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Fig. 1: Cuprate temperature-doping phase diagram. Long-range antiferromagnetic order (solid 

green line) gives way to superconductivity (solid blue line) near ݌ = 0.05. Orange diamonds 

designate dopings where quantum oscillations have been observed previously[52, 53], and 

stars denote the new dopings presented in this paper. Short-range antiferromagnetic order 

(green diamonds) terminates at a quantum critical point at ݌ = 0.08 [46, 54]; beyond 

݌ = 0.08, short-range charge order onsets above ௖ܶ (solid black diamonds [15, 27]). The 

charge order, the onset of the pseudogap (as defined by neutron spin-flip scattering (open red 

circles)[12], the polar Kerr effect (open red diamonds[13]), and the change in the slope of 

resistivity with temperature (open red triangles[55])) terminate near ݌ = 0.18, suggesting the 

possibility of a quantum critical point at this doping. Two thermodynamic quantities show 

enhancement near the critical dopings: the jump in the specific heat at ௖ܶ(ȟߛ, maroon 

diamonds [40, 41]), and the upper critical field (ܪ௖ଶ, purple points [39]). 
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state for the S = 1
2 antiferromagnetic Heisenberg model

on a triangular lattice. The triangular lattice is of special
interest because an Ising-like ordering of the spins is frustrated.
Subsequently, it was decided that the ground state forms a√

3 ×
√

3 superlattice where the moments lie on the same
plane and form 120◦ angles between neighbouring sites [42].

Soon after the discovery of high Tc superconductors,
Anderson [3] revived the RVB idea and proposed that with the
introduction of holes the Néel state is destroyed and the spins
form a superposition of singlets. The vacancy can hop in the
background of what he envisioned as a liquid of singlets and a
better compromise between the hole kinetic energy and the spin
exchange energy may be achieved. Many elaborations of this
idea followed, but here we argue that the basic physical picture
described above gives a simple account of the pseudogap
phenomenon. The singlet formation explains the decrease of
the uniform spin susceptibility. The vacancies are responsible
for transport in the plane. The conductivity spectral weight
in the ab plane is given by the hole concentration x and is
unaffected by the singlet formation. On the other hand, for
c-axis conductivity, an electron is transported between planes.
Since an electron carries spin 1

2 , it is necessary to break a
singlet. This explains the gap formation in σc(ω) and the
energy scale of this gap should be correlated with that of the
uniform susceptibility. In photoemission, an electron leaves
the solid and reaches the detector, the pull-back of the leading
edge simply reflects the energy cost to break a singlet.

A second concept associated with the RVB idea is the
notion of spinons and holons, and spin charge separations.
Anderson postulated that the spin excitations in an RVB state
are S = 1

2 fermions which he called spinons. This is in contrast
to excitations in a Néel state which areS = 1 magnons orS = 0
gapped singlet excitations.

Initially the spinons are suggested to form a Fermi surface,
with Fermi volume equal to that of 1 − x fermions [43]. Later
it was proposed that the Fermi surface is gapped to form a
d-wave type structure, with the maximum gap near (0, π) [44].
This k dependence of the energy gap is needed to explain the
momentum dependence observed in photoemission.

The concept of spinons is a familiar one in one-
dimensional spin chains where they are well understood to
be domain walls. In two dimensions the concept is a novel one
which does not involve domain walls. Instead, a rough physical
picture is as follows. If we assume a background of short range
singlet bonds, forming the so-called short range RVB state,
a cartoon of the spinon is shown in figure 5. If the singlet
bonds are ‘liquid,’ two S = 1

2 formed by breaking a single
bond can drift apart, with the liquid of singlet bonds filling in
the space between them. They behave as free particles and are
called spinons. The concept of holons follows naturally [45]
as the vacancy left over by removing a spinon. A holon carries
charge e but no spin.

4. Projected wavefunction, slave boson and the
gauge theory formulation of the RVB picture

Is there any calculated tool or mathematical formalism to put
some meat into the physical picture of RVB described in the

Figure 5. A cartoon representation of the RVB liquid or singlets.
The solid bond represents a spin singlet configuration and the circle
represents a vacancy. In (b) an electron is removed from the plane in
photoemission or c-axis conductivity experiment. This necessitates
the breaking of a singlet.

last section? As far as computation is concerned, the use of
the projected wavefunction has enjoyed considerable success.
The idea is to write down a trial wavefunction of the type

$ = PGφ, (3)

