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Abstract

Master 2 in High Energy Physics

Diffraction in high-energy onium - nucleus scattering

and structure of partonic evolution

by Dung LE ANH

A fast-moving hadron, due to quantum fluctuations, is a set of many soft gluons. The wave function

of a small hadron can be obtained as the solution of an evolution equation, which is most conveniently

formulated in the so-called color dipole model. This model also enables us to describe the diffractive

onium-nucleus scattering in which there is a range of rapidity around the nucleus with no particles

observed. In this report, the diffraction in the high-energy onium - nucleus scattering will be presented

and related to the genealogy of the partonic evolution which appears as a dipole branching-diffusion

process. This relation will then be tested numerically. In addition, an analogy to the genealogy of the one

dimensional branching random walks will be mentioned. Further considerations and outlook will be also

discussed.
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Preface

The field of high energy QCD has been developing rapidly over the past few decades, generating vast

amount of interesting results in both theoretical and experimental aspects. At high energies, or small

values of the longitudinal momentum fraction x, it is possible to observe more quantum fluctuations of

incoming objects, hence the QCD dynamics in this regime becomes sophisticated.

In the evaluation of Feynman diagrams in the small-x regime, the coupling constant αs always comes with

”infrared” logarithm, namely ln(1/x). Perturbative series in αs ln(1/x) is necessary to be fully resummed,

which is performed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1–3] evolution equation. This linear

equation, however, seems to violate the unitarity at ultrahigh energy. Therefore, nonlinear correction

is required, which is taken into account, for example, in the Balitsky - Kovchegov (BK) equation [4, 5].

The derivations of these equations could be based on Mueller’s color dipole model [6–8], which is a very

elegant way to represent QCD in high energy limit.

The color dipole model could be then used to describe the diffractive onium-nucleus scattering for which

there is a region in rapidity around the nucleus with no particles seen. In fact, the onium-nucleus scattering

could be studied experimentally from the electron-nucleus scattering for the following reason: the photon,

which mediates the electron-nucleus interaction, can be resolved as a pair of quark and anti-quark (onium)

during the interaction in some boosted frames. Studies of diffraction at very high energy turn out to

be interesting for the theoretical understanding of QCD, and relevant for phenomenology at a future

electron-ion collider.

The layout of the report is as follows. Chapter 1 presents an overview of pertubative QCD and small-x

physics. The light-cone formalism, which will be employed throughout the report, is also introduced.

Chapter 2 gives a review of the color dipole model and discussions on the BK and BFKL evolution

equations in this framework. Chapter 3 is dedicated to present the main results of the report. In this

chapter, we will discuss the diffractive onium - nucleus scattering and its relation to ancestry in the

partonic evolution. Finally, a summary and further developments are given in the Conclusion.
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Chapter 1

An overview of perturbative QCD

and small-x physics

Quantum chromodynamics (QCD) is the quantum field theory of strong interaction. Due to the behavior

of (running) coupling αs, which is small at short distances and becomes larger at longer distances, the

study of QCD could be divided into perturbative and non-perturbative regimes. This chapter is dedicated

for reviewing perturbative QCD on the light-cone and some aspects of QCD at small Bjorken - x.

1.1 QCD as a non-abelian gauge theory
QCD is a gauge field theory whose gauge group is non-abelian SU(3) describing the strong interaction

sector of the Standard Model. It deals with quarks (anti-quarks) and gluons, which do not exist as free

but combine to form hadronic bound states. Quarks, denoted by qi(x), are spin- 1
2 Dirac fields of color i

(i = 1, 2, 3) in the fundamental representation 3 (triplet) of the color SU(3), while anti-quarks, q̄i(x), are

in the complex conjugate representation 3̄. On the other hand, gluons are described by the spin-1 field

Aaµ(x) of zero mass and color index a (a = 1, 8) in the adjoint representation (color octet) of the SU(3)

gauge group. The strong interactions among quarks and gluons are formulated in following Lagrangian

[9–11]:

LQCD =
∑

flavors

q̄i(iγ
µDµ −m)ijqj −

1

4
Gµνa Gaµν (1.1)

where the covariant derivative is defined as:

Dµ = ∂µ − igstaAaµ (1.2)

The strong coupling gs is the QCD analogy of the electromagnetic coupling e in QED, and ta are generators

of SU(3) in the fundamental representation encoding the color structure of gluons and interactions among

quark and gluon degrees of freedom. These color matrices are usually chosen to be the Gell-Mann matrices

λa, ta = λa

2 , and satisfy the following commutation relation:

[ta, tb] = ifabctc (1.3)

where fabc are the structure constants of SU(3). The antisymmetric non-abelian field tensor Gaµν in

eq.(1.1) is defined as:

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν (1.4)

2



Chapter 1. An overview of perturbative QCD and small-x physics 3

Unlike photons in QED, gluons themselves carry color charge, which leads to the self-interaction of gluons

encoded in the term (gsf
abcAbµA

c
ν) in the field tensor (1.4). The gluon self-interaction, when performing

the perturbative calculations, gives rise to the vacuum polarization diagrams with gluon loops, which

result in the different behavior of the running coupling with respect to the QED running coupling.

As QCD is a gauge theory, it has the gauge symmetry, which means that the Lagrangian (1.1) is invariant

under the following local SU(3) transformation:

q(x) → U(x)q(x), q̄(x)→ q̄(x)U−1(x)

Aµ(x) → U(x)Aµ(x)U−1(x)− i
gs

[∂µU(x)]U−1(x)
(1.5)

where Aµ = taAaµ and the transformation matrix U(x) is given by:

U(x) = exp (itaθa(x)) (1.6)

with θa(x) is an arbitrary set of real functions of space-time coordinates. Under this gauge transformation,

the covariant derivative and the field strength tensor are transformed as:

Dµ → U(x)DµU
−1(x), Gaµν → U(x)GaµνU

−1(x) (1.7)

One importance of the gauge symmetry is that physical observables are independent of the choice of gauge

in which the calculation is implemented. This fact allows us to choose the most convenient gauge for the

practical purpose. However, the gauge invariance introduces the gauge redundancy, i.e, the redundant

components in vector potential due to the gauge transformation. Such redundancy could be handled

using gauge fixing which will be mentioned in the upcoming section.

1.2 Light-cone perturbation theory
Despite the fact that covariant Feynman quantization (see, for e.g, [12, 13]) based on the instant

coordinates is widely used in constructing the field theory, it gives complexity when going beyond the

one-loop calculation. In 1949, Dirac [14] pointed out that the instant time t is not the only possible

evolution variable. In fact, one can define another evolution parameter which is called the light-cone

time x+ (as defined below) in which 7 out of 10 generators of the Poincaré group are kinematic. Various

elegant advantages of the light-cone parameterization which were shown in different works (see, for e.g,

[15–19]) make it attractive to be used to describe relativistic systems, especially high energy scattering.

For every four-vector uµ, the light-cone variables are defined as follows:

u± = u0 ± u3, u⊥ = (u1, u2) (1.8)

and uµ will be represented as (u+, u−, u⊥). In this light-cone notation, the scalar product becomes:

u · v =
1

2
u+v− +

1

2
u−v+ − u⊥v⊥ (1.9)

and, hence, non-zero components of the metric are:

g+− = g−+ =
1

2
, g11 = g22 = −1 (1.10)

We see that, for a particle moving with speed of light in (+z) direction, the light-cone coordinate x− = 0

and x+ increases along the particle’s trajectory. Therefore, x+ is usually interpreted as the light-cone time.

Consequently, the ”minus” momentum operator P−, which generates translations in x+, is understood as

the light-cone Hamiltonian.

The choice of the light-cone time variable x+ is equivalent to the foliation of space-time into space-like

hypersurfaces x+ = const. There are seven Poincaré generators leaving these hypersurfaces invariant
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including the momentum operators (P⊥, P
+). They are called kinematic operators. Since kinematic

operators which commute with the Hamiltonian can be used to characterize the quantum states of

particles, the states can be specified as |p+, x⊥, λ〉 in the light-cone framework, where λ denotes the

polarization. Consequently, it is possible to limit our investigation in the transverse plane. One can also

notices that the on-shell condition p2 = m2 results in:

p− =
m2 + p2

⊥
p+

(1.11)

which is simpler than the expression p0 =
√

p2 +m2 in the instant form, which in part makes calculations

in the standard Feynman perturbation theory become complicated.

