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Concentration-of-measure phenomenon

Shows up in probability theory and statistics, as well
as in various areas such as geometry, functional
analysis (local theory of Banach spaces), discrete
mathematics (randomized algorithms, random graphs, etc).

Underlying principle
A random variable that “smoothly” depends on the influence
of many weakly dependent random variables is, on an
appropriate scale, essentially constant (= to its expected
value).

Goal of these two talks:
Making sense out of this, for independent random variables,
Markov chains, and Gibbs measures.



Plan

1 Independent Random Variables
Toy model
Azuma, Hoeffding & McDiarmid
Three applications

2 Markov chains & Gibbs measures



1. Independent Random
Variables



Toy model

Sn = X1 + · · ·+Xn, P(Xi = ±1) = 1
2 , Xi independent

(E(Sn) = 0) One can prove (see below)

P (Sn ≥ u) ≤ exp

(
−u

2

2n

)
, ∀u > 0 (Chernov, 1952).

a. Scale of “large deviations” : u un

P (|Sn| ≥ nu) ≤ 2 exp

(
−nu

2

2

)
, ∀u > 0.



The law of large numbers

∑
n≥1

P

(∣∣∣∣Snn
∣∣∣∣ ≥ u) ≤ 2

∑
n≥1

exp

(
−nu

2

2

)
< +∞, ∀u > 0.

⇓
P

(∣∣∣∣Snn
∣∣∣∣ ≥ u infinitely often

)
= 0

⇓
Sn
n

a.s.−−−−−→
n→+∞

0 (= E(X1)).



Large deviations: asymptotic & non-asymptotic

Take u > 0. One has

P(Sn ≥ un)≤ exp(−nI(u)), ∀n ≥ 1

lim
n→∞

1

n
lnP(Sn ≥ un) = −I(u)

where

I(u) =

{
ln 2 + 1+u

2 ln
(

1+u
2

)
+ 1−u

2 ln
(

1−u
2

)
if u ∈ [−1, 1]

+∞ otherwise.

and

I(u)≥ u
2

2
.



Recall that

P (|Sn| ≥ u) ≤ 2 exp

(
−u

2

2n

)
, ∀u > 0.

b. Scale of the central limit theorem: u u
√
n

P
(
|Sn| ≥ u

√
n
)
≤ 2 exp

(
−u

2

2

)
, ∀u > 0.

(Numerical example: n = 100, u = 5, the above probability
is ≤ 7.5 10−6)



Interlude : the Gaussian paradise

Z1, . . . , Zn i.i.d. with Zi
law
= N (0, 1)

Denote Sn = Z1 + · · ·+ Zn.

Since Sn/
√
n

law
= N (0, 1), one gets

max

(
0, 1− 1

u2

)
2

u
√

2π
e−

u2

2 ≤ P
(
|Sn| ≥ u

√
n
)
≤ 2

u
√

2π
e−

u2

2 ,

for all u > 0.



Central limit theorem: asymptotic & non-asymptotic

Back to Xi = ±1, P(Xi = ±1) = 1
2 , Xi independent.

Take u > 0. One has

lim
n→∞

P(|Sn| ≥ u
√
n) =

2√
2π

∫ ∞
u

e−
x2

2 dx (CLT)

and

P(|Sn| ≥ u
√
n)≤ 2√

2π

∫ ∞
u

e−
x2

2 dx︸ ︷︷ ︸
≤ 1

u
e−

u2

2

+
2C√
n

(Berry-Esseen bound)

where C = absolute constant > 0.
So one has to take n ≈ eu2 to get back the previous
inequality!



A first generalization

Take independent random variables X1, X2, . . . , Xn.

Aim: replace

X1 + · · ·+Xn (linear function of X1, . . . , Xn)

by

F (X1, . . . , Xn) (possibly nonlinear function of X1, . . . , Xn)

under mild assumptions on F .



A key abstract result
No independence needed!