where PG =
∏

i (1−ni↑ni↓) is called the Gutzwiller projection
and φ is any Hartree Fock or BCS wavefunction, usually
suggested by mean field theory described below. The role
of the Gutzwiller projection is to remove all doubly occupied
states in φ. Equation (3) is a suitable variational wavefunction
for the t–J model because the constraint is satisfied by
definition, and its expectation values and correlation functions
can be computed by efficient Monte Carlo algorithms [46,47].
The mean field parameters can be treated as variational
parameters. The projection wavefunction gives excellent
ground state energy and sublattice magnetization at half-filling,
capturing the important quantum fluctuations of the Néel
ordered state. With doping it predicted correctly the d-wave
pairing ground state [48], even though the prediction of the
co-existence of superconductivity with AF up to x ≈ 0.11
is not in agreement with experiment. Putting aside the
question of whether it is the ground state, a comparison of
the physical properties of the projected d-wave pairing states
with a variety of experiments was successfully made [49]. The
trial wavefunction can be further improved by the Lanczos
method of repeatedly hitting it with the Hamiltonian. There
is some controversy as to whether the ground state of the
t–J model with nearest-neighbour hopping only is a d-wave
superconductor [50, 51], but it is clear that superconductivity
is a highly competitive state, as found by other numerical
methods such as density matrix renormalization group [52],
cluster dynamical mean field theory [53] and variational cluster
approximation [54,55]. Recently it was found that introduction
of t ′ considerably stabilizes the d-wave superconducting state
[56]. At present, I would say that there is strong numerical
evidence that the d-wave superconductor is a strong contender
for the ground state of the t–J model.

What about analytic theory and where does the mean
field φ come from? A useful method is called the Gutzwiller
approxmation, which imposes the constraint approximately by
treating the available configuration for hopping and exchange
in a statistical basis [57]. This is clearly related to the
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slave-boson method which we discus below. The slave-
boson method was developed for the Kondo problem [58, 59]
It has enjoyed great success as the best way to understand
the properties of a remarkable class of materials called the
heavy fermion compounds, where Fermi liquid theory has been
stretched to the extreme, with effective mass as large as several
thousand times the free electron mass [60]. The idea is to write
the electron operator as a product of the boson and fermion
which carries the spin index

c†
iσ = f †

iσbi (4)

with the condition

f †
i↑fi↑ + f †

i↓fi↓ + b†
i bi = 1. (5)

This constraint can be enforced with a Lagrangian multiplierλi.
Note that equation (4) is not an operator identity and the right-
hand side does not satisfy the fermion commutation relation.
Rather, the requirement is that both sides have the correct
matrix elements in the reduced Hilbert space with no doubly
occupied states. For example, the Heisenberg exchange term
is written in terms of f †

iσ , fiσ only [43]

Si · Sj = − 1
4f †

iσfjσf †
jβfiβ − 1

4 (f †
i↑f †

j↓ − f †
i↓f †

j↑)

× (fj↓fi↑ − fj↑fi↓) + 1
4 (f †

iαfiα). (6)

We then decouple the exchange term in both the particle–hole
and particle–particle channels via the Hubbard–Stratonovich
(HS) transformation.

Then the partition function is written in the form

Z =
∫

Df Df †DbDλDχD& exp
(

−
∫ β

0
dτL1

)
, (7)

where

L1 = J̃
∑

〈ij〉
(|χij|2 + |&ij|2) +

∑

iσ

f †
iσ (∂τ − iλi)fiσ

− J̃




∑

〈ij〉
χ∗

ij

(
∑

σ

f †
iσfjσ

)

+ c.c.





+ J̃




∑

〈ij〉
&ij(f

†
i↑f †

j↓ − f †
i↓f †

j↑) + c.c.





+
∑

i

b∗
i (∂τ − iλi + µB)bi −

∑

ij

tijbib
∗
j f

†
iσfjσ , (8)

with χij representing fermion hopping and &ij representing
fermion pairing corresponding to the two ways of representing
the exchange interaction in terms of the fermion operators.
J̃ = 3J/8 is chosen to reproduce the mean field self-consistent
equation which is obtained by the Feynman variational
principle.

Mean field theory corresponds to the saddle point solution
to the functional integral. The mean field conditions are

χij =
∑

σ

〈f †
iσfjσ 〉, (9)

&ij = 〈fi↑fj↓ − fi↓fi↑〉. (10)

Let us write χij = |χij |eiaij and ignore the fluctuation of the
amplitude. Furthermore, in the last term in equation (8) we
replace f †

iσfjσ by χij . Then the rather complicated Lagrangian
of equation (8) has a rather simple interpretation. It describes
fermions and bosons hopping on a lattice with hopping matrix
element χij . The phase aij lives on the links, and plays the role
of the spatial components of a lattice gauge field, while the λi

fields introduced to enforce the constraint become the time
components. Note that both fermions and bosons are coupled
to the same gauge field. In addition, the fermions may have
singlet pairing amplitude given by &ij . Thus we come to the
conclusion that the t–J model is equivalent to a lattice gauge
theory with nonrelativistic fermions and bosons coupled with
a compact U(1) gauge field (compactness simply refers to the
fact that the gauge field aij is a phase defined module 2π ).
At this point the gauge field has no dynamics. It fluctuates
freely and is in the infinite coupling limit. Interesting dynamics
emerge upon integrating out some of the matter field but one
is left with a lattice gauge theory with strong coupling. The
mapping is basically exact, but the question remains as to how
to deal with such a model.

Before discussing the importance of gauge fluctuations,
let us examine some examples of mean field solutions.