With the light-cone formalism, one can construct the light-cone perturbation theory (LCPT). As mentioned

above, there is a gauge redundancy since QCD is a gauge theory. To deal with this fact, we will work in

the following gauge:

A+ = 0 (1.12)

This is called the light-cone gauge, which can be obtained from the light-cone gauge definition η ·A = 0

with ηµ = (0, 1, 0⊥) (null vector). We now decompose the quark fields q(x) into q(x) = q+(x) + q−(x)

with q±(x) = 1
2γ

0γ±q(x) and use the two-component form:

q = (ϕ χ)
T
, q+ = (ϕ 0)

T
, q− = (0 χ)

T

χ =
1

i∂+

(
σ̂i(i∂i + gsA

i) + im
)
ϕ

(1.13)

here we use the fact that q− is not an independent degree of freedom but can be expressed in term of

q+ (via the equation of motion). In this two-component form with the light-cone gauge, interaction

Hamiltonian density reads []:

Hint =gsϕ
†
[
−2

1

∂+
(∂⊥ ·A⊥) + (σ̂⊥ ·A⊥)

1

∂+
(σ̂⊥ · ∂⊥ +m) +

1

∂+
(σ̂⊥ · ∂⊥ −m)σ̂⊥ ·A⊥

]
ϕ

+ gsf
abc

[
∂iAjaA

i
bA

j
c + ∂iAia

1

∂+
(Ajb∂

+Ajc)

]
+
g2
s

4
fabcfadeAibA

j
cA

i
dA

j
e

+ g2
sϕ
†(σ̂⊥ ·A⊥)

1

i∂+
(σ̂⊥ ·A⊥)ϕ+ 2g2

s

1

∂+
(fabcAjb∂

+Ajc)
1

∂+
(ϕ†taϕ)

+ 2g2
s

1

∂+
(ϕ†taϕ)

1

∂+
(ϕ†taϕ) +

g2
s

2
fabcfade

1

∂+
(Ajb∂

+Ajc)
1

∂+
(Ajb∂

+Ajc)

(1.14)

where σ̂1 = σ2, σ̂2 = −σ1 (σi are Pauli matrices) and (1/∂+) is defined as:

1

∂+
f(x) =

1

4

∫
dy [θ(x− y)− θ(y − x)] f(y) (1.15)

In the Hamiltonian (1.14), the first three terms in the first two lines correspond to quark-gluon, three-gluon

and four-gluon vertices, respectively. The remaining terms describe new four-quanta interactions with

instantaneous quark and gluon propagators. The rules for the QCD LCPT are listed in the Appendix A.

We will now begin the discussion about some aspects of the small-x physics with the cornerstones of

pertubative QCD: the parton model of deep inelastic scattering (DIS) and the DGLAP evolution.

1.3 DGLAP evolution
One of the scattering processes of interest in the QCD is the deep inelastic electron-proton scattering

where the e− p interaction is mediated by a virtual photon as illustrated in Fig. 1.1.
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Figure 1.1: Diagrammatic illustration of the DIS.

Related variables are defined as:

q = k − k′, Q2 = −q2, x =
Q2

2P · q
, W 2 = (P + q)2 (1.16)

The Bjorken-x variable could be interpreted as the fraction of the proton’s light-cone momentum carried

by the parton struck by the photon, x = p+

P+ . Since 1
x ≈

W 2

Q2 with W 2 � Q2, small x values correspond

to high center-of-mass energies. The DIS cross section can be written as [13]:

dσep

dE′dΩ
=

α2
em

4E2 sin4 θ
2

[
W2(x,Q2) cos2 θ

2
+ 2W1(x,Q2) sin2 θ

2

]
(1.17)

where E and E′ are energies of incoming and outgoing electrons, respectively, and W1 and W2 are scalar

structure functions which have the dimension of inverse mass. It is more convenient to use dimensionless

structure functions F1 and F2 defined as:

F1(x,Q2) = mW1(x,Q2), F2(x,Q2) =
Q2

2mx
W2(x,Q2) (1.18)

In the naive parton model, we have the following relation [20]:

F2 = 2xF1 =
∑
f

e2
fxq

f (x) (1.19)

where qf (x) is the quark distribution function, which is the probability of finding a quark of type f (with

charge ef ) with momentum fraction x inside the proton. The Q-independent behavior of the functions F1

and F2 is known as Bjorken scaling [21] and characterizes for the DIS on a point-like particle.

The ep interaction is, however, more complicated than in the naive parton model due to QCD corrections.

One increases the virtuality Q2, the proton is probed with higher resolution. Consequently, the parton

distribution functions now depend on the momentum scale Q2.

Parton distribution functions are non-perturbative objects, but their variation in term of the virtuality

Q2 can be described perturbatively. The Q2 evolution of the parton distribution functions is formulated

in the so-called DGLAP equations [22–24]:

∂∆ff̄ (x,Q2)

∂ lnQ2
=
αs(Q

2)

2π

∫ 1

x

dz

z
Pqq(z)∆

ff̄ (
x

z
,Q2) (1.20)

∂

∂ lnQ2

(
Σ(x,Q2)

G(x,Q2)

)
=
αs(Q

2)

2π

∫ 1

x

dz

z

(
Pqq(z) Pqg(z)

Pgq(z) Pgg(z)

)(
Σ(x/z,Q2)

G(x/z,Q2)

)
(1.21)
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where ∆ff̄ (x,Q2) and Σ(x,Q2) are the flavor non-singlet distribution function and the flavor singlet

distribution function, respectively:

∆ff̄ (x,Q2) = qf (x,Q2)− qf̄ (x,Q2) (1.22)

Σ(x,Q2) =
∑
f

[
qf (x,Q2) + qf̄ (x,Q2)

]
(1.23)

and G(x,Q2) and qf (x,Q2) (qf̄ (x,Q2)) are, correspondingly, the gluon and quark (anti-quark) distribution

functions. Functions Pab(z), where a and b are q or g, are splitting functions defined as:

Pqq(z) = CF

[
1+z2

(1−z)+ + 3
2δ(1− z)

]
, Pgq(z) = CF

1+(1−z)2
z ,

Pqg(z) = Nf [z2 + (1− z)2],

Pgg(z) = 2Nc

[
z

(1−z)+ + 1−z
z + z(1− z)

]
+

11Nc−2Nf

6 δ(1− z)
(1.24)

where CF =
N2

c−1
2Nc

and the ”plus” prescription u+(z) is defined such that:∫ 1

0

dzu+(z)f(z) =

∫ 1

0

dzu(z)(f(z)− f(1)) (1.25)

The DGLAP equations Eq.(1.20) and Eq.(1.21) play a role as the renormalization group equations for the

parton distribution functions with the renormalization scale Q2. In fact, they are at leading-order (LO)

since the integral kernels are given at the lowest order in αs. The solution to the DGLAP equation is a

systematic resummation of all powers of (αs lnQ2).

Let us study the behavior of parton distribution functions at small x. In this regime, the relevant splitting

functions are Pgq(z) and Pgg(z) since they are singular at small z:

Pgq(z) ≈
2CF
z

, Pgg(z) ≈
2Nc
z

(1.26)

Consequently, the gluon distribution grows much faster than the quark distributions when x decreases.

Therefore, one can neglect the evolution of quark distributions and, also, the quark contribution to the

gluon distribution. Keeping the coupling constant αs fixed for simplicity, the evolution equation for the

gluon distribution is then:

∂

∂ lnQ2
G(x,Q2) =

αs
2π

∫ 1

x

dz

z

2Nc
z
G(
x

z
,Q2) (1.27)

Doing a change of variable z = x/ξ and integrating the equation with respect to lnQ2, one gets:

xG(x,Q2) = xG0(x,Q2
0) +

αsNc
π

∫ Q2

Q2
0

d lnQ′
2
∫ 1

x

dξ

ξ
ξG(ξ,Q′

2
) (1.28)

Taking the initial condition G0(ξ,Q2
0) = δ(ξ−1), which corresponds to one single gluon at Q2

0, and solving

the equation iteratively for xGn(x,Q2) in the series solution xG(x,Q2) = xG0(x,Q2
0) +

∑∞
n=1 xGn(x,Q2),

one obtains:

xGn(x,Q2) =

√
ᾱ

ln(Q2/Q2
0)

ln(1/x)

(
ᾱ ln 1

x ln Q2

Q2
0

)n− 1
2

(n− 1)! Γ(n+ 1)
(1.29)

Resumming all such terms with the resummation parameter
(
ᾱ ln 1

x ln Q2

Q2
0

)
, the solution of Eq.(1.28) for

x < 1 reads:

xG(x,Q2) =

√
ᾱ

ln(Q2/Q2
0)

ln(1/x)
I1

[
2

√
ᾱ ln

1

x
ln
Q2

Q2
0

]
(1.30)



Chapter 1. An overview of perturbative QCD and small-x physics 7

where ᾱ ≡ αsNc

π . This resummation is called the double logarithmic approximation (DLA). It predicts a

rise in xG(x,Q2) when x decreases, which results in a rising quark distribution. Both rises in the gluon

distribution and the quark distribution lead to an increase in the structure function F2(x,Q2) at small x,

which qualitatively agrees with the experimental data [25, 26].