Let
Y : (Ω,F,P)→ R integrable random variable;
{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F a filtration;
Y − E(Y ) =

∑n
k=1 (E(Y |Fk)− E(Y |Fk−1)) =

∑n
k=1 ∆k.

Azuma-Hoeffding inequality

∀λ ∈ R, E
[

exp(λ(Y − E(Y ))
]
≤ exp

(
λ2

8

n∑
i=1

osc(∆i)
2

)

whence

∀u ≥ 0, P (|Y − E(Y )| ≥ u) ≤ 2 exp

(
− 2u2∑n

i=1 osc(∆i)2

)
.

Note that osc(∆i) := sup ∆i − inf ∆i ≤ 2‖∆i‖∞.



Proof of Azuma-Hoeffding inequality

Take λ > 0:

P (Y − E(Y ) ≥ u) = P
(

exp (λ(Y − E(Y ))) ≥ exp(λu)
)

≤
Markov
ineq. exp(−λu) E [exp (λ(Y − E(Y )))]︸ ︷︷ ︸

=E[exp(λ(∆n+···+∆1))]

.

Now
E [exp (λ(∆n + · · ·+ ∆1))] =

E
[

exp (λ(∆n−1 + · · ·+ ∆1)) E
(

exp(λ∆n

∣∣Fn−1)
)]
.

But

E
(
exp(λ∆k

∣∣Fk−1)
)
≤ exp

(
λ2

8
osc(∆k)

2

)
(Hoeffding Lemma)



Proof of Azuma-Hoeffding inequality (continued)

By induction one gets

E [exp (λ(∆n + · · ·+ ∆1))] ≤ exp

(
λ2

8

n∑
i=1

osc(∆i)
2

)
.

Hence, setting c =
∑n

i=1 osc(∆i)
2,

P (Y − E(Y ) ≥ u) ≤ exp

(
−λu+

cλ2

8

)
≤ exp

(
inf
λ>0

(
− λu+

cλ2

8

))
= exp

(
−2u2

c

)
.

The same holds for −Y . �



Hoeffding lemma (1963)

Let Z be a random variable with E(Z) = 0 and a ≤ Z ≤ b,
and set

ψ(λ) = logE(eλZ), λ ∈ R.

Then

ψ(λ) ≤ λ2(b− a)2

8
, ∀λ ∈ R.

In the above proof, we took Z = ∆k (so b− a = osc(∆k)) and
E = E(·|Fk−1).



A (nice) proof of Hoeffding lemma

By Taylor’s expansion

ψ(λ) = ψ(0)︸︷︷︸
=0

+λ ψ′(0)︸ ︷︷ ︸
=E(Z)=0

+
λ2

2
ψ′′(θ)

for some θ ∈ (0, λ).
By elementary computation

ψ′′(λ) = Var(Zλ)

where Zλ ∈ [a, b] is a r.v. with density f(x) = e−ψ(λ)eλx wrt
P.

Since
∣∣Zλ − a+b

2

∣∣ ≤ b−a
2 then

Var(Zλ) = Var
(
Zλ −

a+ b

2

)
≤ (b− a)2

4
. �



Back to business:
Going from X1 + · · ·+Xn to F (X1, . . . , Xn)

Let X1, . . . , Xn be independent random variables, each
taking values in a set S .

F : S n → R satisfies the bounded differences property if
there are some positive constants `1(F ), . . . , `n(F ) such that

|F (x1, . . . , xn)− F (y1, . . . , yn)| ≤
n∑
i=1

`i(F )1{xi 6=yi}

for all (x1, . . . , xn), (y1, . . . , yn).

In other words:
if xj = yj , j 6= i and xi 6= yi then maximal oscillation of F is
`i(F ).



Gaussian concentration bound (McDiarmid, 1989)
For all functions with the bounded differences property,

∀λ ∈ R, E
[

exp
(
λ(F (X1, . . . , Xn)− E[F (X1, . . . , Xn)])

)]
≤ exp

(
λ2

8

n∑
i=1

`i(F )2

)
.

