

WAVEFRONT ROTATION (WFR) AS A WAY TO CONTROL INTENSE LOCALIZED SURFACE PLASMA WAVES AND Obtain Energetic Electron Bunches

PAULA S. KLEIJ¹, S. MARINI^{1,2}, F. PISANI³, F. AMIRANOFF² M. GRECH², A. MACCHI^{3,4}, C. RICONDA² AND M. RAYNAUD¹

¹ LSI, CEA/DRF/IRAMIS, CNRS, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France

- ² LULI, Sorbonne Université, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, F-75252 Paris, France
- ³ Enrico Fermi Department of Physics, University of Pisa, Iargo Bruno Pontecorvo 3, 56127 Pisa, Italy
- ⁴ National Institute of Optics, National Research Council (CNR/INO), Pisa, Italy

Forum ILP 2021 30 September 2021

ONDE PLASMA DE SURFACE (SPW) : ONDE ELECTROMAGNETIQUE (EM) 2 De surface qui se propage à l'interface du vide et plasma

- confinement du champ EM à l'échelle $< \lambda$
- composante longitudinale du champ E

$v_{SPW,phase} < c$

Applications : détection bio/chimique, conception de dispositifs photoniques de petite taille, production de faisceaux de particules énergétiques

ONDE PLASMA DE SURFACE (SPW) : ONDE ELECTROMAGNETIQUE (EM) 3 De surface qui se propage à l'interface du vide et plasma

- confinement du champ EM à l'échelle $< \lambda$
- composante longitudinale du champ E

$v_{SPW,phase} < c$

Applications : détection bio/chimique, conception de dispositifs photoniques de petite taille, production de faisceaux de particules énergétiques

On peut exciter un SPW avec un laser \rightarrow

couplage entre la relation de dispersion du laser et du SPW

Ex: $d = 2\lambda_0 \rightarrow \theta_{inc} = 30^\circ$

LES SPW PEUVENT PIÉGER LES ÉLECTRONS ET ACCÉLÉRER Des paquets d'électrons à des énergies relativistes

Différents régimes de laser:

$$a_0 = 0.85 \sqrt{\frac{I\lambda_0^2}{10^{18} \,\mathrm{W} \,\mathrm{cm}^{-2} \mu \mathrm{m}^2}}$$

- $a_0 \ll 1 \rightarrow$ Regime non relativiste
- $a_0 \ge 1 \rightarrow$ Regime relativiste

Simulations° + expériences*

- ° Bigongiari et al. , PoP (2013)
- ° Riconda et al. , PoP(2015)
- ° Raynaud et al. , Sci. Rep. (2020).
- ° Marini et al. , PoP (2021).
- * Fedeli et al. , PRL (2016). * Cantono et al. , PoP (2018).

LES SPW PEUVENT PIÉGER LES ÉLECTRONS ET ACCÉLÉRER Des paquets d'électrons à des énergies relativistes

- Différents régimes de laser:
 - $a_0 \ll 1 \rightarrow$ Regime non relativiste
 - $a_0 \ge 1 \rightarrow$ Regime relativiste

$$= 0.85 \sqrt{\frac{I\lambda_0^2}{10^{18} \,\mathrm{W} \,\mathrm{cm}^{-2} \mu \mathrm{m}^2}}$$

- Simulations° + expériences*° Bigongiari et al. , PoP (2013)* Fedeli et al. , PRL (2016).° Riconda et al. , PoP(2015)* Cantono et al. , PoP (2018).° Raynaud et al. , Sci. Rep. (2020).* Marini et al. , PoP (2021).
- Avec des lasers intenses (> 10¹⁹ Wcm⁻²) et courts (<25 fs) on excite des SPW dans un plasma sur-dense en régime relativiste</p>

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m_e}} \gg \omega_L \qquad n_0 \gg \frac{\epsilon_0 m_e \omega_L^2}{e^2} = n_0$$

 a_0

Component E longitudinal + $v_{SPW,phase} = c(1 - n_c/2n_0) \sim c$

→ accélérer des paquets d'électrons

Intérêt: sources synchronisées de lumière ultra-rapide et d'électrons ultra-courts avec des applications dans les processus électroniques ultra-rapides et production des rayons XUV.

UN LASER WFR + UN RÉSEAU OPTIMISÉ PERMET D'EXCITER DES SPW PLUS INTENSES ET DE COURTE DURÉE

vacuum

z'z

[1] H. Vincenti and F. Quéré, Phys. Rev. Lett. (2012)[2] F. Pisani et al., ACS Photon. (2018)

WFR: variation temporelle de l'angle d'incidence du laser [1] 6

- Le centre de chaque front d'onde (où l'amplitude du champ est maximal) se propage le long de la surface
- Pour un $\Delta\beta$ donné \rightarrow WFR se déplacera dans la même direction que le SPW et soutiendra sa croissance [2]
- Réseau mixte (modulation périodique + surface plane)
 - \rightarrow optimise la propagation du SPW sur la surface plane
 - \rightarrow réduit les pertes radiatives par diffraction

ON A DÉVELOPPÉ UN MODÈLE ANALYTIQUE POUR OBTENIR Les paramètres optimaux pour l'excitation des SPW