1.4 BFKL evolution
The asymptotic behavior of the gluon distribution Eq. (1.30) is valid in the double logarithmic limit

of small x and large Q2. In case the longitudinal logarithm dominates the transverse logarithm, the

resummation parameter now has just one logarithm of x, ᾱ ln 1
x , and the DLA becomes the leading

logarithmic approximation (LLA). In this situation, one should study the 1
x evolution instead of the Q2

evolution. This 1
x evolution was first formulated by Balitsky, Fadin, Kuraev and Lipatov (BFKL) [1–3].

Since the integration in Q2 is now kept untouched, one can define the so-called unintegrated gluon

distribution f(x, k2) as:

xG(x,Q2) =

∫ Q2

Q2
0

d(ln k2)f(x, k2) (1.31)

The BFKL evolution equation for the unintegrated gluon distribution function, which is valid for sufficiently

large transverse momenta, is then:

∂f(x, k2
⊥)

∂ ln(1/x)
=
ᾱ

π

∫
d2l⊥

(k⊥ − l⊥)2

[
f(x, l2⊥)− k2

⊥
2l2⊥

f(x, k2
⊥)

]
(1.32)

The eigenfunctions of the BFKL integral kernel are power functions of the form fγ(x, l2⊥) = (l2⊥/Λ
2)−γ

with eigenvalues ᾱχ(γ), where Λ is some momentum scale and:

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ) (1.33)

with ψ(γ) = Γ′(γ)/Γ(γ). The solution is then the linear combination of eigenfunctions:

f(x, k2
⊥) =

∫
dγ

2iπ
c(γ)eᾱχ(γ) ln(1/x)

(
k2
⊥

Λ2

)−γ
(1.34)

where the coefficient function c(γ) is determined from the initial condition. Approximating the integral

Eq.(1.34) at the saddle point value with γsaddle = 1/2 and χ(γsaddle) = 4 ln 2, the leading small-x behavior

of the solution is then:

f(x, k2
⊥) ∼

√
Λ2

k2
⊥

(
1

x

)αP−1

(1.35)

where αP − 1 = 4ᾱ ln 2. One can see that the growth of the gluon distribution function given by the

BFKL evolution is much faster than that given by the DGLAP evolution (Eq.(1.30)).

Figure 1.2: Gluon cascade in the proton wave function
(A) The BFKL cascade (linear evolution)

(B) The recombination effect (non-linear evolution)
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The BFKL equation introduces an important step towards understanding asymptotically small-x regime

of QCD. However, it raises some problems one of which we are going to address. As x decreases to

very small values, the hadron - hadron cross section will eventually become so large that the unitarity

bound is violated. Indeed, the parton density grows as x decreases, which leads to the overlapping of the

partons’ wave functions at some point. Hence, for such a dense system, one need to take into account

the gluon recombination (Fig. 1.2), which should slow down and, then, saturate the rise of the gluon

density. One attempt to solve the BFKL unitarity problem is of Gribov - Levin - Ryskin (GLR) [27] and

Mueller - Qiu (MQ) [28] by introducing by hand the nonlinear term to the BKFL equation, which results

in the GLR-MQ evolution equation. A systematic way of unitarizing the BFKL evolution is the Balisky -

Kovchegov (BK) approach [4, 5] with the nonlinear BK evolution equation of following form:

∂Y T (k, Y ) = ᾱ

∫
dl2

l2

[
l2T (l, Y )− k2T (k, Y )

|k2 − l2|
+
k2T (k, Y )√

4l4 + k4

]
− ᾱT 2(k, Y ) (1.36)

where T is the dipole-nucleus scattering amplitude and l and k are transverse momenta. The discussion of

the DGLAP and the BFKL evolutions couuld be summarized in Fig. 1.3, which illustrates the evolution

of the parton distributions in different variables. The perturbative QCD regime is divided into two regions

by the saturation scale: the linear evolution (DGLAP and BFKL) region and the saturation domain

where the nonlinear correction is required. We will return to the BFKL and, also, the BK evolutions in

the next chapter in the dipole formalism.

Figure 1.3: Different evolutions of the parton distributions.
(The dash curve shows the saturation scale Qs(x))



Chapter 2

Color Dipole Formulation

The modification of the hadronic wave function under the small-x evolution in the LLA requires to

resum soft gluon emissions and virtual gluon corrections that bring powers of αs ln 1
x . This is a rather

complicated job (see [29]). An elegant simplification is realized when taking advantage of the large-Nc

limit in which gluons are replaced by color dipoles. The BFKL evolution is then the dipole evolution via

the dipole branching and, hence, its derivation is relatively straightforward.

The aim of this chapter is to review the QCD evolution of onia at small-x in the dipole formalism

developed by A. H. Mueller and collaborators [6–8, 30]. The evolution is generated by a kernel obtained

from the construction of the light-cone wave function of onia in the large-Nc limit, where the gluons could

be treated as color dipoles, which evolve independently of one another during the evolution.

2.1 Dipole formulation

2.1.1 Large Nc limit

The large Nc limit , which was introduced by ’t Hooft [31], is the idea to take the limit Nc →∞ while

keeping αsNc fixed, so that the small parameter in the problem becomes 1
Nc

. Recall the Fierz identity

for SU(Nc):

taijt
a
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
(2.1)

Figure 2.1: Graphical representation of the Fierz identity

where ta (a = 1, 2, · · · , N2
c − 1) are generators of SU(Nc) in the fundamental representation. The second

term is suppressed in the large Nc limit and, hence, one can consider gluons as color dipoles (quark -

anti-quark pairs). The effect of this consideration on the QCD vertices is shown in Fig. 2.2.

In the large-Nc limit, there is a significant simplification in the set of diagrams which contribute at

leading 1
Nc

: only planar diagrams left. Let us consider, for example, diagrams in Fig. 2.3. Diagram (A)

is the onium with an extra gluon (dipole): there are two color loops with two couplings and a factor of

9
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Figure 2.2: QCD vertices in dipole formalism

1/Nc for average over colors, so that the overall factor is (αsNc); (B) has three color loops and fours

coupling, which gives a factor of (αsNc)
2. On the other hand, diagram (C) has only one color loop and

still four couplings, which results in the contribution of order (αsNc)
2/N2

c . Therefore, this diagram will be

suppressed compared to (A) and (B). The difference here is that, diagrams (A) and (B) are planar while

(C) is not. Diagram (D) looks planar, but is also suppressed by 1
N2

c
as diagram (C), so it is effectively not.

In summary, only planar diagrams give leading 1/Nc contribution.

(a)

2.6 Large N

c

limit 23

(f)

(a)

(b)

(c)

(d)

(e)

Figure 2.6: Various example graphs in the large-N

c

limit (those on the right represent the colour


ow).

(b)

2.6 Large N

c

limit 23

(f)

(a)

(b)

(c)

(d)

(e)

Figure 2.6: Various example graphs in the large-N

c

limit (those on the right represent the colour


ow).

(c)

2.6 Large N

c

limit 23

(f)

(a)

(b)

(c)

(d)

(e)

Figure 2.6: Various example graphs in the large-N

c

limit (those on the right represent the colour


ow).

(d)

Figure 2.3: Some example diagrams in the large Nc limit

2.1.2 The onium wave function

We are going to construct the onium light-cone wave function. Let us consider first the onium without

soft gluons. The light-cone wave function is ψ
(0)
αβ (k1⊥, z1) where α and β are quark and anti-quark spinor

indices and z1 = k1+/p+, p and k1 are the momenta of the onium and the quark, respectively. In

transverse coordinate space, the wave function is given by:

ψ
(0)
αβ (x01, z1) =

∫
d2k1⊥

(2π)2
eik1⊥·x01ψ

(0)
αβ (k1⊥, z1) (2.2)

where x0 and x1 are correspondingly transverse positions of the antiquark and the quark, and x01 = x1−x0.