In particular, for all u ≥ 0,

P
(
F (X1, . . . , Xn)− E[F (X1, . . . , Xn)] ≥ u

)
≤ exp

(
−2u2∑n
i=1 `i(F )2

)
.

Hence

P
(
|F (X1, . . . , Xn)−E[F (X1, . . . , Xn)]| ≥ u

)
≤ 2 exp

(
−2u2∑n
i=1 `i(F )2

)



Illustration (back to our toy model)

Back to Xi = ±1, P(Xi = ±1) = 1
2 , Xi independent:

S = {−1,+1}
F (X1, . . . , Xn) = X1 + · · ·+Xn = Sn

E[F (X1, . . . , Xn)] =

n∑
i=1

E(Xi) = 0

`i(F ) = 2, hence
n∑
i=1

`i(F )2 = 4n.

Hence ∀u ≥ 0

P
(
|Sn| ≥ nu

)
≤ 2 exp

(
−u

2

2n

)



Remarks

A drawback of the gaussian concentration bound : based on
worst case changes of F !

Insensitivity to the variance of the Xi’s:
take X1, . . . , Xn i.i.d. r.v. taking values in [−1, 1] with
E(Xi) = 0; we get the same inequality as for Xi = ±1 with
P(Xi = ±1) = 1

2 which has the largest possible variance
among such r.v..

Possible cure: Bernstein inequality.



Proof of the Gaussian concentration bound (without the

optimal constant)

Apply Azuma-Hoeffding inequality with

Y = F (X1, . . . , Xn)

Fk = σ(X1, . . . , Xk), F0 = trivial sigma-field
E(Y |F0) = E(Y ) and E(Y |Fn) = Y.

Now let X ′1, . . . , X ′n be an independent copy of X1, . . . , Xn;
then

E[Y |Fk−1] = E[F (X1, . . . , X
′
k, . . . , Xn)|Fk]

⇒ ∆k = E(Y |Fk)− E(Y |Fk−1)

= E
[
F (X1, . . . , Xk, . . . , Xn)− F (X1, . . . , X

′
k, . . . , Xn)|Fk

]
⇒ ‖∆k‖∞ ≤ `k(F ) �



Three applications
1. Fattening patterns

Consider a finite set S , fix n ∈ N. Consider X1, . . . , Xn

i.i.d. r.v. taking values in S .
Let

dH(x, y) =

n∑
i=1

1{xi 6=yi} (Hamming distance)

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ S n.
Now, pick a set A ⊂ S n with (say) P(A) = 1/2, and for
r ∈ {0, 1, . . . , n}, let

[A]r = {z ∈ S n : dH(z,A) ≤ r} (r − fattening)

where
dH(z,A) = inf

y∈A
dH(y, z).

Natural choice: r = bnεc, with ε ∈ (0, 1).



Sets of measure 1/2 are big
One has

P
(
[A]nε

)
≥ 1− exp

−2n

(
ε−

√
log 2

2n

)2

+


where (u)+ := max(0, u).



Proof

Take F (x1, . . . , xn) = dH(x,A). Check that `i(F ) = 1,
i = 1, . . . , n.
Apply the Gaussian concentration bound to
Y = F (X1, . . . , Xn):

P(Y ≥ E[Y ] + u) ≤ exp

(
−2u2

n

)
(∀u > 0).

Upper bound for E[Y ]? Apply again the Gaussian
concentration bound to −λY with λ > 0:

exp(λE[Y ])E [exp(−λY )] ≤ exp

(
nλ2

8

)
·

But Y ≡ 0 on A, hence

E [exp(−λY )] ≥ E
[
1A exp(−λY )

]
= E[1A] =

1

2
·

⇒ E[Y ] ≤ inf
λ>0

{
nλ

8
+

1

λ
log 2

}
=

√
n log 2

2
·



We conclude that, for every u > 0,

P

Y ≥
√
n log 2

2
+ u︸ ︷︷ ︸

=: v

 ≤ P(Y ≥ E[Y ] + u) ≤ exp

(
−2u2

n

)

where v >
√

n log 2
2 .