On a un *sliding focus velocity* quand la focalisation n'est pas sur la surface :

$$v_{\rm sl} \simeq \frac{\Delta \beta x_f / \lambda_0}{\cos^2 \theta_{inc} + \sin \theta_{inc} \, \Delta \beta \, x_f / \lambda_0} c$$

7

Quand v_{sl} est selon la propagation du SPW

WFR soutient la croissance de l'amplitude du SPW

La valeur optimale du paramètre $\Delta\beta$ est obtenu quand $v_{sl} = v_{SPW,phase} \approx c$:

$$\Delta \beta_{\text{opt}} \simeq \frac{\lambda_0}{x_f} \left(1 + \sin \theta_{inc}\right)$$

Smilei)

a Collaborative, Open-Source, Multi-Purpose Particle-In-Cell Code for Plasma Simulation

Open-source & Collaborative https://github.com/SmileiPIC/Smilei

Modern & High-performance C++/Python3 • MPI/OpenMP • SIMD • HDF5/OpenPMD a platform for Exascale (GPU porting under way)

Community-Oriented

advanced documentation • online tutorials • post processing & visualization training workshops • summer school & master trainings

Multi-Physics & Multi-Purpose

advanced physics modules: geometries, collisions, ionization, QED broad range of applications: from laser-plasma interaction to astrophysics

LES SIMULATIONS PIC DÉCRIVENT LA DYNAMIQUE Des particules et les effets non linéaires

 $* \leftrightarrow I\lambda_0^2 = 10^{16}, 10^{19} \,\mathrm{Wcm}^{-2}\mu\mathrm{m}^2$

SPW sont des ondes TM $\rightarrow B_z$ représentatif de SPW (B_{SPW})

$$\begin{cases} E_{\perp} = |E_x| \sim c |B_{SPW}| \\ E_{\parallel} = |E_y| \sim c \sqrt{\frac{n_c}{n_0}} |B_{SPW}| \end{cases}$$

WFR DIMINUE LA DURÉE ET AUGMENTE L'INTENSITÉ DE L'AMPLITUDE DU SPW ($a_0 = 0.1$)

10

WFR DIMINUE LA DURÉE ET AUGMENTE L'INTENSITÉ DE L'AMPLITUDE DU SPW ($a_0 = 0.1$)

$$\begin{split} \Delta \beta &= 0 \rightarrow \tau_{\text{SPW}} \simeq 14.2 \lambda_0 / c \\ \Delta \beta_{opt}^{sim} &= 67 \text{ mrad} \rightarrow \tau_{\text{SPW}} \simeq 3.6 \lambda_0 / c \end{split}$$

11

 $\rightarrow \Delta \beta_{opt}$ donne le SPW la plus courte et intense

WFR DIMINUE LA DURÉE ET AUGMENTE L'INTENSITÉ DE L'AMPLITUDE DU SPW ($a_0 = 0.1$)

12

WFR OPTIMISE L'ACCÉLÉRATION DES ÉLECTRONS DANS ¹³ LE RÉGIME UHI ($a_0 = 5$) ^x

y

Plasma

Sans WFR ($\Delta \beta = 0$)

----- début du surface plane t₀ : temps où le maximum du pulse arrive à la cible

 B_{SPW} est amorti au cours du temps, les électrons sont accélérés

WFR OPTIMISE L'ACCÉLÉRATION DES ÉLECTRONS DANS 14 LE RÉGIME UHI ($a_0 = 5$)

Avec WFR ($\Delta\beta = 67 \text{ mrad}$)

Durée paquet d'électron \propto durée SPW

→ SPW plus intense → paquet d'électrons plus énergétique → Le $\Delta\beta_{opt}$ paquet d'électrons plus court et plus énergétique

LES ÉLECTRONS LES PLUS ÉNERGÉTIQUES SE Propagent le long de la surface

• Charge totale $\simeq 10 \text{ pC}/\lambda_0$ entre 30 et 70 MeV

LES ÉLECTRONS LES PLUS ÉNERGÉTIQUES SE Propagent le long de la surface

CONCLUSION

- L'interaction d'un impulsion laser avec WFR avec une cible plasma possédant un réseau périodique optimisé permet de contrôler la durée et l'amplitude des SPW dans les régimes non relativiste et relativiste.
- Dans le régime relativiste, ce schéma génère des paquets d'électrons très courts (~ 8 fs for $\lambda_0 = 0.8 \ \mu m$), énergétiques (jusqu'à 70 MeV) et avec une charge importante (10's pC)

LETTRE DANS PHYSICAL REVIEW E: S. Marini, <u>**P. S. Kleij**</u> *et al.,* « Ultrashort high energy electron bunches from tunable surface plasma waves driven with laser wavefront rotation » (2021)

PAPIER DANS PHYSICS OF PLASMAS: S. Marini, **P. S. Kleij** *et al.,* « Ultra-high laser intensity threshold regime in surface plasma wave excitation » (2021)

PERSPECTIVES

Etudier le rayonnement des particules accélérés dans le regime ultra relativiste

MERCI POUR VOTRE ATTENTION