The normalization is taken to be:

Figure 2.4: Onium wave function with no soft gluons [32]

∫
d2k1⊥

(2π)2

∫ 1

0

dz1Φ(0)(k1⊥, z1) =

∫
d2x01

∫ 1

0

dz1Φ(0)(x01, z1) = 1 (2.3)
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where:

Φ(0)(k1⊥, z1) =
∑
αβ

|ψ(0)
αβ (k1⊥, z1)|2

Φ(0)(x01, z1) =
∑
αβ

|ψ(0)
αβ (x01, z1)|2

(2.4)

One now suppose that the onium emits a gluon at transverse position x2 with momentum k2. This

emission could come from the quark or the anti-quark giving two contributions as shown in Fig. 2.5.

Since we are interested in the high energy asymptotics, the momentum fraction of the gluon, z2 = k2+/p+,

is taken to be much smaller than z1 and 1− z1, or the emitted gluon is soft.

(a) (b)

Figure 2.5: Onium wave function with one soft gluon [32]. The dashed line represents the point where
the LCPT energy denominator is evaluated.

Using the LCPT rules, the onium wave function with one soft gluon in the light-cone gauge reads (see

Appendix B):

ψ
(1)a
αβ (k1⊥, k2⊥; z1, z2) = 2gst

a
[
ψ

(0)
αβ (k1⊥, z1)− ψ(0)

αβ (k1⊥ + k2⊥, z2)
] k2⊥ · ελ2⊥

k2
2⊥

(2.5)

where the first term comes from the emission from the anti-quark (Fig. 2.5A) and the second term is

from the quark (Fig. 2.5B), and ελ2 is the polarization vector of the soft gluon with helicity λ. Although

the form of the wave function in momentum space is relatively straightforward for one gluon emission, it

is much more complicated when additional gluons present. For that reason, we employ the transverse

coordinate representation of the wave function, which is obtained from the following Fourier transform:

ψ
(1)a
αβ (x01, x02; z1, z2) =

∫
d2k1⊥d

2k2⊥

(2π)4
eik1⊥·x01+ik2⊥·x02ψ

(1)a
αβ (k1⊥, k2⊥; z1, z2) (2.6)

where x2 is the transverse position of the soft gluon, and xij = xj−xi. Substituting Eq.(2.5) into Eq.(2.6),

one finds:

ψ
(1)a
αβ (x01, x02; z1, z2) =

igst
a

π
ψ

(0)
αβ (x01, z1)

(
x02

x2
02

− x12

x2
12

)
· ελ2⊥ (2.7)

The square of the wave function takes the form:

Φ(1)(x01, z1) =
1

2π

∫
d2x2

∫ z1

z0

dz2

2z2

∑
aλαβ

|ψ(1)a
αβ (x01, x02; z1, z2)|2 (2.8)

where we have put a lower cut-off z0 on the z2 - integral. Using the explicit form of ψ
(1)a
αβ (x01, x02; z1, z2)

in Eq.(2.7), we gets:

Φ(1)(x01, z1) =

∫
d2x2

∫ z1

z0

dz2

z2

αsNc
2π2

x2
01

x2
02x

2
12

Φ(0)(x01, z1) (2.9)

where CF is replaced by Nc/2 in the large-Nc limit. We see that in this form, the soft gluon emission

factorizes from the onium wave function with no soft gluon.
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Figure 2.6: Color structure of the onium wave function with one soft gluon

The integral kernel in Eq.(2.9) could be decomposed as:

αsNc
2π2

x2
01

x2
02x

2
12

=
αsNc
2π2

(
1

x2
12

+
1

x2
02

− 2x02 · x12

x2
02x

2
12

)
(2.10)

The first two terms correspond to two upper diagrams in Fig. 2.6, while the third term is the interference

term coming from two remaining lower diagrams. When adding another soft gluon into the onium wave

function, there appears two types of diagrams: planar and non-planar. Since the non-planar diagrams

(see Fig. 2.3C) are neglected in the large-Nc limit, we are left with the planar ones (see Fig. 2.3B). In

fact, the non-planar diagrams are due to the coherent emission from the qq̄ pair. Therefore, the neglection

of those means once the original dipole has emitted one soft gluon, it effectively emits no more gluons.

Consequently, in the large-Nc limit, the emission of one soft gluon at xk off a dipole xij after rapidity dy

is equivalent to the splitting of the original color dipole into two subsequent color dipoles xik and xjk

with the probability:

dP (xij → xik, xjk) = ᾱdY
d2xk
2π

x2
ij

x2
ikx

2
jk

(2.11)

where the rapidity Y = ln 1
z (at high energy) and ᾱ ≡ αsNc

π . The splitting will be iterated to the end of

the evolution and, hence, the evolution in rapidity is essentially the sequence of independent decays of

dipoles into pairs dipoles creating dipole cascade.

2.2 BFKL evolution in the dipole formalism
As realized in the end of the previous section, the dipole branching is a stochastic process. It means that

the number of dipoles of a certain size at rapidity Y fluctuates event by event. Let us define n(r⊥, Y |x01)

as the mean number of dipoles (averaged over events) of size larger than r⊥ at rapidity Y from the original

dipole x01. At the rapidity Y + dY , the mean number n(r⊥, Y + dY |x01) has two contributions (Fig.

2.7). In case the original dipole x01 splits into two dipoles x02 and x12 after rapidity dY , the contribution

comes from the mean numbers of dipoles n(r⊥, Y |x02) and n(r⊥, Y |x12) of two daughter. On the other

hand, if the original dipole is retained after dY then n(r⊥, Y |x01) will contribute. As a result, one has:

n(r⊥, Y + dY |x01) =

∫
dP (x01 →x02, x12) [n(r⊥, Y |x02) + n(r⊥, Y |x12)]

+

(
1−

∫
dP (x01 → x02, x12)

)
n(r⊥, Y |x01)

(2.12)

After being rearranged, the equation above becomes:

∂Y n(r⊥, Y |x01) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[n(r⊥, Y |x02) + n(r⊥, Y |x12)− n(r⊥, Y |x01)] (2.13)
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Figure 2.7: Graphical illustration of the BFKL equation

This is the BFKL evolution equation in the transverse coordinate space in the dipole formalism (see [13]).

The action of the BFKL kernel K on a function n of the transverse vector x01 is defined as:

K ⊗ n(x01) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[n(x02) + n(x12)− n(x01)] (2.14)

Eigenfunctions of the BFKL kernel are power functions of the form:

nγ(r⊥, Y |x01) =

(
x2

01

r2
⊥

)γ
(2.15)

with eigenvalues ᾱχ(γ), where χ(γ) is given in Eq.(1.33) since the kernels are just the Fourier transform

of each other. The general solution is then the linear combination of the eigenfunctions Eq.(2.15), which

reads:

n(r⊥, Y |x01) =

∫
dγ

2πi
f(γ)eᾱY χ(γ)

(
x2

01

r2
⊥

)γ
(2.16)

Taking the initial condition so that coefficient function f(γ) = 1
γ , then:

n(r⊥, Y |x01) =

∫
dγ

2πiγ
exp

(
ᾱY χ(γ) + γ ln

x2
01

r2
⊥

)
(2.17)

For Y large, the saddle-point is at γs ' 1
2 . The mean number of dipoles in the saddle-point approximation

is then

n(r⊥, Y |x01) ' exp

(
ᾱY χ(

1

2
) +

1

2
ln
x2

01

r2
⊥

)
' x01

r⊥
eᾱY 4 ln 2 (2.18)

This is nothing but the result we obtained in the previous chapter (Eq.(1.35)).

2.3 Balisky - Kovchegov equation
We now consider the scattering of an onium x01 off a nucleus A at some fixed impact parameter. The

onium is supposed to be boosted to rapidity Y while the nucleus is at rest, so that all evolution is now in

the onium. Let us define S(x01, Y ) as the S-matrix element of the scattering.