Finally, take v = nε and use that by definition

P(Y ≥ nε) = 1− P([A]nε).

�



Three applications
2. Plug-in estimator of Shannon entropy

Take a finite set S (“alphabet”) and consider X1, X2, . . .
i.i.d. r.v. taking values in S .
Let X law

= Xi with distribution P = {p(s), s ∈ S }.

H(X) = −
∑
s∈S

p(s) log p(s) ∈ [0, logCard(S )] (Shannon entropy).

Empirical distribution:

pn(s) = pn(s;X1, . . . , Xn) =
1

n

n∑
j=1

1{Xj=s}, s ∈ S .

Plug-in estimator:

Ĥn = Ĥn(X1, . . . , Xn) = −
∑
s∈S

pn(s) log pn(s).



By the strong law of large numbers, pn(s) −−−→
n→∞

p(s), almost
surely, for each s ∈ S , thus

Ĥn −−−→
n→∞

H(X), almost surely.

One has 0 ≤ Ĥn ≤ log n and 0 ≤ E[Ĥn] ≤ H(X) for every
n ∈ N.

How does Ĥn concentrate around E[Ĥn] ?



Theorem

Let

F (x1, . . . , xn) = −
∑
s∈S

1

n

n∑
j=1

1{xj=s} log

 1

n

n∑
j=1

1{xj=s}

 .

Claim:
`i(F ) ≤ 2(1 + log n)

n
, i = 1, . . . , n.

Hence, by the Gaussian concentration bound, for all u ≥ 0

P
(
|Ĥn − E[Ĥn]| ≥ u

)
≤ 2 exp

(
− nu2

2(1 + log n)2

)
·

In particular

Var(Ĥn) ≤ (1 + log n)2

n
·



Three applications
3. Empirical cumulative distribution function &
Dvoretsky-Kiefer-Wolfowitz-Massart inequality

Setting:
i.i.d. r.v. (X1, X2, . . . , Xn, . . .), Xi

law
= X, F(x) = P(X ≤ x).

Given x ∈ R and X1, . . . , Xn define

Fn(x) = Fn(x;X1, . . . , Xn)

=
1

n
Card ({1 ≤ i ≤ n : Xi ≤ x})

=
1

n

n∑
i=1

1{Xi≤x}.

One has 1{Xi≤x}
law
= Bernoulli(F(x)).



We are interested in the r.v.

KSn = KSn(X1, . . . , Xn) = sup
x∈R
|Fn(x)−F(x)|.

By Glivenko-Cantelli theorem

KSn −−−→
n→∞

0 almost surely,

and for all u > 0

P
(√
nKSn > u

)
−−−→
n→∞

2
∑
r≥1

(−1)r−1 exp(−2u2r2).

(Kolmogorov-Smirnov test)



The easy part

Consider

F (X1, . . . , Xn) = sup
x
|Fn(x)−F(x)|.

Check that
`i(F ) =

1

n
, i = 1, . . . , n.

Thus, by the Gaussian concentration bound, for all u > 0,
for all n ∈ N,

P (|KSn − E[KSn]| ≥ u) ≤ 2 exp(−2nu2)

and

P
(
|
√
nKSn − E[

√
nKSn]| ≥ u

)
≤ 2 exp(−2u2).



The tricky part: Getting rid of E[
√
nKSn]

Dvoretsky-Kiefer-Wolfowitz inequality

P
(√
nKSn ≥ u

)
≤ 4 exp

(
− u2/8

)
, ∀u > 0.

(Clever proof only using elementary considerations.)

Optimal bound (Massart, 1990):

P
(√
nKSn ≥ u

)
≤ 2 exp(−2u2), ∀u > 0.



Recap of talk 1

So far:
X1, X2, . . . independent r.v. taking values in S , i.e.
product measures on SN;
Martingale approach.
Various other approaches are available (Marton,
Talagrand, Ledoux, Bobkov & Götze, and many
others);

Talk 2: non-product measures such as Markov chains and
Gibbs measures.