1. d-wave pairing states. Here χij = χ is constant and
&ij = & for (ij) bonds along x and &ij = −& for (ij)

along y, i.e. it has d-wave pairing geometry. Without pairing,
the fermions hop on a tight binding band with dispersion

εf(k) = −2J̃χ(cos kxa + cos kya). (11)

With pairing we have the classic d-wave dispersion

E(k) =
√

(εf(k) − µf)
2 + |&k|2, (12)

where µf is the fermion chemical potential and &k =
2&(cos kxa − cos kya). The bosons see the same band
dispersion and condense at the bottom of the band minimum at
low temperatures. In mean field theory the Bose condensation
temperature is proportional to the boson density x. Below this
temperature we have electron pairing, because the BCS order
parameter 〈ck↑c−k↓〉 = b2

0〈fk↑f−k↓〉 (= 0 where 〈b〉 = b0. The
mean field phase diagram is shown in figure 6 and captures
some key features of the high Tc phase diagram shown in
figure 2. In particular, the d-wave superconducting state
appears at intermediate doping and a spin gap state (region II)
where a d-wave-like gap exists for spin excitations but not
charge excitations, anticipates many of the properties of the
pseudogap phase.

2. The staggered flux state. Early in the development of
the mean field theory, a variety of mean field states were
discovered which give identical dispersion. Notable among
these is the staggered flux state [62]. In this state the hopping
χij is complex, χij = χ0 exp(i(−1)ix+jy +0), and the phase is
arranged in such a way that it describes free fermion hopping
on a lattice with a fictitious flux ±4+0 threading alternative
plaquettes. Remarkably, the eigenvalues of this problem
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II. THE MODEL LAGRANGIAN

We shall begin with the t-J model defined on a square
lattice

H = t g c, c +J—g(S; S —
—,'n;n ), (2.1)

i,j,o. I& J

where S;= ,'c, tr ttc;&, n—;=g c; c, , and the sum over ij
is over the nearest neighbor. Equation (2.1) is subject to
the important constraint that a given site cannot be occu-
pied by more than one electron. The constraint is con-
veniently implemented using the slave-boson
method

c, =f;b; (2.2)

where, is a fermion operator that carries the spin label
and b, is a boson operator that can be interpreted as
creating a vacancy. The constraint of no double occu-
pancy is now replaced by

gf; f; +b, b, =l, (2.3)
t, o

which can be implemented in a functional integral formu-
la over a complex b field and a Grassmann f field with
the integration over an additional field A.; on each site,

Z = fd A,; db; db;*df; df;* exp —f (Xo+H)dr
0

tivity. ' It would seem a hopeless task to determine
from first principles which of the many proposed solu-
tions is realized as a solution to the t-J model. In this pa-
per we set for ourselves a rather more modest goal. We
want to ask the question: Given a mean-field solution
and by including fluctuations around it, can we obtain a
description of physical quantities which are consistent
with the rather severe constraints set by experiments?

Baskaran and Anderson ' recognized that fluctua-
tions about the RVB mean-field solution are naturally
gauge theories. This point was elaborated in a paper by
Ioffe and Larkin, and we shall draw heavily from the re-
sults of this work. We find that, even though the spin
and charge degrees of freedom are separated on the
mean-field level, they are strongly coupled by the gauge
field. In order to reproduce the photoemission data, we
need a mean-field theory with a spinon Fermi surface
which obeys Luttinger's theorem. This leads us to con-
sider the uniform RVB state. ' A short version of this
work was published earlier. One of our main results is
that a linear T resistivity emerges due to scattering by
gauge field fluctuations. A mathematically related
though physically distinct mechanism for linear T behav-
ior is given by Ioffe and Wiegmann. Ioffe and Kotliar
have also published a work which is very closely related
to the present one.

(2.5)

Alternatively, the same term can be written as

which would lead to the decoupling

D J
= (f iffy

—f ifJ t & (2.7)

At half-filling, there exists an SU(2) symmetry' (an ab-
sence of a down spin is equivalent to an up spin when
there is exactly a single fermion per site), so that the two
decouplings are equivalent. For finite x, the two decou-
plings are distinct. For the bulk of this paper we shall
treat the decoupling g; while assuming that D; =0.
There are two rationales for this. First, it is convenient
formally to extend the spin sum to a sum over N degrees
of freedom, and perform a large-1V expansion. In this
case it is clear that y; scales as N and there is no simple
way of defining D; . Indeed, Grilli and Kotliar' have
found that, in the large-X limit, the mean field yI 'WO,

D, =0 is stable for some intermediate doping concentra-
tion x =J/t. Secondly, if we treat the E =2 case in the
saddle-point approximation, we expect for intermediate
doping that y', J 'WO below a temperature of order J, while
D; may develop d-state symmetry at a lower tempera-
ture, ' so that there should be a temperature range where
y', 'WO but D, =0. Schematically the mean-field phase
diagram may look like that shown in Fig. 1. There are
four different regimes. Below the solid line yI. '%0 and,
when D, is d-state symmetric, we have a uniform RVB
state. In region I, (b)%0 and we have a Fermi-liquid
phase, quite similar to that which appears in the heavy-
fermion problem. This region has been treated by Grilli
and Kotliar. ' In region II, D, WO but ( b ) =0. We shall

IV

II
III ~ .