Figure 2.8: Onium - nucleus scattering
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S(x01, Y ) could be interpreted as the probability amplitude that there is no interaction between the original

dipole x01 and the target at rapidity Y . In one step dY of the evolution, either the original dipole splits

into two dipoles x02 and x12 and the S-matrix would be given by S(x01, Y + dY ) = S(x02, Y )S(x12, Y ),

or it does not split so that S(x01, Y + dY ) = S(x01, Y ). Summing up those two contributions weighted

by their respective probabilities, one gets:

S(x01, Y + dY ) =

∫
dP (x01 → x02, x12)S(x02, Y )S(x12, Y )

+

(
1−

∫
dP (x01 → x02, x12)

)
S(x01, Y )

(2.19)

Using the explicit form of dP (x01 → x02, x12) in Eq.(2.11), we obtain:

∂Y S(x01, Y ) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[S(x02, Y )S(x12, Y )− S(x01, Y )] (2.20)

Instead of S(x01, Y ), we define the forward onium-nucleus scattering amplitude N(x01, Y ) as N(x01, Y ) =

1− S(x01, Y ). The evolution equation for N(x01, Y ) is then:

∂YN(x01, Y ) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[N(x02, Y ) +N(x12, Y )−N(x01, Y )−N(x02, Y )N(x12, Y )] (2.21)

This is the Balisky - Kovchegov (BK) evolution equation [4, 5]. The initial condition for the BK evolution

is taken to be the McLerran - Venugopalan (MV) amplitude []

NMV (x01, Y = 0) = 1− exp

{
−x

2
01Q

2
MV

4
ln

(
e+

4

x2
01Λ2

QCD

)}
(2.22)

where ΛQCD is the QCD scale and QMV is the momentum scale characterized for the nucleus. The BK

equation is similar to a diffusion equation with a growth and a saturation term. The linear part of the

BK equation is nothing but the BFKL equation, which gives an exponential rise of N with the rapidity

due to the dipole branching. When the amplitude approach the fixed point, N ∼ 1, the nonlinear term

becomes important which would cause the evolution to be slowed down and, then saturated. Thus, this

term behaves as a unitarity - preserving term, which ensures that N ≤ 1 during the evolution.

For asymptotically large Y , due to the unitarity-preserving effect, the solution to the BK equation

converges to a traveling wave, which is a smooth function of the dipole size x01 connecting 0 and 1 at

fixed Y , and the evolution in Y is just a translation in x01 [33]. The transition to the saturation region

occurs at some scale Rs(Y ) = 2/Qs(Y ), where Qs(Y ) is the saturation momentum, defined, for example,

by:

N(x01 = Rs(Y ), Y ) =
1

2
(2.23)

For N around the transition region, N � 1, the solution can be obtained by solving the branching-diffusion

equation with a moving boundary [33, 34], which reads:

N(x01, Y ) = cN ln
1

x2
01Q

2
s(Y )

[
x2

01Q
2
s(Y )

]γ0
exp

{
− ln2[x2

01Q
2
s(Y )]

2ᾱY χ′′(γ0)

}
(2.24)

where cN is a constant and γ0 solves the equation χ(γ0)/γ0 = χ′(γ0). The asymptotic form of the

saturation momentum at large Y reads:

Q2
s(Y ) = Q2

MV

eᾱY χ
′(γ0)

(ᾱY )3/2γ0
(2.25)

An important feature of Eq.(2.24) is that N ∼ eγ0x, with x = ln
[
x2

01Q
2
s(Y )

]
. This shape does not

depend on the details of the initial condition, provided that the initial condition is steep enough, namely
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N(Y = 0) ∼ eβx with β > γ0. Eq.(2.24) valid in the so-called scaling region which is defined as the region

in which N effectively becomes a function of the single scaling variable x2
01Q

2
s(Y ) only. In the scaling

region, x01 obeys the following inequality:

1 < |ln[x2
01Q

2
s(Y )]|≤

√
ᾱY χ′′(γ0) (2.26)

Fig. 2.9 shows a numerical solution to the BK equation with fixed coupling for several values of the

rapidity Y. One can see from this figure that the nonlinear evolution pushes the dipole amplitude N

towards lower values of x01 as Y increases.

Figure 2.9: Solution of the BK equation at fixed coupling



Chapter 3

Diffractive dissociation in onium -

nucleus scattering

This chapter is deserved for presenting the main results of the internship. Here we will present an analogy

between the diffractive virtual photon (onium) - nucleus scattering and the ancestry problem in the dipole

evolution. A reference to the one - dimensional branching random walk process will be also mentioned.

3.1 Diffractive dissociation in DIS

3.1.1 Picture of diffractive dissociation

In the γ∗A scattering, the interaction is classified by the characteristics of the final states. In elastic

events, the particles in the final state are the same as the ones in the initial state, and only their momenta

are redistributed. Diffractive scattering is referred to a process in which the virtual photon interacts with

the target producing a number of hadrons in the final state while the target is kept intact and generating

a rapidity gap, which is defined as a region in rapidity around the nucleus with no particle observed. This

corresponds to, at high energy, an angular gap in detectors of colliding experiments.

Figure 3.1: Graphical illustration of the diffractive scattering

The diffractive scattering is illustrated in Fig. 3.1. We denote the virtuality of the photon by Q, and

the center of mass energy (the total mass of the final state at rapidity Y ) of the γ∗A scattering by

W . The produced hadronic system, which is denoted by X with total invariant mass MX , leaves a

rapidity gap y0 between the target and the slowest produced hadron. It fills in the rapidity range

ỹ0 = ln[
(
M2
X +Q2

)
/Q2], while the net rapidity interval is Y = ln[(W 2 +Q2)/Q2]. Therefore, the rapidity

16
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gap is given by y0 = Y − ỹ0.

The diffraction in DIS could be classified as low-mass and high-mass diffraction based on the value of MX .

When the net invariant mass of the produced hadrons is small, MX � Q (low-mass), the rapidity gap

covers much of the total rapidity, y0 ≈ Y . On the other hand, when MX � Q (high-mass), the rapidity

gap may be still large but the filled rapidity range is large as well.

In high energy scattering, it is possible to choose a reference frame in which the virtual photon is fast

enough to almost always convert to a pair of quark-anti-quark (onium) whose size is unchanged during

the scattering. Therefore, the virtual photon - nucleus interaction is corresponding to the onium - nucleus

interaction. Consequently, one can use the QCD dipole evolution scenario to examine the DIS diffractive

events.

3.1.2 Quantitative evaluation of the diffractive cross section

We are now moving on to the quantitative predictions of the diffraction from the interpretation of

the BK equation. In the rest frame of the nucleus, the onium carries the full rapidity Y and, hence,

does not interact with the nucleus as a bare qq̄ dipole state, but as a highly evolved quantum state

represented by a set of dipoles. The evolution of the onium is stochastic, namely its quantum state differs

from one event to another event. The scattering amplitude N(x01, Y ) is then related to the probability

P (x01, ỹ = Y |R = 1/QMV ) to have at least one dipole in the onium Fock state at rapidity Y whose size

is larger than 1/QMV . The probability P (x01, ỹ|R) solves the BK equation:

∂ỹP (x01, ỹ|R) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[P (x02, ỹ|R) + P (x12, ỹ|R)− P (x01, ỹ|R)− P (x02, ỹ|R)P (x12, ỹ|R)]

(3.1)

with the initial condition to be the Heaviside distribution:

P (x01, ỹ = 0|R) = θ

(
ln
x2

01

R

)
(3.2)

This initial condition is different from the initial condition for the amplitude N , which is taken to be

the MV amplitude. However, in the large-rapidity asymptotics, solutions of P and N fall into the same

universality class, which enables following identification:

P (x01, Y |1/QMV ) ' N(x01, Y ) (3.3)

We now return to the diffraction problem. The onium size x01 is supposed to be small compared to

1/Qs(Y ), namely the onium is far from the saturation region of nucleus. In this regime, the elastic cross

section, which is of first order in N , will dominate the total cross section. Let us put the rapidity ỹ0 � 1

on onium (highly-evolved onium state), while the rapidity of the nucleus is y0 = Y − ỹ0, with Y to be the

total rapidity. The condition for the whole partonic system to scatter elastically with the nucleus with

a significant probability is that there is at least one dipole in the onium Fock state at the rapidity ỹ0

crossing the nuclear saturation boundary and, hence, absorbed by the target. This is equivalent to the

existence of at least one exceptionally large dipole of size greater than the saturation scale 1/Qs(y0) in the

highly-evolved quantum state of the onium. This results in a diffractive event with a rapidity gap of size

y0. Therefore, it is allowed to identify the rapidity gap distribution to the probability P (x01, ỹ0|1/Qs(y0)):

dσdiff

dy0
= P (x01, ỹ0|1/Qs(y0)) (3.4)

The exceptionally large dipoles which are necessary for a diffractive event are generated by two types

of fluctuations in the onium evolution [36, 37]. In the early stage of the evolution, there are only a few

dipoles and, thus, the state is subject to fluctuations which strongly determine the largest size of dipoles,
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Figure 3.2: Schematic picture of a diffractive event with rapidity gap of size y0. The vertical downward
axis is the rapidity of the onium, while the upward one is of the nucleus. The saturation line of the
nucleus is shown by the red continuous line together with the position of the tip of the front in a
particular event (curly continuous line). The combination of the front fluctuation and the tip fluctuation

produces unusually large dipoles comparing to the mean position of the tip (dashed line) [35]

which is called position of the tip of the front, at later rapidities. This type of fluctuations is referred as

the front fluctuations. Fluctuations may also be exhibited at the tip of the front, which is then called tip

fluctuations. Those fluctuations together create a few exceptionally large dipoles around rapidity y0.