2. Markov chains
& Gibbs measures

I will present some results from joint works with P. Collet,
C. Külske and F. Redig.



(A glimpse of ) Markov chains

Several approaches (Marton, Samson, Kontorovich, Paulin,
and many others).

Here: combination of the martingale method and
coupling.

For the sake of simplicity:
Markov chain (Xn)n∈Z with discrete state space S equipped
with the discrete distance d(x, y) = δxy.



Separately Lipschitz functions

F : S Z → R such that

`i(F ) = sup

{ |F (x)− F (y)|
d(xi, yi)

: xj = yj , ∀j 6= i, xi 6= yi

}
<∞

where x = (. . . , x−2, x−1, x0, x1, x2, . . .)

Think of a function F (x1, . . . , xn) as a function on S Z with
`i(F ) = 0 for i > n and i ≤ 0.



Basic telescoping

Recall that in general

F − E(F ) =
∑
i∈Z

∆i

where
∆i = ∆i(X

i
−∞) = E[F |Fi]− E[F |Fi−1]

with Fi = σ(Xi
−∞).



Some notation

PXi
−∞

:

The joint distribution of {Xj , j ≥ i+ 1} given Xi
−∞.

P̂Xi
−∞,Y

i
−∞

:

A coupling of PXi
−∞

and PY i
−∞

.



The second telescoping (still in the general case)

∆i = ∆i(X
i
−∞) =∫

dPXi−1
−∞

(zi)

∫
dP̂Xi

−∞,X
i−1
−∞zi

(y∞i+1, z
∞
i+1)

[
F (Xi

−∞y
∞
i+1)−F (Xi−1

−∞z
∞
i )
]
.

Now insert the inequality

F (x)− F (y) ≤
∑
k∈Z

`k(F ) d(xk, yk)

to get

∆i ≤
∞∑
j=0

Di,i+j `i+j(F )



The coupling matrix D

We have introduced the upper-triangular random matrix

Di,i+j = D
Xi
−∞

i,i+j =∫
dPXi−1

−∞
(zi)

∫
dP̂Xi

−∞, X
i−1
−∞zi

(y∞i+1, z
∞
i+1) d(yi+j , zi+j)

where i ∈ Z, j ∈ N, and Di,i = 1 (∀i ∈ Z).



The Markovian case

If (Xn)n∈Z is a Markov chain with discrete state space S
with the discrete distance and transition kernel
P = (p(x, y))(x,y)∈S×S , then, taking a Markovian coupling,

D
Xi
−∞

i,i+j = D
Xi−1,Xi

i,i+j =
∑
z∈S

p(Xi−1, z)

∫
dP̂Xi,z(u

∞
0 , v

∞
0 )d(uj , vj).

Defining the coupling time

T (u∞0 , v
∞
0 ) = inf{k ≥ 0 : ui = vi, ∀i ≥ k}

we have
d(uj , vj) ≤ 1{T (u∞0 ,v∞0 )≥ j}

whence

D
Xi−1,Xi

i,i+j ≤
∑
z∈S

p(Xi−1, z) P̂Xi,z(T ≥ j).



Gaussian concentration bound

Recap:
F − E(F ) =

∑
i∈Z

∆i and

∆i(Xi−1, Xi) ≤
∑
z∈S

p(Xi−1, z)

∞∑
j=0

P̂Xi,z(T ≥ j) `i+j(F )

Recall that Azuma-Hoeffding inequality is

E
[

exp(F − E(F ))
]
≤ exp

(
1

2

∑
i∈Z
‖∆i(Xi−1, Xi)‖2∞

)
.

After some work, one gets

∑
i∈Z
‖∆i(Xi−1, Xi)‖2∞ ≤

ζ(1 + ε)

2

(
sup
u,v ∈S

Êu,v
(
T 1+ε

))2

×
∑
i∈Z

`i(F )2

where ε > 0.



