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Transport in Nano-Matter: ���
QPCs, dots and quantum wires���

	


Quantum impurity models: courses H. Saleur, N. Andrei	


Transport: current and noise commonly accessible	


	


Noise in strong correlation regime: T. Delattre et al. (2009)	


Y. Yamauchi et al. (2011); News and Views: R. Egger 	


Theory: C. Mora, P. Vitushinsky, X. Leyronas, A. Clerk & KLH	


	



Low-D Luttinger liquids and Beyond:  A. Yacoby (Harvard)	


	

Thermopower:	



 L. Molenkamp et al (2005)	





Noise & Entanglement Entropy	


QPC to perform a quantum quench:	



D=1:	
  Results	
  from	
  CFT	
  (Klich-­‐Levitov):	
  entropy	
  
grows	
  logarithmically	
  with	
  Bme	
  
D=0.5:	
  Higher	
  cumulants	
  maGer,	
  but	
  the	
  
entropy	
  maintains	
  its	
  logarithmic	
  growth	
  
noise:	
  Lower	
  bound	
  on	
  the	
  full	
  entanglement	
  	
  	
  	
  
entropy	
  

See C. Glattli’s course	

  D = transparency of the barrier	



Klich-Levitov, Gaussian case D=1: 2009	


H. F. Song, S. Rachel, C. Flindt, N. Laflorencie	


I. Klich & KLH, 2012 (general case)	





���
���
���
���
���

General question: ���
	



  	


  	


Out of equilibrium quantum problems difficult to solve?	


	


S-matrix formulation : “Vacuum” at time -∞	
 and	
 +∞	
 	
 
Interaction switched on and off adiabatically 
Idea is that vacuum of the system does not evolve with!
Time but just acquires a phase due to interaction events!
!
!
!
!
!
!
Reality of nonequilibrium quantum problems:!
1.  Vacuum not really known at all times!
2.  Interaction term is often important at all times!
3.  Interaction often not switched on and off adiabatically!
4.  Particle and Current production, dissipation, decoherence!
!
!
!
 !

 	





Schwinger (1961) ���
Keldysh (1964)	



	


Example:  NonequilibriumTransport through a small cavity	


               Meir-Wingreen Formula (see later)	



Schwinger-Keldysh contour	





Typical Setup out of equilibrium:	
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Define notion of Steady State 	


	


Introduce Hershfield equilibium view	


Show Equivalence with Schwinger-Keldysh	


for current computation	


	


Application: 	


Resonant level model	


Anderson model	


	


Comparisons with other methods	


and experiments	



OUTLINE, Course:	





Generic Nano-System	


Let us start with a quantum impurity problem H=HL+HD+HT: 	



The out-of-equilibrium situation is produced by bias voltage:  	
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Notion of Steady State	


 Typically, steady state is reached after short times in the leads (relaxation mechanisms)	


	


	


To avoid microscopic relaxation mechanisms, one can also resort to open system	


Doyon and Andrei (2006) and Mehta-Andrei	


	


Initially: time t0, electron leads and dot are totally decoupled H0=(HL+HD)	


	


Tunneling term switched on adiabatically at negative time t, 	


	


	


Observables can be evaluated at time t=0, where HT has reached its full strength	



Infinite Leads (L à +∞):  Hot particle escapes to infinity (and is not reflected back)	





Switching on tunneling	


Exact Protocol not important, but the process needs to be adiabatic:	


Irreversibility of the turning on process (HT needs to be treated exactly)	


	


On the other hand, the way of switching on interactions does not matter	


and can be done in a non-adiabatic manner	


Interactions can be then treated perturbatively 	


	


	


IDEA BY S. HERSHFIELD (1993)	


	


Steady-state density matrix can be reformulated as usual	


Boltzmann form (see also papers by A. Oguri; J. Han; Doyon-Andrei)	


	


	


	



Y is the so-called BIAS OPERATOR	





What is the Y-bias operator?	



The Y operator can be written in terms of the Lippmann-Schwinger operators	



Where:	



Liouvillians are defined as: 	



(*)	





How to show this?	


For a pedestrian derivation of Hershfield’s proof (1993), without relaxation mechanisms,	


See Appendix A and B of :  Annals of Physics 326, 2963-99 (2011)	


	


	


Goals:	


Show that the density matrix of the system in the interaction representation at time t=0	


is equivalent to the Hershfield’s density matrix for all orders in HT	



	


Show that it is also true for any observable 	


	


	


There is a non-trivial step in the proof: One must use the open system limit (Doyon-Andrei) 	


and the factorization of correlation functions at long times (see Eq. B11)	


	


	


Question: Is this “factorization” always rigorous ? 	