As discussed above, P (x01, ỹ0|1/Qs(y0)) solves the BK equation. Therefore, for large rapidity, the

diffractive cross section in the scaling region reads:

dσdiff

dy0
= cdiff

[
x2

01Q̃
2
s(ỹ0)

]γ0
ln

1

x2
01Q̃

2
s(ỹ0)

exp

− ln2
[
x2

01Q̃
2
s(ỹ0)

]
2ᾱỹ0χ

′′(γ0)

 (3.5)

where cdiff is an unknown constant and the momentum Q̃s is defined as:

Q̃2
s(ỹ0) = Q2

s(y0)
eᾱỹ0χ

′
(γ0)

(ᾱỹ0)3/2γ0
(3.6)

We now assume that:

ln
[
x2

01Q
2
s(Y )

]
� ln

[
ᾱY

ᾱy0ᾱ(Y − y0)

]
(3.7)

which means the rapidity gap y0 is not close to 0 and Y. From this condition, one has:

ln
[
x2

01Q̃
2
s(ỹ0)

]
= ln

[
x2

01Q
2
s(Y )

(
ᾱY

ᾱy0ᾱ(Y − y0)

)3/2γ0
]
' ln

[
x2

01Q
2
s(Y )

]
(3.8)

The equation Eq. (3.5) then can be rewritten as:

dσdiff

dy0
= cdiff

[
ᾱY

ᾱy0ᾱ(Y − y0)

]3/2

exp

{
−

ln2
[
x2

01Q
2
s(Y )

]
2ᾱỹ0χ

′′(γ0)

}
×
[
x2

01Q
2
s(Y )

]γ0
ln

1

x2
01Q

2
s(Y )

(3.9)
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Going deep into the scaling region, one can neglect the exponential suppression. The y0-independent term

in Eq.(3.9) is then the total cross section up to a constant ctot, hence,

1

σtot

dσdiff

dy0
=
cdiff

ctot

[
ᾱY

ᾱy0ᾱ(Y − y0)

]3/2

(3.10)

This is the result obtained in [35, 38]. The overall constant is unknown in the theory.

We are now going to formulate the ancestry problem of the parton evolution and explain how it is related

to the diffraction problem in the high-energy onium - nucleus scattering.

3.2 Ancestry problem and its analogy to the diffraction

3.2.1 Ancestry problem in partonic evolution

As discussed in the previous chapter, since the initial dipole size is chosen in such a way that the mean

position of the tip of the front is far enough from the saturation boundary of the nucleus, diffractive

events are then due to rare fluctuations to a few unusually large dipoles in the evolution. Those boundary

dipoles come from a most recent common ancestor at rapidity ỹ0 (of the onium). In other words, at the

rapidity ỹ0 of the onium, the rare fluctuations occur and generate a dipole with unusually large size,

and some of its offsprings cross the boundary of the nucleus at the end of the evolution(see Fig. 3.3),

which creates a diffractive event. Therefore, the distribution of the rapidity gap y0 in diffractive events is

equivalent to the rapidity distribution of the most recent common ancestor of few largest dipoles at the

end of the evolution.

Figure 3.3: Schematic illustration of the ancestry problem. The dot lines represent the dipole evolution
in rapidity. There are three (rightmost) dipoles in this realization illustrated to cross the saturation
boundary of the nucleus at the end of the dipole evolution. Their most recent common ancestor is at the
rapidity Y − y0 (red dot) and splits to large fluctuations. The curly continuous line shows the saturation

scale of the nucleus.

Let us define G(x01, Y, y0) to be the probability distribution of the rapidity y0 at which the most recent

common ancestor of all dipoles of size larger than 1/Qs(y0) split, and U(x01, Y ) to be the probability that

there is no dipole in the state of the onium evolved to the rapidity Y whose size is larger than 1/Qs(y0).



Chapter 3. Diffractive dissociation in onium - nucleus scattering 20

The probability U(x01, Y ) then solves the ordinary BK equation:

∂Y U(x01, Y ) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[ U(x02, Y )U(x12, Y )− U(x01, Y )] (3.11)

The initial condition for U is the Heaviside distribution function:

U(x01, Y = 0) = θ
(
lnx2

01Q
2
MV

)
(3.12)

We are now at the position to establish the evolution equation for G(x01, Y, y0). In a rapidity step dY

of the evolution, the parent dipole may emit a real gluon, namely split into two dipoles; then the most

recent common ancestor of the unusual large dipoles will be from one of two daughter dipoles, while the

remainder contains no dipole whose size is larger the than the inverse of the saturation scale of the nucleus.

On the other hand, the initial dipole is unchanged (no real gluon emission) and, certainly, contains the

most recent common ancestor. Consequently, G(x01, Y, y0) obeys the following equation:

G(x01, Y + dY, y0) = ᾱdY

∫
d2x2

2π

x2
01

x2
02x

2
12

[G(x02, Y, y0)U(x12, Y ) + G(x02, Y, y0)U(x12, Y )]

+

(
1− ᾱdY

∫
d2x2

2π

x2
01

x2
02x

2
12

)
G(x01, Y, y0)

(3.13)

After being rearranged, the evolution equation for the distribution G(x01, Y, y0) becomes:

∂Y G(x01, Y, y0) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[G(x02, Y, y0)U(x12, Y ) + G(x02, Y, y0)U(x12, Y )− G(x01, Y, y0)]

(3.14)

The initial condition for G is taken to be:

G(x01, Y = y0, y0) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

(1− U(x02, y0)) (1− U(x12, y0)) (3.15)

which comes from the fact that the unusually large dipoles are from the most recent common ancestor at

the rapidity ỹ0.

A similar problem for one-dimensional branching random walks (BRW) has been discussed recently by

B. Derrida and P. Mottishaw [39] in the framework of Generalized Random Energy Model (GREM).

Suppose there is a branching random walk process in x direction and in time t starting with a single

particle at t = 0 which obeys the branching-diffusion equation ∂tn(x, t) = χ(∂x) ·n(x, t). The second-order

differential kernel χ has eigenfunctions of the form eγx and corresponding eigenvalues χ(γ). After a large

time t, let us pick exactly two leftmost particles and look for their most recent common ancestor splitting

time t− t0. Derrida and Mottishaw showed that the distribution of t0 obeys the law:

P (t0) =
1

γ0

1√
2πχ′′(γ0)

[
t

t0(t− t0)

]3/2

(3.16)

where γ0 solves χ
′
(γ0) = χ(γ0)/γ0. This distribution is similar to Eq.(3.10) up to a constant and some

identifications. This implies there could be an underlying relation between two problems, and once this

relation is addressed, the overall constant in Eq.(3.10) could be determined theoretically.

In the following, we will relate the equation for the ancestry problem Eq.(3.14) to the so-called Kovchegov

- Levin equation describing high-mass diffraction.

3.2.2 Kovchegov - Levin equation and ancestry problem

Good and Walker [40] provided an elegant picture to describe the diffractive dissociation, in which

diffraction is proportional to the dispersion in cross sections for the diagonal channels of the scattering.

Employing the Good and Walker picture, A. H. Mueller and S. Munier [35] obtained the following equation
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for the high-mass diffractive cross section σdiff at fixed impact parameter:

σdiff =

〈∏
k

[S(rk, y0)]
2

〉
x01,ỹ0=Y−y0

−

〈∏
k

S(rk, y0)

〉2

x01,ỹ0=Y−y0

(3.17)

where S(r, y) solves the BK equation for the S-matrix element corresponding to the forward scattering of

a dipole of size r at rapidity y off the nucleus, and the notation 〈· · ·〉x01,ỹ
is denoted for the average over

all realizations of the Fock state of the onium of initial size x01 at the rapidity ỹ (namely, over all events).

The products in Eq.(3.17) are taken over all dipoles in the onium wave function. We realize that the

second term in Eq.(3.17) is independent of y0 as a consequence of the Lorentz boost invariant. Hence, the

distribution of the rapidity gap is given by:

dσdiff

dy0
= − ∂

∂y0
S2(x01, Y − y0) (3.18)

where we have introduced the notation:

S2(x01, ỹ) ≡

〈∏
k

[S(rk, y0)]
2

〉
x01,ỹ

(3.19)

The evolution of S2 is governed by the BK equation of the form:

∂ỹS2(x01, ỹ) = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[S2(x02, ỹ)S2(x12, ỹ)− S2(x01, ỹ)] (3.20)

with the initial condition:

S2(x01, ỹ = 0) = [S(x01, y0)]
2

(3.21)

The S-matrix element S, as mentioned before, solves the BK equation Eq.(2.20) with the initial condition

taken to be the MV amplitude. The equation Eq.(3.20) is first derived by Y. V. Kovchegov and E. Levin

[41] (see also [13]), which is known as the Kovchegov - Levin (nonlinear) evolution equation.