Gaussian concentration bound

There exists a constant D > 0 such that, for all separately
Lipshitz functions F : S Z → R, we have

E
[

exp(F − E(F ))
]
≤ exp

(
D
∑
i∈Z

`i(F )2

)
.

Back to H-of-C

The simplest example: aperiodic irreducible Markov
chain with S finite

∃ ρ ∈ (0, 1), c > 0 such that sup
u,v ∈S

P̂u,v(T ≥ j) ≤ c ρj , ∀j.



Beyond the Gaussian case

What happens if we don’t get a uniform (in Xi−1, Xi) decay
of DXi−1,Xi

i,i+j as a function of j?

Answer: we may obtain only moment bounds.

Illustration with the House-of-cards process (Berbee):
S = {0, 1, 2, . . .};
For all k ∈ Z+, P(Xk+1 = x+ 1|Xk = x) = 1− qx and
P(Xk+1 = 0|Xk = x) = qx, x ∈ S ;
0 < qx < 1, x ∈ S .



One can construct (explicitly) a coupling such that

P̂x,y(T ≥ j) ≤
j−1∏
k=0

(1− q∗x+k), x ≥ y

where q∗n = inf{qs : s ≤ n}.

Three cases:
(1) q := inf{qx : x ∈ S } > 0;
(2) qx = x−α with 0 < α < 1;
(3) qx = γ/x where γ > 0.



(1) Gaussian concentration bound; GCB

(2) Moments of all orders:

∀p ∈ N, E
[
(F − E(F ))2p

]
≤ C2p

(∑
i

`i(F )2

)p
,

where C2p is independent of F , but grows too fast with
p to get a Gaussian concentration bound;

(3) Moments up to some p(γ).

Moment inequalities rely on Burkholder inequality:

E
[(
F − E(F )

)2p] ≤ (2p− 1)2pE

[(∑
i∈Z

∆2
i

)p]
.



A final remark on Markov chains

Dedecker-Gouëzel (2015)
For an irreducible aperiodic Markov chain with a general
state space S , the Gaussian concentration bound holds if,
and only if, the chain is geometrically ergodic.



Gibbs measures

Previously: Markov chains with state space S :
non-product measures on S Z.

Gibbs measures: non-product measures on S Zd where we
take S = {−1,+1} (spins) for definiteness.

Strategy: same as for Markov chains, that is, introduce a
“coupling matrix” (Di,j) indexed by d-dimensional integers.



Boltzmann-Gibbs kernel

γΛ(ω|η) =
exp

(
− βHΛ(ω|η)

)
ZΛ(η)

, Λ b Zd.

 Gibbs measures (DLR equation)

Parameter β ≥ 0: inverse temperature

One extreme case: β = 0  uniform product measure (for
which one has the Gaussian concentration bound).



Ising model (Markov random field)

HΛ(ω|η) = −
∑
i,j∈Λ
‖i−j‖1=1

ωi×ωj −
∑

i∈∂Λ, j /∈Λ
‖i−j‖1=1

ωi×(+1)

ηi = +1,∀i ∈ Zd (“+-boundary condition”)

Fact: there exists a unique Gibbs measure for all β < βc, whereas
there are several ones for all β > βc.



Concentration for the Ising model



Let F : S Zd → R and

`i(F ) = sup
ω∈S Zd

|F (ω(i))− F (ω)|, i ∈ Zd,

where ω(i) is obtained from ω by flipping the spin at i.

Gaussian concentration bound (β < β)

Let µ be the (unique) Gibbs measure of the Ising model.
There exists a constant D > 0 such that, for all functions F
with

∑
i∈Zd `i(F )2 < +∞, one has

Eµ
[

exp(F − Eµ(F ))
]
≤ exp

(
D
∑
i∈Zd

`i(F )2
)
.

Remark. As shown by C. Külske, the Gaussian
concentration bounds holds in the Dobrushin uniqueness
regime with D = 2(1− c(γ))−2, where c(γ) is Dobrushin’s
contraction coefficient.



