mb − p0

c ), p0
c > 0

Note: ma = mc , p0
c =

√
m2

c + p2
c ; M2

n < 0. Mn is intermediate
physical state carrying n charge. Thus above condition cannot be
satisfied. The 2nd term does not contribute to s-channel process.
Instead look at cross channel process:

pb + (−pc)→ pd + (−pa); − p0
a > 0, and − p0

c > 0

pb and pc are incoming (hence the negative sign for pc) and pd and
pa are outgoing. However, the first term does not contribute. Here is
hint of crossing symmetry (it is not a proof - can be proved ?). We
are not interested to prove crossing symmetry here! The δ-functions
guarantee energy momentum conservation. Generalized Unitarity
implies there is a cut off for KK towers as intermediate states so long
as s is finite, s could be very large.
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• Forward Scattering Amplitude: The Analyticity Property

• In this case the process is pc = pa and pd = pb. We have forward
scattering of equal mass particles, m2

n = m2
0 + n2

R2 . Starting from

F (pb, pa; pb, pa) =

∫
d4xe ipa.x(�x + m2

n)2 < pb|Rχa(x)χa(0)|pb >

We arrive at

F (pb, pa; pb, pa) =

∫
d4xe ipa.x < pb|RJa(x)Ja(0)|pb >

We go to the rest frame of particle ’b’: pb = (mb, 0) and define
ω = pa.pb

mn
. In this frame (adopted by Symanzik )

F (pb, pa : pb, pa) = i

∫ ∞
0

∫
d3xe ip

0
ax

0−i
√

(p0
a)2−m2

nê.xf̃ (x, x0)

ê is the unit vector along pa. We can identify f̃ (x, x0); and from
microcausality, we conclude f̃ (x, x0) = 0, unless x0 > |x|.
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• After the angular integration

F (pb, pa; pb, pa) =

∫ ∞
0
F(ω, r)dr

with

F(ω, r) = 4πi
sin
√
ω2 −m2

nre
iωr√

ω2 −m2
nr

×∫ ∞
r

dte iω(r−t) < pb|[Ja(x), Ja(0)]|pb >

Technicalities - SKIP: F(ω, r) is analytic function of ω for
Im ω ≥ 0 (upper half plane). (i) No branch point at ω = ±mn since
sin
√
ω2−m2

nr

r
√
ω2−m2

n

even in r
√

(ω2 −m2
n.

(ii) For, ω < mn problem in behavior of sin
√
ω2 −m2

nr ? The
presence of e iωr takes care. (iii) Assume, F is well behaved in s - no
subtractions. To write dispersion relation for F , we have to
interchange integration over r and ω. Write a dispersion relation for
F(ω, r) (assume it vanishes for large ω), then
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•

F(ω, r) =
1

π

∫ +∞

∞

Im F(ω′, r)

ω′ − ω − iε
dω′

Note that Im F has the property: Im F(r , ω) = −Im F(−ω, r). The
integral is

F(ω, r) =
1

π

∫ +∞

0
Im F(ω′, r)

[
1

ω′ − ω − iε
+

1

ω′ − ω + iε

]
dω′

Now Im F is expressed as

Im F (pb, pa; pb, pa) =
1

2

∫
d4xepa.x < pb|[Ja(x), Ja(0)]|pb > (1)

We can open up the commutator, insert complete set of states, use
translation operation and carry out the angular integration to get

Im F (pb, pa; pb, pa) =
1

2
(2π)4

∑
n

| < pb|Ja(0)|pb > |2
]

×[δ4(pb + pa − pn)− δ4(pb − pa + pn)

]
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• The expression for F(ω, r) is

Im F (pb, pa; pb, pa) =
1

2

∫
dr4πr2 sin

√
ω2 −m2

nr√
ω2 −m2

nr
×∫ +∞

−∞
e iωt < pb|[Ja(x), Ja(0)]|pb > dt

While writing dispersion integral for F (pa, pb, pc , pd) the issue of
interchanging t and ω integral comes up. Symanzik has resolved this
in his (1957) paper on forward dispersion relation for πN scattering.
Here is a simple problem of scattering of equal mass bosons. Thus
the dispersion relation written above for forward scattering amplitude
holds F (ω). Moreover, Bogoliubov’s approach leads to same
conclusion.

• Thus the forward amplitude satisfies dispersion relation. We have
assumed good behavior for large ω. We discuss subtractions later.
Conclusion of this section: Analyticity is not violated. This is different
from the conclusion of Khuri who studied analyticity of amplitude
perturbatively in potential scattering.
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• Summary and Conclusions

• Our principal goal was to study analyticity property of scattering
amplitude in a field theory with compact spatial dimension.

• The conclusion of Khuri for potential scattering in R3 ⊗ S1 is that the
amplitude does not have good analyticity property (in the case of
n=1) for class of Yukawa-type potentials.

• If such was the case in a relativistic field theory with a compact
coordinate, it would be a matter of concern. We considered a
massive, neutral, scalar field in 5-dimensional spacetime. A coordinate
is compactified on S1. Thus the geometry is R3,1 ⊗ S1. We analyzed
the resulting theory in the LSZ formalism systematically.

• The elastic scatterings amplitudes for (i) (n = 0) + (n = 0) and (ii)
(n = 0) + (n 6= 0) satisfy analyticity properties. In fact all the known
results of analyticity in LSZ frame work can be derived (not proved
here).

• We systematically studies forward elastic scattering amplitude of
(n) + (n) for n 6= 0. We showed that the forward scattering amplitude
satisfies dispersion relations.
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• Assumptions and Future Directions

• We assumed that the KK charge is conserved. It is a discrete,additive
quantum number. Conservation does not originate from a gauge
symmetry it came from S1 compactification. Some people have
questioned this. We have also assumed that there are no bound
states. This criteria might be relaxed in the case of elastic four point
amplitude. If BPS states were present care is needed, however, no
BPS states arise here.
• We assumed no subtractions - in any case (at most) the amplitude

can have polynomial growth and that is fine; we can write
N-subtracted dispersion relation.If Jin-Martin bound can be proved
then need at most two subtractions.
• How about fixed-t dispersion relation? It is possible but requires more

work (hard?). We need to prove J-L-D Theorem and then existence
of Lehmann Ellipses and then the crossing symmetry (may be
possible). Thus, domain of convergence of partial wave expansions
will be established. One need to prove Martin’s theorem before
establishing analog of Jin-Martin theorem! Then only TWO
subtractions !! It requires a lot of work ∗ ∗ ∗∗.
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