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Transport in Nano-Matter: ���
QPCs, dots and quantum wires���

	

Quantum impurity models: courses H. Saleur, N. Andrei	

Transport: current and noise commonly accessible	

	

Noise in strong correlation regime: T. Delattre et al. (2009)	

Y. Yamauchi et al. (2011); News and Views: R. Egger 	

Theory: C. Mora, P. Vitushinsky, X. Leyronas, A. Clerk & KLH	

	


Low-D Luttinger liquids and Beyond:  A. Yacoby (Harvard)	

	
Thermopower:	


 L. Molenkamp et al (2005)	




Noise & Entanglement Entropy	

QPC to perform a quantum quench:	


D=1:	  Results	  from	  CFT	  (Klich-‐Levitov):	  entropy	  
grows	  logarithmically	  with	  Bme	  
D=0.5:	  Higher	  cumulants	  maGer,	  but	  the	  
entropy	  maintains	  its	  logarithmic	  growth	  
noise:	  Lower	  bound	  on	  the	  full	  entanglement	  	  	  	  
entropy	  

See C. Glattli’s course	
  D = transparency of the barrier	


Klich-Levitov, Gaussian case D=1: 2009	

H. F. Song, S. Rachel, C. Flindt, N. Laflorencie	

I. Klich & KLH, 2012 (general case)	
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General question: ���
	


  	

  	

Out of equilibrium quantum problems difficult to solve?	

	

S-matrix formulation : “Vacuum” at time -∞	 and	 +∞	 	 
Interaction switched on and off adiabatically 
Idea is that vacuum of the system does not evolve with!
Time but just acquires a phase due to interaction events!
!
!
!
!
!
!
Reality of nonequilibrium quantum problems:!
1.  Vacuum not really known at all times!
2.  Interaction term is often important at all times!
3.  Interaction often not switched on and off adiabatically!
4.  Particle and Current production, dissipation, decoherence!
!
!
!
 !

 	




Schwinger (1961) ���
Keldysh (1964)	


	

Example:  NonequilibriumTransport through a small cavity	

               Meir-Wingreen Formula (see later)	


Schwinger-Keldysh contour	




Typical Setup out of equilibrium:	
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Define notion of Steady State 	

	

Introduce Hershfield equilibium view	

Show Equivalence with Schwinger-Keldysh	

for current computation	

	

Application: 	

Resonant level model	

Anderson model	

	

Comparisons with other methods	

and experiments	


OUTLINE, Course:	




Generic Nano-System	

Let us start with a quantum impurity problem H=HL+HD+HT: 	


The out-of-equilibrium situation is produced by bias voltage:  	
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Notion of Steady State	

 Typically, steady state is reached after short times in the leads (relaxation mechanisms)	

	

	

To avoid microscopic relaxation mechanisms, one can also resort to open system	

Doyon and Andrei (2006) and Mehta-Andrei	

	

Initially: time t0, electron leads and dot are totally decoupled H0=(HL+HD)	

	

Tunneling term switched on adiabatically at negative time t, 	

	

	

Observables can be evaluated at time t=0, where HT has reached its full strength	


Infinite Leads (L à +∞):  Hot particle escapes to infinity (and is not reflected back)	




Switching on tunneling	

Exact Protocol not important, but the process needs to be adiabatic:	

Irreversibility of the turning on process (HT needs to be treated exactly)	

	

On the other hand, the way of switching on interactions does not matter	

and can be done in a non-adiabatic manner	

Interactions can be then treated perturbatively 	

	

	

IDEA BY S. HERSHFIELD (1993)	

	

Steady-state density matrix can be reformulated as usual	

Boltzmann form (see also papers by A. Oguri; J. Han; Doyon-Andrei)	

	

	

	


Y is the so-called BIAS OPERATOR	




What is the Y-bias operator?	


The Y operator can be written in terms of the Lippmann-Schwinger operators	


Where:	


Liouvillians are defined as: 	


(*)	




How to show this?	

For a pedestrian derivation of Hershfield’s proof (1993), without relaxation mechanisms,	

See Appendix A and B of :  Annals of Physics 326, 2963-99 (2011)	

	

	

Goals:	

Show that the density matrix of the system in the interaction representation at time t=0	

is equivalent to the Hershfield’s density matrix for all orders in HT	


	

Show that it is also true for any observable 	

	

	

There is a non-trivial step in the proof: One must use the open system limit (Doyon-Andrei) 	

and the factorization of correlation functions at long times (see Eq. B11)	

	

	

Question: Is this “factorization” always rigorous ? 	