Recall that the Gaussian concentration implies that for all
u ≥ u one has

µ
(
ω ∈ S Zd

: |F (ω)−Eµ(F )| ≥ u
)
≤ 2 exp

(
−u2

4D
∑

i∈Zd `i(F )2

)
.



At sufficiently low temperature, we can gather all moment bounds to
obtain the following. We denote by µ+ the Gibbs measure for the
+-phase of the Ising model.

Stretched-exponential concentration bound (β > β)

There exists % = %(β) ∈ (0, 1) and c% > 0 such that for all functions
F with

∑
i∈Zd `i(F )2 < +∞, for all u ≥ 0, one has

µ+
(
ω ∈ S Zd

: |F (ω)− Eµ+(F )| ≥ u
)
≤ 4 exp

(
− c% u%(∑

i∈Zd `i(F )2
) %

2

)
.



Applications

Other models besides the standard Ising model: Potts,
long-range Ising, etc.

Ergodic sums in arbitrarily shaped volumes;
Speed of convergence of the empirical measure;
Fluctuations in the Shannon-McMillan-Breiman
theorem;
First occurrence of a pattern of configuration in another
configuration;
Bounding d-distance by relative entropy;
Fattening patterns;
Almost-sure central limit theorem.



Application to the empirical measure

Take Λ b Zd and ω ∈ S Zd and let

EΛ(ω) =
1

|Λ|
∑
i∈Λ

δTiω

where (Tiω)j = ωj−i (shift operator).

Let µ be an ergodic measure on S Zd . If (Λn)n is a sequence
of cube ↑ Zd (more generally, a van Hove sequence), then

EΛn(ω)
n→∞−−−−→
weakly

µ.

Question: If µ is a Gibbs measure, what is the “speed” of
this convergence?



Kantorovich distance on the set of probability measures
on S Zd :

dK(µ1, µ2) = sup
G:S Zd→R
G 1−Lipshitz

(Eµ1(G)− Eµ2(G))

where |G(ω)−G(ω′)| ≤ d(ω, ω′) = 2−k, where k is the
sidelength of the largest cube in which ω and ω′ coincide.

Lemma. Let µ be a probability measure and

F (ω) = sup
G:S Zd→R
G 1−Lipshitz

(∑
i∈Λ

G(Tiω)− Eµ(G)

)
.

Then ∑
i∈Zd

`i(F )2 ≤ cd |Λ|

where cd > 0 depends only on d. Proof



Ising model at high & low temperature

Gaussian concentration for the empirical measure (β < β)

Let µ be the (unique) Gibbs measure of the Ising model.
There exists a constant C > 0 such that, for all Λ b Zd and
for all u ≥ 0, one has

µ
{
ω ∈ S Zd

:
∣∣∣dK(EΛ(ω), µ)− Eµ

[
dK(EΛ(·), µ)

]∣∣∣ ≥ u}
≤ 2 exp

(
− C |Λ|u2

)
.



We denote by µ+ the Gibbs measure for the +-phase of the
Ising model.

Stretched-exponential concentration for the empirical
measure (β > β)

There exist % = %(β) ∈ (0, 1) and a constant c% > 0 such
that, for all Λ b Zd and for all u ≥ 0, one has

µ+
{
ω ∈ S Zd

:
∣∣∣dK(EΛ(ω), µ+)− Eµ+

[
dK(EΛ(·), µ+)

]∣∣∣ ≥ u}
≤ 4 exp

(
−c%|Λ|

%
2u%
)
.



Can we estimate Eµ
[
dK(EΛ(·), µ)

]
?

Let
L = {G : S Zd → R : G 1-Lipschitz}

and
ZΛ
G :=

1

|Λ|
∑
i∈Λ

(G ◦ Ti − Eµ(G)) , Λ b Zd.

Then
Eµ
[
dK(EΛ(·), µ)

]
= Eµ

(
sup
G∈L
ZΛ
G

)
.