A boson-boson interaction term has been dropped as be-
ing small (of order x ) in the rewriting of the J term.
Equation (2.5) leads naturally to the mean-field decou-
pling'

(2.6)

where

+i A.,-(f,*f, +b,*b, —1), . (2.4)

FIG. 1. Schematic slave-boson mean-field phase diagram of
the t-J model. The solid line denotes the onset of the uniform
RVB state. The dotted line denotes the mean-field Bose-
Einstein condensation temperature of the boson while the
dashed line denotes the onset of pairing of the fermion opera-
tors. The four regions are (I) Fermi liquid, (II) spin-gap phase,
(III) superconductor, and (IV) strange metal phase.
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Fig. 1: Cuprate temperature-doping phase diagram. Long-range antiferromagnetic order (solid 

green line) gives way to superconductivity (solid blue line) near ݌ = 0.05. Orange diamonds 

designate dopings where quantum oscillations have been observed previously[52, 53], and 

stars denote the new dopings presented in this paper. Short-range antiferromagnetic order 

(green diamonds) terminates at a quantum critical point at ݌ = 0.08 [46, 54]; beyond 

݌ = 0.08, short-range charge order onsets above ௖ܶ (solid black diamonds [15, 27]). The 

charge order, the onset of the pseudogap (as defined by neutron spin-flip scattering (open red 

circles)[12], the polar Kerr effect (open red diamonds[13]), and the change in the slope of 

resistivity with temperature (open red triangles[55])) terminate near ݌ = 0.18, suggesting the 

possibility of a quantum critical point at this doping. Two thermodynamic quantities show 

enhancement near the critical dopings: the jump in the specific heat at ௖ܶ(ȟߛ, maroon 

diamonds [40, 41]), and the upper critical field (ܪ௖ଶ, purple points [39]). 
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variation of the Cooper state can be properly adjusted to match the
oscillations of the spin interaction. Generally, the instability is found
in the spin-singlet state, which must necessarily have even angular
momentum. As the interaction is repulsive at the origin, a non-zero
angular momentum state, typically a d-wave state, is favoured
(Fig. 1c).

We note that the analogues of the ferromagnetic and antiferro-
magnetic instabilities can exist in the density (described by xn(r,t)) as
well43. The pattern of oscillations in xn(r,t) is determined by the
wavevector at which the density response is maximum, and this
too can lead to unconventional pairing states. In contrast to the
magnetic interaction where the sign of the interaction is different
for spin-triplet and spin-singlet Cooper pairs, the density interaction
is oblivious to the spin state of the Cooper pairs. Hence, the magnetic
interaction offers more freedom to match the attractive regions of the
oscillations of the interactions with the quasiparticle states near the
Fermi surface available to construct a Cooper-pair wavefunction.

Some surprises
On the border of ferromagnetism the induced interaction is purely
attractive at short distances, whereas on the border of antiferromag-
netism it is likely to have repulsive regions when the two interacting
quasiparticles are close to each other. It might therefore be expected
that the search for exotic pairing states on the former border would
have proved the more fruitful. This seemed to have been borne out by
the discovery of the superfluidity of liquid 3He in which the uniform
magnetic susceptibility is strongly enhanced44. Given the abundance
of metals that exhibit strong ferromagnetic correlations, it is more
than a little surprising that it took a quarter of a century to discover a
superconducting analogue of liquid 3He, namely, the layered perovs-
kite Sr2RuO4 that has a Tc value two orders of magnitude below that
of the high Tc copper oxides26.

Even more perplexing on the other hand is the fact that many
examples of superconductivity on the border of antiferromagnetism
have been found in the intervening period4–7,28–32. These findings
would suggest at first sight that the magnetic interaction is
giving us little or no insight on where to look for exotic forms of
superconductivity.

However, the great lesson of the past decade is that subtleties in the
magnetic interaction model only come to the surface after a careful

examination of its properties. Although the idea of a magnetic inter-
action goes back nearly half a century, the computer algorithms and
hardware necessary for an exploration of the detailed predictions of
the model have only become available more recently.

The results of these theoretical investigations have led to an intui-
tive understanding of the following: (1) why superconductivity can
be particularly robust on the border of antiferromagnetism in a
quasi-two-dimensional tetragonal system with high characteristic
spin fluctuation frequencies30,45–48; (2) how the charge–charge and
spin–spin interactions can in some cases work coherently to stabilize
anisotropic Cooper-pair states; and (3) why pairing on the border of
ferromagnetism is hampered by quite a number of effects, and may
depend on subtle details of the electronic structure, that is, features
(absent in liquid 3He) of the energy band of the periodic crystal
potential49–51. Illustrations of these ideas are given below.

The first reason for the robustness of pairing in the presence of
antiferromagnetic correlations in a tetragonal structure is that the
amplitude of the oscillations in the interaction is strong because of
the low dimensionality. The energy density of the interaction waves
created by the polarizer falls off more gradually in two dimensions (as
1/distance) than in three dimensions (as 1/distance2). The second
reason is that the repulsive regions of the interaction in real space
are along the diagonals of the lattice given that one quasiparticle is at
the origin (see Fig. 3). In this case, the crystal symmetry allows one to
choose a d-wave Cooper state with nodes along the diagonals, thereby
neutralizing most of the repulsive regions while retaining the attrac-
tive regions. One can easily imagine that it will not always be possible
to choose a Cooper-pair state in such an optimal way, and that the
initial impression that the oscillations of the interaction are detri-
mental to superconductivity may only be wrong in special cases. In
particular, as the tetragonal structure becomes more and more iso-
tropic under otherwise similar conditions, the model predicts a
decrease in the robustness of the pairing. The range in temperature
and pressure over which superconductivity is observed was increased
by about one order of magnitude in going from cubic CeIn3 (refs 30,
52) to its tetragonal analogues CeMIn5, where M stands for Rh, Ir or
Co (refs 31, 32, 53–56; Fig. 4), as anticipated by the magnetic inter-
action model.