For electron leads, described by a Fermi liquid theory, at T=0, correlation functions decay	

as power laws and not exponential decays	




Another proof for current (for any T)	


    Based on imaginary time formulation (similar to finite-T field theory)	




Real-time formulation	


are not related by analytical continuation	




Exact Formulation	


We have used the fact that we are in steady state: current invariant under translation	

For a diagrammatic analysis, it is convenient to Fourier transform this formula:	

	

	


CURRENT:	




  Equivalence with Meir-Wingreen	


Then, we use the definition of Eq. (*) defined ealier and assume that we don’t	

apply a magnetic field, and that the tunneling matrix elements are constant	


One can show that the second term does not need to be evaluated	




Essentially, the current at the left and right junction must be equivalent	

In steady state which implies that I = 	

Using this second formulation this second term vanishes	

	

	

Then, a calculation allows to show that:	

	

	

	

	

	

	

	


Similar formula	

Obtained with Keldysh	


Spectral function in general depends on bias voltage	




	

We have also shown that we recover the Meir-Wingreen (Keldysh) form:	

Meir-Wingreen, 1992-1993	

	

	

	

	

	


This (exact) formula works in the presence of interactions on the level	

	


Useful formula	

for level occupancy	




In principle, these exact relations���
     can also be applied to …	


DMFT spirit: Hubbard model with electric fields or tilted lattices	

See for example, C. Aron & G. Kotliar,	

Hershfield’s approach: as impurity solver	

	

	

This formalism can be easily applied in the case of “hybrid” systems:	

Anderson-Holstein model, where level coupled to “photon” mode	

	

	

Possibility to extract exact relations for Friedel-Langreth sum rule	

	

Application to a gradient of Temperature	

	




(Trivial) Application: resonant level	


gives	


Check that: 	


	

Double barrier problem at resonance (no interaction)	

	

At T=0, Landauer formula: we recover that I varies linearly with bias 	

in the linear regime (see next slide, curve at U=0, no interaction)	

	

	


(this relation can be easily inverted)	




At U=0, tractable case	


 Key point, use Ψ-basis: 	


Note: Don’t use the original (c,d) basis since 	


Y	




Concrete Implementation:	


	

	

	

	

  The Lippmann-Schwinger scattering states are simple for U=0 (no interaction)	


Anderson model, 1961:	

	

	


NRG approach in the scattering state basis	

F.  Anders et al. 	

	

Idea: Hershfield density matrix simple ρ0 for U=0	

Switch on U and let ρ evolve to steady state 	


In the presence of interactions, scattering	

states are complicated (not single-body like)	


Next, we present a novel perturbation	

theory in the basis of scattering states	




Main goal: explain…	


Landauer view	

at small bias	




Mean-Field argument	

                          Shift of the level position:	


 	




First order level:	


Then, we can use: 	


 This already affects the form of the scattering states to first order	




Way it works…	

First, it is possible to expand the scattering state operators to the lth power in Hint 	


       Then, expand density matrix to a given order in Hint 	

 	




Current computation	


First order in U	


Typical (Hartree) Diagram: 	


In agreement with mean-field theory results (developed to first order in U)!	

First order result just shifts the position of the particle-hole symmetric point	




Dynamics around p-h 
symmetric point	


Self-energy computed to second order in U for all bias voltages	

Expanding our results to second order in the bias voltage agrees with Fermi liquid regime	


This result agrees with known results	

for Anderson model at/close to equilibrium	




Results for all biases	

Born approximation: self-energy computed to second order in U	


“Kondo resonance”	

 Suppression	


  Oguri	


Dephasing:	

	

Kaminski, Nazarov	

& Glazman	

	

Rosch, Kroha,	

Woelfle	




Zeeman splitting	




���
���

Comparison with other methods���
& experiments���

���
	


	

To second order in U, our results are valid for all bias voltages: they agree with the	

Schwinger-Keldysh results for small and very large biases (A. Oguri)	

	

They are also in qualitative agreement with NRG in scattering state basis (F.  Anders)	


	

NOTE: Schwinger-Keldysh computation to fourth order observe a splitting of the	

Abrikosov-Suhl resonance, that is not obtained to second order (Fuji-Ueda, 2005)	

	

	

Other methods do not see the splitting of the Kondo resonance, 	

Diagrammatic MC in Keldysh scheme: P.  Werner,  T. Oka and A. J. Millis, 2009-2010	

                                                        M. Schiro & M. Fabrizio, 2008	

                                                        Muehlbacher, Urban and Komnik 2011	

Scattering states and QMC, with Matsubara voltage: J. Han (2010) & T. Pruschke (2012)	


Experiments: for example, R. Leturcq et al. PRL 95, 126603 (2005) 	