Notice that we have functions defined on a Cantor space,
which is really different from the case of, say, [0, 1]k ⊂ Rk.



Theorem

Let µ be a probability measure on S Zd satisfying the
Gaussian concentration bound. Then

Eµ [dK (EΛ(·), µ)] �

|Λ|
− 1

2
(1+log |S |)−1

if d = 1

exp

(
−1

2

(
log |Λ|
log |S |

)1/d
)

if d ≥ 2.

For (aΛ) and (bΛ) indexed by finite subsets of Zd we denote
aΛ � bΛ if, for every sequence (Λn) such that |Λn| → +∞ as
n→ +∞, we have lim supn

log aΛn
log bΛn

≤ 1.

It is possible to get bounds but they are ugly.
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Geometrically ergodic irreducible aperiodic Markov
chain

There exists a set C ⊂ S (“small set”), an integer m > 0, a
probability measure ν, and δ ∈ (0, 1), κ > 1, such that

For all x ∈ C one has Pm(x, ·) ≥ δν;
The return time τC to C is such that
supx∈C Ex(κτC ) <∞.

If S is countable then this is equivalent to the fact that the
return time to some (or equivalently any) point has an
exponential moment.

Dedecker-Gouëzel Theorem



DLR equation

µ is a Gibbs measure for the given potential if, for all
Λ b Zd and for all A ∈ B(S Zd

)

µ(A) =

∫
dµ(η)

∑
ω′∈Λ

γΛ(ω′|η)1A(ω′ΛηΛc)

Boltzmann-Gibbs kernel



Dobrushin contraction coefficient

Let

Ci, j(γ) = sup
ω,ω′∈S Zd

ω
Zd\j=ω′

Zd\j

‖γ{i}(·|ω)− γ{i}(·|ω′)‖∞.

Then in our context Ci,j only depends on i− j and we define

c(γ) =
∑
i∈Zd

C0,i(γ).

Dobrushin’s uniqueness regime: c(γ) < 1.

Gaussian concentration bound



van Hove sequence

A sequence (Λn)n of nonempty finite subsets of Zd is said to
tend to infinity in the sense of van Hove if, for each i ∈ Zd,
one has

lim
n→+∞

|Λn| = +∞ and lim
n→+∞

|(Λn + i)\Λn|
|Λn|

= 0.

Empirical measure



Proof of the Lemma

Let ω, ω′ ∈ S Zd and G : S Zd → R be a 1-Lipschitz
function. Without loss of generality, we can assume that
Eµ(G) = 0. We have∑

i∈Λ

G(Tiω) ≤
∑
i∈Λ

G(Tiω
′) +

∑
i∈Λ

d(Tiω, Tiω
′).

Taking the supremum over 1-Lipschitz functions thus gives

F (ω)− F (ω′) ≤
∑
i∈Λ

d(Tiω, Tiω
′).

We can interchange ω and ω′ in this inequality, whence

|F (ω)− F (ω′)| ≤
∑
i∈Λ

d(Tiω, Tiω
′).



Now we assume that there exists k ∈ Zd such that ωj = ω′j
for all j 6= k. This means that d(Tiω, Tiω

′) ≤ 2−‖k−i‖∞ for
all i ∈ Zd, whence

`k(F ) ≤
∑
i∈Λ

2−‖k−i‖∞ .

Therefore, using Young’s inequality,

∑
i∈Zd

`i(F )2 ≤
∑
k∈Zd

 ∑
i∈Zd

1Λ(i) 2−‖k−i‖∞

2

≤
∑
i∈Zd

1Λ(i)×

 ∑
k∈Zd

2−‖k‖∞

2

.

We thus obtain the desired estimate with
cd =

(∑
k∈Zd 2−‖k‖∞

)2
. �

Kantorovich distance


	Independent Random Variables
	Toy model
	Azuma, Hoeffding & McDiarmid
	Three applications

	Markov chains & Gibbs measures
	Appendix