Another case where subtle features of the model considered here
could explain puzzling superconducting properties is the first of the
heavy-fermion superconductors, CeCu2Si2 (ref. 4), and the related

Repulsion Attraction

Figure 3 | Magnetic interaction potential in a lattice. Graphical
representation of the static magnetic interaction potential in real space seen
by a quasiparticle moving on a square crystal lattice given that the other
quasiparticle is at the origin (denoted by a cross). The spins of the interacting
quasiparticles are taken to be antiparallel, such that the total spin of the
Cooper pair is zero. The dashed lines show the regions where the d-wave
Cooper-pair state has vanishing amplitude. This is the state that best
matches the oscillations of the potential, in that a quasiparticle has minimal
probability of being on lattice sites when the potential induced by the
quasiparticle at the origin is repulsive. The size of the circle in each lattice site
is a representation of the absolute magnitude of the potential (on a
logarithmic scale). This picture is appropriate for a system on the border of
antiferromagnetism in which the period of the real space oscillations of the
potential is precisely commensurate with the lattice.
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Figure 4 | Effect of electronic anisotropy. The schematic
temperature–pressure phase diagram of two related heavy fermion
compounds, CeIn3 (refs 30, 52) and CeRhIn5 (refs 53–55). These two
materials differ in particular in the degree of anisotropy of the low energy
excitation spectrum. As one would expect, the thermal fluctuations in the
local magnetization lead to a smaller value of the magnetic transition
temperature (Néel temperature, TN) in the anisotropic material. By contrast,
perhaps unexpectedly, Tc is greatly suppressed in the isotropic compound
CeIn3 (red lines) compared with CeRhIn5 (blue lines). Both of these features
are in qualitative agreement with the magnetic interaction model.
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compound, CeNi2Ge2 (refs 57–59). The appearance of two super-
conducting domes in the temperature–pressure phase diagram of
CeNi2Ge2 (refs 58, 59) led some of us to suspect a different origin
of superconductivity in the two cases, that is, magnetically mediated
on the border of antiferromagnetism at low pressures and density-
mediated on the border of an a–c density instability at higher pres-
sures. Such magnetic and density instabilities have been identified
in CeCu2Si2, in which the two superconducting domes coalesce in
stoichiometric samples but become separate and distinct in Ge
doped samples60,61 (Fig. 5). Our model quasiparticle interaction
can naturally account for this behaviour.

In our model, the overall scale for Tc depends on the characteristic
width of the energy band out of which the paired quasiparticles
emerge. This suggests that a further increase in Tc could be obtained
if the 4f Ce band were replaced, for example, by a wider 5f band
under otherwise equivalent conditions, for example, in the same
tetragonal structure and without moving too far from the border
of the magnetic instability. This is indeed what happens when Ce
in CeMIn5 is replaced by the 5f metal Pu to obtain the related systems
PuMGa5, which leads to an increase of Tc by about another order of
magnitude62,63.

These aspects of our model can be understood even with a simple
Lindhard function that represents real-space oscillations with a single
wavelength of the order of the lattice spacing, as is to be expected for a
system on the border of commensurate antiferromagnetism. A whole
new level of complexity and subtlety arises when Lindhard functions for
realistic energy bands are used (Fig. 6). The oscillation pattern in real
space is a superposition of components of different wavelengths, and
can vary dramatically with the filling level of the relevant energy band.

These rich oscillation patterns have proved to be a critical element
in developing a qualitative understanding of the scarcity of examples

of superconductivity on the border of ferromagnetism51. Another
crucial factor in the case of the border of ferromagnetism is that
the magnitude of the quantum mechanical average of the inner pro-
duct of the two quasiparticle spins is a factor of three smaller in the
spin-triplet state than in the spin-singlet state. This unique feature of
the magnetic interaction means that pairing in the spin-triplet state
has an inherent disadvantage relative to pairing in the spin-singlet
state. The factor of three in the relative ineffectiveness of the former
pairing is a property of a quantum spin 1/2, and does not arise for a
classical spin or in an anisotropic system in which only fluctuations in
the magnetization along a particular axis in the crystal are relevant.
This suggests that pairing on the border of ferromagnetism is more
likely to arise in systems with a strong magnetic anisotropy49. This
prediction motivated the search for superconductivity on the border
of ferromagnetism in UGe2, which is known to have a strong uniaxial
magnetic anisotropy. The search proved fruitful, for it led to the
discovery of the first example of the co-existence of superconduc-
tivity and itinerant-electron ferromagnetism27,64–67 (Fig. 7). Soon
after, superconductivity was discovered in the itinerant-electron
ferromagnets URhGe (ref. 68) and UIr (ref. 69) and even in the
e-phase of elemental Fe (ref. 70).

