The extreme strange metal YbRh₂Si₂ Silke Paschen Institute of Solid State Physics, TU Wien

S. Paschen, TU Wien

Motivations to understand strange metal behaviour in SCES

(Taupin & SP, Crystals 12 (2022) 251)

Non-Fermi liquid states of interest in their own right *p* and *x* tuned strange metals have a superconducting dome

Quantum critical point scenario: Entropy accumulation

"Normal" QCPs follow Ginzburg, Landau, Wilson paradigm Predictions for some thermodynamic properties

d=2	d = 3	d=2	d = 3
z = 2	z = 2	z = 3	z = 3

$$\alpha_{\rm cr} \sim \ell n \ell n \frac{1}{T} \quad T^{1/2} \qquad \ell n \frac{1}{T} \qquad T^{1/3}$$

$$C_{\rm cr} \sim T\ell n \frac{1}{T} - T^{3/2} T^{2/3} T\ell n \frac{1}{T}$$

$$\Gamma_{r,cr} \sim \frac{\ell n \ell n \frac{1}{T}}{T \ell n \frac{1}{T}} - T^{-1} T^{-2/3} \ell n \frac{1}{T} \left(T^{2/3} \ell n \frac{1}{T} \right)^{-1}$$

d: dimension, z = 2: AFM metal, z = 3: FM metal

 α : thermal expansion, *C*: specific heat, $\Gamma = \alpha/C$: Grüneisen ratio

No hyperscaling above the upper critical dimension

(v. Löhneysen et al., Rev. Mod. Phys. 79 (2007) 1015; Hertz & Millis)

Dynamical response: THz time-domain transmission spectroscopy

- Real and imag. part of σ (
- No Kramers-Kronig trans
- Thin films needed!

Molecular beam epitaxy system

(Prochaska et al., Science 367 (2020) 285)

S. Paschen, TU Wien

Relation to the high- T_c **cuprates: Carrier (de)localization**

Phase diagram at 50 T

Change of carrier concentration

Planckian dissipation in electrical transport?

S. Paschen, TU Wien

Planckian dissipation in optical conductivity?

$$\operatorname{Re}[\sigma(\omega)] = \sigma_1 = \frac{ne^2\tau}{m} \frac{1}{1+\omega^2\tau^2}$$

$$\operatorname{Im}[\sigma(\omega)] = \sigma_2 = \frac{ne^2\tau}{m} \frac{\omega\tau}{1+\omega^2\tau^2}$$

Planckian dissipation in optical conductivity?

Is there superconductivity at the QCP of YbRh₂Si₂?

The Vienna Microkelvin Laboratory

S. Paschen, TU Wien

Electrical resistivity at ultralow temperatures: Iso-*B* **curves**

Electrical resistivity at ultralow temperatures: Iso-*T* **curves**

YbRh₂**Si**₂

(Nguyen et al., Nat. Commun. 12 (2021) 4341)

Temperature–magnetic field phase diagrams

S. Dzsaber*, G. Eguchi, J. Larrea J.*, **D. C. MacFarland***, V. Martelli*, **D. H. Nguyen**, L. Prochaska, A. Prokofiev, A. Sidorenko^{*}, R. Svagera, M. Taupin, M. Waas, X. Yan, D. A. Zocco; A. M. Andrews, H. Detz, W. Schrenk, G. Strasser; M. Bonta, A. Limbeck; P. Blaha Vienna University of Technology, Austria A. Cai*, H.-H. Lai*, S. Grefe, K. Ingersent*, C.-C. Liu, E. M. Nica*, R. Yu*, Q. Si X. Li. J. Kono E. Bianco, S. Yazdi, E. Ringe Rice University, USA **G. Knebel**, G. Lapertot Université Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, Grenoble, France E. Schuberth Technische Universität München, Germany T. Shiroka; A. McCollam, L. M. K. Tang, B. Vlaar; F. Weickert, R. McDonald, L. Winter, M. Jaime Paul Scherrer Institut, High Field Magnet Laboratory Nijmegen, Los Alamos National Laboratory O. Rubel

Department of Materials Science and Engineering, McMaster University