Differentiating the equation Eq.(3.20) with respect to y0, one can get:

∂ỹ

(
−∂S2(x01, ỹ)

∂y0

)
= ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[(
−∂S2(x02, ỹ)

∂y0

)
S2(x12, ỹ) +

(
−∂S2(x12, ỹ)

∂y0

)
S2(x02, ỹ)

−
(
−∂S2(x01, ỹ)

∂y0

)]
(3.22)

By the chain rule, we obtain for the initial condition of ∂S2

∂y0
:

−∂S2

∂y0 |ỹ=0

(x01, ỹ) =
∂S2

∂ỹ |ỹ=0

(x01, ỹ)− ∂S2

∂y0
(x01, 0)

= ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[
S2(x02, y0)S2(x12, y0)− S2(x01, y0)

]
− 2S(x01, y0)

∂

∂y0
S(x01, y0)

= ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
12

[S(x02, y0)S(x12, y0)− S(x01, y0)]
2

(3.23)

where in the second line, we employed the condition Eq.(3.21). Interestingly one can see that, Eq.(3.21) is

exactly in the same form as Eq.(3.14) in which G is replaced by (−∂S2/∂y0) and U is replaced by S2. In

other words, the diffraction problem and the ancestry problem are governed by the same type of equation.

However, we still cannot relate different initial conditions for those two problems. In the next section,

numerical calculations will be implemented to see the relation between their solutions.
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3.3 Numerical calculations

3.3.1 Diffraction from the Kovchegov - Levin equation

The strategy is to solve numerically a set of two BK equations Eq.(3.20) and Eq.(2.20) for S2 and S,

respectively, where the result of the latter is used as the initial condition (up to a square) of the former.

Instead of S(x01, Y ), the amplitude N(x01, Y ) = 1− S(x01, Y ), which obeys the BK equation Eq.(2.21),

is now employed. Performing the following (modified) Fourier transform:

Ñ(k, Y ) =

∫
d2x01

2πx2
01

eik·x01N(x01, Y ) (3.24)

with the conjugate transverse momentum k, one can get:

∂Y Ñ(k, Y ) = ᾱχ
(
−∂ln|k|2

)
Ñ(k, Y )− ᾱ

[
Ñ(k, Y )

]2
(3.25)

where χ(γ) is the eigenfunction of the BFKL kernel given by Eq.(1.33). This equation is implemented

and solved numerically using a code developed by S. Munier for fixed impact parameter.

We start with the MV initial condition Eq.(2.22) in which the parameters are chosen to be QMV = 1 GeV

and ΛQCD = 200 MeV and transform it to the momentum space. ÑMV (k, 0) is then evolved to the rapidity

y0 to get Ñ(k, y0), which is, in turn, transformed back to the transverse position space. We calculated

the quantity 2N(x01, y0)−N2(x01, y0), which is served as the initial condition for the Kovchegov - Levin

equation. The Fourier transform of N(x01, Y ) is then evolved further for ỹ0 = Y − y0 units of rapidity.

This procedure is repeated for different values of y0 between 0 and Y . The numerical y0 - derivative

is performed in the transverse position space to get the rapidity gap distribution dσdiff/dy0, which is

normalized by the total cross section σtot = 2N(x01, Y ). The result is plotted as a function of y0 for

chosen values of x01. The distribution is then fitted to the function of the form:

1

σtot

dσdiff

dy0
= c×

[
ᾱY

ᾱy0ᾱ(Y − y0)

]3/2

exp

{
−

ln2
[
x2

01Q
2
s(Y )

]
2ᾱ(Y − y0)χ′′(γ0)

}
(3.26)

where c is an overall constant, and Qs(Y ) is determined from the numerical data with the condition

N(x01 = 2/Qs(Y ), Y ) = 1/2.

For ᾱY = 20, the data is taken from [35] and shown in Fig. 3.4. The asymptotic formula Eq.(3.26)

describes noticeably well the numerical data. For values of x01 deep inside the scaling region, the curve

is quite symmetric and one can approximate it by the formula Eq.(3.10). The effect of the exponential

(Gaussian) term becomes important when the dipole size is around the transition to non-scaling region,

which leads to a significant suppression.
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Figure 3.4: Rapidity gap distribution for ᾱY = 20 for different values of x01. The red continuous line
is the asymptotic form Eq.(3.26)

3.3.2 Ancestry problem

For the ancestry problem, we deal with a set of two equations Eq.(3.14) and Eq.(3.11) for G and U ,

respectively. In the same manner as above, one introduces W(r, Y ) = 1− U(r, Y ), which satisfies the BK

equation of the type Eq.(2.21). The Fourier transform of the Eq.(3.14) in term of W reads:

∂Y G̃(k, Y, y0) = ᾱχ
(
−∂ln|k|2

)
G̃(k, Y, y0)− 2ᾱW̃(k, Y )G̃(k, Y, y0) (3.27)

with the initial condition: G̃(k, Y = y0, y0) = ᾱW2(k, y0). The equation Eq.(3.26) differs from Eq.(3.24)

just in the second term in the right hand side, thus one can modify the code solving the BK equation in

the momentum space mentioned above to solve this type of equation.

We also notice that, the initial condition for U (or W), which is the Heaviside function given by Eq.(3.12),

is hard to be implemented numerically since its Fourier transform is oscillated. However, one can observe

that for small x01, 1 − SMV (x01) ∼ x2
01Q

2
MV = eln x2

01Q
2
MV . Thus, the MV initial condition is steeper

than eγ0 ln x2
01Q

2
MV , with γ0 ' 0.627549. Therefore, according to the discussion on the solution of the BK

equation in the previous chapter, one can replace the Heaviside step function by the MV amplitude for

the initial condition for W.

The numerical implementation of the ancestry problem is thus straightforward. First we employ the

BK code above to evolve W to y0 between 0 and Y from the MV amplitude. Using ᾱW̃2(k, y0) (from

Eq.(3.15)) as the initial condition for G and the modified version of the BK code for solving Eq.(3.27), G
is then evolved from y0 to Y . This procedure is repeated for many different values of y0. The result is

then normalized by N , which is asymptotically identical to the probability P to have at least one dipole

crossing the saturation scale of the nucleus in the previous discussion, and plotted as a function of Y − y0.

In Fig. 3.5, the numerical solutions are plotted for different values of x01 and fitted to the function of the

form Eq.(3.27). The numerical calculations for the diffraction problem with the same values of x01 are

also superimposed. We see that, the behavior of the solutions of two problems are the same, which is

fairly symmetric deep inside the scaling region and suppressed by a Gaussian term when going beyond.

In addition, when going deep into the scaling region by choosing the value of x01 such that the curves are

symmetric, the rapidity gap distribution and the distribution of the most recent common agree (see Fig.

3.6). Thus the numerical calculations show that the solutions of the diffraction and the ancestry problems
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Figure 3.5: Normalized distribution G for ᾱY = 20 at different values of x01. Rapidity gap distribution
is also superimposed to compare.

asymptotically coincide. Another interesting point is that, when plotting the distribution Eq.(3.16) in

which γ0 is replaced by γ̄ = 1, there is a good agreement between the BRW prediction and the numerical

data (see Fig. 3.6). This is the reproduction of the result shown in [38].

When evolving the solution of the ancestry equation to a higher value of rapidity, say ᾱY = 40, it gets

closer to the distribution Eq.(3.16) predicted from the genealogy of branching random walks (see Fig.3.7).

Furthermore, in the region ᾱ(Y − y0) ∼ ᾱY , which is corresponding to the high-mass region in the

diffraction problem, the solution approaches the BRW prediction when x01 decreases. Those observations

may suggest that the asymptotic solution of the ancestry problem (and hence of the diffraction problem)

could be bounded from above by the BRW-predicted distribution. This, however, needs to have further

numerical tests.
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of the BRW prediction in which 1/γ0 is replaced by 1/γ̄ with γ̄ = 1.
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Figure 3.7: The behavior of the solution to the ancestry problem for different values of x01
with: (A) ᾱY = 20 and (B) ᾱY = 40.



Conclusion

In the report, we reviewed some aspects of small-x physics and the color dipole formulation of the quantum

chromodynamics on the light-cone. Partonic evolutions at high energy in the dipole framework were also

introduced for its use in later discussions on the diffraction.