The magnetic energy scales in d metals may be much larger than in
the f metals and one might expect, on the basis of the magnetic
interaction model, that the spin-triplet p-wave superconductivity
in the nearly ferromagnetic tetragonal compound Sr2RuO4 would
occur at relatively high temperatures, despite the inherent disadvant-
age of spin-triplet pairing discussed above. That this is not the case
may be understood in terms of the subtle oscillation pattern of the
Lindhard function for a realistic model of the ‘dxy’ energy band of
Sr2RuO4 thought to be dominant for superconductivity. In particu-
lar, the form of the Fermi surface that arises in the presence of a
periodic lattice potential tends to have nesting features that lead to
real-space oscillations in the magnetic interaction that interfere with
the long-wavelength components associated with ferromagnetic
correlations. An additional detrimental factor to p-wave pairing in
Sr2RuO4 arises from the fact that strong ferromagnetic correlations
only occur when the Fermi surface is close to a ‘van Hove’ singularity
point. The Fourier transform of the p-wave Cooper state vanishes at
these points, and hence the superconducting energy gap is small in
regions of high density of electronic states on the Fermi surface—that
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Figure 5 | Proximity to antiferromagnetic and density instabilities.
Schematic temperature–pressure phase diagram for the class of compounds
CeM2X2 having the crystal structure shown in the inset. In CePd2Si2 (ref. 30;
that is, M 5 Pd, X 5 Si) and CeRh2Si2 (ref. 32), one only observes a
superconducting dome on the border of metallic antiferromagnetism (left
hand side of diagram), whereas in CeNi2Ge2 (refs 57–59) and in the close
relatives CeCu2Si2 and CeCu2Ge2 (refs 4, 60, 61) one observes two
superconducting domes, one of which is similar to that found in CePd2Si2

and CeRh2Si2. In CeCu2Si2 and CeCu2Ge2, the second superconducting
dome (on the right hand side of the diagram) is found to be on the border of a
density transition characterized by a first order transition line and low
temperature critical end point (red dot) followed by crossover behaviour
(red dashed line). This is analogous to a liquid–gas transition. (The two
domes overlap in the pure compounds but clearly separate in chemically
doped specimens (red domes).)

a b

Figure 6 | Effect of crystal lattice on the magnetic properties. a, b, Static
linear magnetic response (Lindhard function) versus wavevector in two
dimensions for non-interacting electrons in a uniform background of
neutralizing positive charges (‘jellium’; a) and in the presence of a model
crystal potential in a square lattice (b). Note the richer structure in the latter
case. The different peaks give rise to oscillations of different wavelengths in
real space, which can interfere constructively or destructively and thus lead
to complex forms of the real-space magnetic interaction. As the Lindhard
function is determined by the Fermi surface, it is as distinctive a property of a
metal as is the Fermi surface itself.
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is, p-wave pairing does not lead to an efficient lowering of the total
electronic energy50,51. These and other factors discussed elsewhere
shed light on why the search for a superconducting analogue of liquid
3He has proved so elusive27,50,51.

In the light of the experimental and theoretical findings discussed
above, we can establish a number of conditions that are particularly
favourable for magnetic pairing. On the basis of the cases studied so
far, one class of promising candidate material should have, at mini-
mum, the following properties: (1) a single band of relatively high
characteristic energy scale; (2) strong quasi-two-dimensional anti-
ferromagnetic correlations for spin-singlet pairing and for large
amplitude oscillations of the spin–spin interaction; and (3) a crystal
structure that enables the repulsive regions of the pairing potential to
be optimally neutralized. The quasi-two-dimensional organic super-
conductors28 appear to go quite far in satisfying these conditions.

Although the applicability of the magnetic interaction model to
the copper oxides71 has been disputed, it is nevertheless interesting
that the model provides a natural explanation for the robustness of
superconductivity and correctly anticipated the d-wave symmetry34

of the Cooper-pair state in this class of materials72–75, which appear to
optimally satisfy all of the above conditions.

In the framework presented in this Review, the antiferromagnetic
correlations come about through the Lindhard function—that is,
the response of the non-interacting itinerant electron system to a
space- and time-dependent applied magnetic field—but, crucially,
as enhanced by an appropriate effective (molecular) field. This
approach is most appropriate to the description of delocalized qua-
siparticles not too close to a metal–insulator transition. Another
approach considers localized models of magnetism in which antifer-
romagnetic correlations can arise and also lead to d-wave super-
conductivity (see refs 76–80 for recent discussions). These two
approaches are normally associated with itinerant versus localized
models of magnetism, and are most naturally suited to the ‘over-
doped’ and ‘under-doped’ states of the copper oxides, respectively.
The detailed understanding of the similarities and differences of these
approaches to magnetically mediated superconductivity would be a
major step forward.