For electron leads, described by a Fermi liquid theory, at T=0, correlation functions decay	


as power laws and not exponential decays	





Another proof for current (for any T)	



    Based on imaginary time formulation (similar to finite-T field theory)	





Real-time formulation	



are not related by analytical continuation	





Exact Formulation	



We have used the fact that we are in steady state: current invariant under translation	


For a diagrammatic analysis, it is convenient to Fourier transform this formula:	


	


	



CURRENT:	





  Equivalence with Meir-Wingreen	



Then, we use the definition of Eq. (*) defined ealier and assume that we don’t	


apply a magnetic field, and that the tunneling matrix elements are constant	



One can show that the second term does not need to be evaluated	





Essentially, the current at the left and right junction must be equivalent	


In steady state which implies that I = 	


Using this second formulation this second term vanishes	


	


	


Then, a calculation allows to show that:	


	


	


	


	


	


	


	



Similar formula	


Obtained with Keldysh	



Spectral function in general depends on bias voltage	





	


We have also shown that we recover the Meir-Wingreen (Keldysh) form:	


Meir-Wingreen, 1992-1993	


	


	


	


	


	



This (exact) formula works in the presence of interactions on the level	


	



Useful formula	


for level occupancy	





In principle, these exact relations���
     can also be applied to …	



DMFT spirit: Hubbard model with electric fields or tilted lattices	


See for example, C. Aron & G. Kotliar,	


Hershfield’s approach: as impurity solver	


	


	


This formalism can be easily applied in the case of “hybrid” systems:	


Anderson-Holstein model, where level coupled to “photon” mode	


	


	


Possibility to extract exact relations for Friedel-Langreth sum rule	


	


Application to a gradient of Temperature	


	





(Trivial) Application: resonant level	



gives	



Check that: 	



	


Double barrier problem at resonance (no interaction)	


	


At T=0, Landauer formula: we recover that I varies linearly with bias 	


in the linear regime (see next slide, curve at U=0, no interaction)	


	


	



(this relation can be easily inverted)	





At U=0, tractable case	



 Key point, use Ψ-basis: 	



Note: Don’t use the original (c,d) basis since 	



Y	





Concrete Implementation:	



	


	


	


	


  The Lippmann-Schwinger scattering states are simple for U=0 (no interaction)	



Anderson model, 1961:	


	


	



NRG approach in the scattering state basis	


F.  Anders et al. 	


	


Idea: Hershfield density matrix simple ρ0 for U=0	


Switch on U and let ρ evolve to steady state 	



In the presence of interactions, scattering	


states are complicated (not single-body like)	



Next, we present a novel perturbation	


theory in the basis of scattering states	





Main goal: explain…	



Landauer view	


at small bias	





Mean-Field argument	


                          Shift of the level position:	



 	





First order level:	



Then, we can use: 	



 This already affects the form of the scattering states to first order	





Way it works…	


First, it is possible to expand the scattering state operators to the lth power in Hint 	



       Then, expand density matrix to a given order in Hint 	


 	





Current computation	



First order in U	



Typical (Hartree) Diagram: 	



In agreement with mean-field theory results (developed to first order in U)!	


First order result just shifts the position of the particle-hole symmetric point	





Dynamics around p-h 
symmetric point	



Self-energy computed to second order in U for all bias voltages	


Expanding our results to second order in the bias voltage agrees with Fermi liquid regime	



This result agrees with known results	


for Anderson model at/close to equilibrium	





Results for all biases	


Born approximation: self-energy computed to second order in U	



“Kondo resonance”	


 Suppression	



  Oguri	



Dephasing:	


	


Kaminski, Nazarov	


& Glazman	


	


Rosch, Kroha,	


Woelfle	





Zeeman splitting	





���
���

Comparison with other methods���
& experiments���

���
	



	


To second order in U, our results are valid for all bias voltages: they agree with the	


Schwinger-Keldysh results for small and very large biases (A. Oguri)	


	


They are also in qualitative agreement with NRG in scattering state basis (F.  Anders)	



	


NOTE: Schwinger-Keldysh computation to fourth order observe a splitting of the	


Abrikosov-Suhl resonance, that is not obtained to second order (Fuji-Ueda, 2005)	


	


	


Other methods do not see the splitting of the Kondo resonance, 	


Diagrammatic MC in Keldysh scheme: P.  Werner,  T. Oka and A. J. Millis, 2009-2010	


                                                        M. Schiro & M. Fabrizio, 2008	


                                                        Muehlbacher, Urban and Komnik 2011	


Scattering states and QMC, with Matsubara voltage: J. Han (2010) & T. Pruschke (2012)	



Experiments: for example, R. Leturcq et al. PRL 95, 126603 (2005) 	