The main results of the report came from the discussions on the diffraction in the high-energy onium -

nucleus scattering and the ancestry problem of the onium evolution. Using a similar argument as in the

derivation of the BFKL and BK equations, an equation for the ancestry problem was derived containing

an ingredient which evolves according to the BK equation. The ancestry equation was then shown to be

same as the equation for the rapidity gap distribution which was deduced from the Kovchegov - Levin

equation but with different initial conditions. Numerical results showed that the asymptotic solutions

of those two equations truly coincide. Also, an analogy to the genealogy of one-dimensional branching

random walks (BRW) addressed by Derrida and Mottishaw was given. This analogy was then tested

numerically yielding a good agreement between the numerical data and the BRW prediction deep inside

the scaling region with an ad hoc normalization factor.

The discussions in the report suggest several works to do beyond. The global constant in Eq.(3.10) is

unknown, which requires further analytical and numerical determinations of its value. In fact, we believe

that we now have a derivation of the constant which we are presently checking and will aim at publishing

it. In addition, the calculation of sub-asymptotic corrections is an interesting consideration to understand

the behavior of the evolution at moderate rapidities. Also, the good numerical agreement between the

ancestry and the diffraction problems puts forward a challenging question: why the Kovchegov - Levin

and the ancestry equations mathematically converge to the same solution in the asymptotic region?
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Appendix A

QCD LCPT rules

1. Draw all diagrams for a given process at the desired order in the coupling constant, including all

possible orderings of the interaction vertices in the light-cone time x+. Assign a four-momentum kµ

to each line such that it is on mass shell. Each vertex conserves only the k+ and k⊥ components of

the four-momentum.

2. With quarks associate spinors uσ(k) or vσ(k) which is normalized as:

ūσ(k)γµuρ(k) = v̄σ(k)γµvρ(k) = 2kµδσρ (A.1)

3. With a gluon associate a polarization vector εµλ(k) which satisfies ε+λ = 0, ελ(k) ·k = 0 and ε2(k) = 1.

4. For each internal line, include a factor: θ(k+)
k+

5. For each intermediate state, there is a factor:

1∑
init k

− −
∑

interm k− + iε
(A.2)

where thsums are over all particles in the initial and intermediate states respectively.

6. For vertices include following factors:

(a) Quark-gluon vertex

p

q

p+ q

i,σ

j,ρ

a
− gsūρj(p+ q)/ελ(q)(ta)jiuσi(p) (A.3)

27
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(b) Three-gluon vertex (all momenta flow into the vertex)

k3

k2
k1

c,λ3

a,λ1

b,λ2

−igsfabc
[
(k1 − k3) · ε∗λ2

(k2)ελ1(k1) · ελ3(k3)

+(k3 − k2) · ελ1
(k1)ελ3

(k3) · ε∗λ2
(k2)

+(k2 − k1) · ελ3(k3)ελ1(k1) · ε∗λ2
(k2)

] (A.4)

(c) Four-gluon vertex

c,λ3

a,λ1

d,λ4

b,λ2

g2
[
fabef cde(ελ1

· ελ3
ε∗λ2
· ε∗λ4

− ελ1
· ε∗λ4

ελ3
· ε∗λ2

)

+ facef bde(ελ1 · ε∗λ2
ελ3 · ε∗λ4

− ελ1 · ε∗λ4
ελ3 · ε∗λ2

)

+fadef bce(ελ1
· ε∗λ2

ελ3
· ε∗λ4

− ελ1
· ελ3

ε∗λ2
· ε∗λ4

)
] (A.5)

7. For instantaneous terms, include following factors:

p1

k1
p2

k2

−−

σ1

a, λ1

b, λ2

σ2

g2
s ūσ2j(p2)/ελ1

(k1)
γ+

2(p+
1 − k

+
2 )
/ε
∗
λ2

(k2)

× (tatb)ijuσ1i(p1)

(A.6)

p3

p1 p2

p4

−−−

σ3, k

σ1, i

σ4, l

σ2, j

g2
s ūσ2j(p2)γ+(ta)ijuσ1i(p1)

1

(p+
1 − p

+
1 )2

× ūσ4l(p4)γ+(ta)lkuσ3k(p3)

(A.7)

k1

p1 p2

k2

−−−

a, λ1

σ1, i

b, λ2

σ2, j

−g2
s ūσ2j(p2)γ+(tc)jiuσ1i(p1)

× k+
1 + k+

2

(k+
1 − k

+
2 )2

ifabcε∗λ2
· ελ1

(A.8)

k1

k3 k4

k2

−−−

a, λ1

c, λ3

b, λ2

d, λ4

g2
sf

abef cdeε∗λ2
ελ1ε

∗
λ4
ελ3

× (k+
1 + k+

2 )(k+
4 + k+

3 )

(k+
1 − k

+
2 )2

(A.9)
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8. For each independent momentum kµ integrate with the measure:∫
dk+d2k⊥
2(2π)3

(A.10)

and sum over internal helicities and colors.

9. There is a factor (−1) for each fermion loop and for each fermion line beginning and ending at the

initial state, and usual symmetric factors.



Appendix B

Derivation of the onium light-cone

wave function with one soft gluon

Here we will derive the onium light-cone wave function containing one soft gluon in momentum space,

namely the formula Eq.(2.5). Notations used in this appendix is same as in Chapter 2.

(A) (B)

Figure B.1: Onium wave function with one soft gluon. The dashed lines denote the intermediate state
(Lower line is quark and the upper one is anti-quark)

The onium wave function with one soft gluon ψ
(1)a
αβ (k1⊥, k2⊥; z1, z2) evaluated at some intermediate point

(as indicated in the Fig.B.1) is given by the product of the bare wave function and the amplitude of one

gluon emission. Since there are two contributions corresponding to the gluon being emitted from quark

or anti-quark, one has:

ψ
(1)a
αβ (k1⊥, k2⊥; z1, z2) =

∑
σ

(
ψ

(0)
αβ (k1⊥, z1)(−Mβσ(k2⊥)) + ψ

(0)
αβ (k1⊥ + k2⊥, z2)Mσα(k2⊥)

)
(B.1)

where ψ(0) is the bare onium wave function, M(k2⊥) is the amplitude of the gluon emission, α and β are

spinor indices of the original quark and anti-quark, respectively, and σ is the spinor index of the produced

quark or anti-quark (together with the gluon). The sum is taken over all polarizations of the produced

quark or anti-quark.

The first term corresponds to Fig.B.1A with gluon being emitted from anti-quark, while the second term

is represented by Fig.B.1B. Apply the QCD LCPT rules for the first term, we have (neglecting for a while
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the minus sign):

ψ
(0)
αβ (k1⊥, z1)Mβσ(k2⊥) = ψ

(0)
αβ (k1⊥, z1)(−gsta)

v̄β(p− k1)/ε
λ
2 (k2)vσ(p− k1 − k2)θ((p− k1)+)

(p− k1)+

× 1

k−2 + k−1 + (p− k2 − k1)− − p−

(B.2)

Since z2 � z1, 1− z1, k−2 will dominate the denominator in the second line of Eq.(B.2). So:

1

k−2 + k−1 + (p− k2 − k1)− − p−
' 1

k−
(B.3)

We also have:

v̄β(p− k1)/ε
λ
2 (k2)vσ(p− k1 − k2) ' 2δβσ

√
(p− k1)+(p− k1 − k2)+ελ−2 ' 2δβσ(p− k1)+ελ−2 (B.4)

Hence:

ψ
(0)
αβ (k1⊥, z1)Mβσ(k2⊥) ' ψ(0)

αβ (k1⊥, z1)(−gsta)
2δβσε

λ−
2 θ((p− k1)+)

k−
(B.5)

With the same spirit, the second term in Eq.(B.1) reads:

ψ
(0)
αβ (k1⊥ + k2⊥, z2)Mσα(k2⊥) ' ψ(0)

αβ (k1⊥ + k2⊥, z2)(−gsta)
2δσαε

λ−
2 θ(k+

1 )

k−
(B.6)

Substituting Eq.(B.5) and Eq.(B.6) into Eq.(B.1), one finally obtains:

ψ
(1)a
αβ (k1⊥, k2⊥; z1, z2) = 2gst

a
[
ψ

(0)
αβ (k1⊥, z1)− ψ(0)

αβ (k1⊥ + k2⊥, z2)
] k2⊥ · ελ2⊥

k2
2⊥

(B.7)

where we have used the fact that k− = k2
2⊥/k

+, ε− = (k2⊥ · ελ2⊥)/k+ and 0 < z1 < 1.
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