The possibilities seem endless
In electrodynamics, the dimensionless coupling constant, which is a
measure of the relative strength of the interaction, is 1/137 and hence
small, leading only to minor corrections to the polarizer–analyser
framework of the Coulomb interaction described earlier. The corres-
ponding relevant dimensionless coupling constants characterizing
the strength of the induced interaction (equation (2)) are likely to
be much larger and possibly of order unity in real materials of interest
here. It would therefore not be surprising if the lowest order inter-
action (equation (2)) fails to capture some essential physics. What is
surprising is that it has led to so many useful insights and provided
guidance in the searches for novel phenomena, some of which have
proved to be fruitful.

The model interaction (equation (2)) was derived on the assump-
tion that the characteristic amplitudes of the molecular fields are
small. However, this is an unnecessary restriction, as the average over
a gaussian distributed molecular field can now be carried out numeri-
cally by well-established Monte Carlo sampling techniques. One
finds that when the characteristic dimensionless coupling constant
is of order unity or greater, the model interaction (equation (2))
indeed fails to capture essential physics81,82.

The quasiparticle-pairing problem where equation (2) ceases to be
valid has not been studied in detail. At the level of approximation
represented by equation (2), there is no fundamental difference in the
various interaction channels (for example, density versus magnetic)
in that, given the right conditions, they could all lead to robust
forms of pairing. An understanding of the conditions favourable
for high-temperature superconductivity cannot be obtained without
considering the corrections to the simple theory81,82. This raises
the question of whether one particular channel of interaction may
be singled out by these higher corrections. In the preliminary non-
perturbative (Monte Carlo) calculations, one finds that the magnetic
interaction is enhanced by the higher order corrections, while the
density interaction is reduced at least for the range of parameters
considered. In this context, we note that in quantum electrodynamics
the analogous corrections lead to an enhancement of the magnetic
moment of the electron and therefore an enhancement of its mag-
netic coupling to the Maxwell field. The smallness of the enhance-
ment in this latter case is due to the very weak coupling of the
Maxwell field to the electron, in contrast to the case of the magnetic
molecular field for which the corresponding enhancement can be
substantial. These and previously mentioned features point to the
special nature of spin in quantum mechanics, and may distinguish
and favour the magnetic interaction over other interaction channels
in the strong coupling limit.

The above non-perturbative treatment represents only one of
many possible extensions of the model discussed in this Review for
superconductivity without phonons. The richness of behaviour at
even the simplest level of approximation points to the utmost
importance of tuning material properties, and leaves no doubt that
many more surprises are in store.
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Figure 7 | Proximity to a ferromagnetic instability. Temperature–pressure
phase diagram of the ferromagnetic superconductor UGe2 (refs 27, 64, 65).
The upper blue line corresponds to a ferromagnetic instability (analogous to
the antiferromagnetic instability in Fig. 4) and the lower blue line to a
metamagnetic instability with low critical end point (analogous to the
density transition in Fig. 4). In this system, there is only one
superconducting dome on the border of metamagnetism (a sudden change
in the magnitude of the magnetization and density). A second
superconducting dome is not observed on the border of the ferromagnetic
transition. The strong first order nature of this transition, in contrast to the
metamagnetic transition, leads one to expect relatively weak magnetic
fluctuations and hence a weak magnetic pairing interaction.
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Fig. 1. Doping dependence of the electronic structure at 250 K in Bi2212.
(A to F) ARPES spectra (top) and their second energy derivatives (bottom)
at six doping levels, taken along the Brillouin zone (BZ) boundary as indicated
by the red line in (K); a0 is the unit cell dimension. The corresponding
sample (doping p) is marked at the top of each panel. Samples are named
by their transition temperatures (Tc, in kelvin) rounded to the nearest integer
with the prefix OD for overdoped and OP for optimally doped. The critical
doping pc is between OD86 and OD81. All data are divided by the resolution-
convolved Fermi function. (G and H) ARPES spectra near the node (N) along

the gray line in (K) from OD86 and OD81, respectively. (I and J) Energy
distribution curves (EDCs) at the antinode [AN, red dot in (K)], and momentum
distribution curves (MDCs) along the BZ boundary at the chemical potential
m, respectively. A momentum-independent background is subtracted (8).
Curves are normalized by the area under them in the plotted horizontal axis
range for better comparison. Data from OD81 are fitted to a marginal Fermi
liquid model (8–10), and the results are plotted in gray. (K) Schematics of the
Fermi surfaces formed by the antibonding band (AB) and bonding band (BB)
in the first BZ.

Fig. 2. Temperature dependence of the electronic
structure immediately below and above pc.
(A) Temperature evolution of antinodal EDCs in
OD86 (p ~ 0.186). The curves are offset for clarity.
The red arrow indicates the development of the
pseudogap (PG). The blue stripe highlights the
intensity shoulder and its evolution into the sharp
Bogoliubov quasiparticle (BQP) peak. All data are
divided by the Fermi function. (B) Difference
between the ARPES spectra taken at 150 K and
250 K along the BZ boundary in OD86. The original
spectra at each temperature are normalized such
that the average intensity between –0.6 and –0.5 eV
equals 1. The black arrow indicates the spectral
weight transfer due to the PG. (C) Same as (B) but
between spectra taken at 90 K and 150 K. The
black arrow highlights the emergence of the BQP.
(D and E) Same as (A) and (B) but taken for OD81
(p ~ 0.196). The open diamonds and circles in (D)
are guides to the eye and denote the BQP peaks
above and below the chemical potential, respec-
tively. (F) ARPES spectra taken at 90 K along the BZ
boundary in OD81. The orange curves in (E) and (F)
are guides to the eye and highlight the normal
quasiparticle and BQP dispersions, respectively.
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temperature evolution above pc. With decreas-
ing temperature, the quasiparticle peaks first
sharpen with no sign of the pseudogap (Fig. 2,
D and E, and Fig. 3A). Then at around 130 K, a
gap opens with the rise of one additional peak.

The peak can be attributed to the back-bending
AB above the chemical potential (Fig. 2, D and
F), consistent with the formation of BQP dis-
persions when a superconducting gap opens.
With further decreasing temperature, the gap

and low-energy peaks become more promi-
nent. Yet as superconductivity develops, no
other major changes are observed in the elec-
tronic structure. These observations imply
that both the gaps above and below Tc here

Chen et al., Science 366, 1099–1102 (2019) 29 November 2019 3 of 4

Fig. 4. Phase diagram of
Bi2212. (A) The color plot
(outlined in white) shows the
spectral intensity at the
BZ-boundary BB kF and m
(same data as in Fig. 3A)
plotted as a function of both
temperature and doping.
For p < pc, this intensity
reduces with decreasing tem-
perature and doping, reflect-
ing the development of the
pseudogap. Also plotted
are the transition temperatures
of various broken symmetries
in Bi2212 and YBa2Cu3O6+d
(YBCO): magnetic order (TMag)
(24–26), charge order (TCDW)
(27–29), nematicity (TNem)
(30), time-reversal symmetry
breaking (TTR) (31), and
inversion-symmetry breaking
(TInv) (32). The black curve
marks Tc; the vertical dashed line marks pc. (B) TFluc in Bi2212 observed by various probes: ARPES in the antinodal (AN) region (this work), laser ARPES in the near-nodal
(NN) region (7), torque magnetometry (11), Nernst effect (11), specific heat (12), and high-frequency conductivity (13). Error bars indicate uncertainties in estimating
these temperatures. Gray, pink, and blue background shadings are guides to the eye and indicate the existence of the pseudogap, normal quasiparticles, and BQPs,
respectively. Insets are schematics of the antinodal ARPES spectra; the horizontal dashed lines mark the chemical potential, the hatched area indicates incoherent spectra,
and the black and blue curves indicate the normal quasiparticle and BQP dispersions, respectively.

Fig. 3. Marked changes of spectral properties
across pc. (A) Temperature dependence of spectral
intensity at the BZ-boundary BB Fermi momentum
(kF) and m (red dot in inset). The error bars
reflect the noise level in the ARPES data and
uncertainties in determining kF and m. (B) Doping
evolution of EDCs at the BZ-boundary BB kF
and 60 K. All data in (A) and (B) are background-
subtracted (8), divided by the Fermi function,
and normalized such that the average EDC
intensity between –0.6 and –0.5 eV equals 1. The
inset shows examples of intensity normalization
using OD86 data. (C) Doping dependence of
2D/kBTFluc, where D is the antinodal superconduct-
ing gap size, kB is the Boltzmann constant,
and TFluc is the temperature scale of super-
conducting fluctuations. The horizontal error
bars are caused by uncertainties in Tc measure-
ments; the vertical error bars reflect uncertainties
in determining D and TFluc.
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FIG. 5. Temperature dependence of the difference between the
SC B1g Raman response and the one just above Tc, denoted T0

for (a) an overdoped OD62 Bi-2212 compound (T0 = 70 K), (b) an
overdoped OD58 Bi-2212 compound (T0 = 60 K). (c) and (d) Closer
views of the dip energy range above the pair breaking peak.

just above Tc, and is 70 K and 60 K, respectively. While
the OD62 compound still displays a dip between 600 and
1200 cm−1 for T < Tc, shown as a negative contribution in
the closeup of Fig. 5(c), the OD58 compound displays no dip
over an equivalent temperature range, as shown by the positive
contribution in the closeup of Fig. 5(d).

This proves that the PG in Bi-2212 ends on a vertical line
inside the SC dome of the T -p phase diagram, which can
be drawn between p = 0.222 and 0.226 (see Fig. 6). Our
result does not show any reentrant behavior of the pseudogap
inside the superconducting dome, in contrast to that proposed
in Refs. [10,14], but rather a straight line, at least down to 12 K
(well below that of Ref. [14]). Note, our conclusions are
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FIG. 6. Temperature-doping phase diagram of Bi-2212, showing
the PG in the normal and SC phases. The normal state PG which
develops between T ∗ and Tc is obtained from the B1g spectral loss
observed in Ref. [13]. The T ∗ values are extracted from Ref. [13].
The dip is the PG-related feature in the SC state. The PG collapses
abruptly (vertical line) between p = 0.222 and p = 0.226 in the SC
state.

based entirely on antinodal studies, unlike that of Ref. [10].
Concerning the PG endpoint in the normal state, our earlier
results [13] are in good agreement with antinodal ARPES
analysis [10,14]. In this last case ARPES and Raman probe
both antinodal quasiparticles.

Our results strongly suggest that the superconducting
PG, as in the normal state, is sensitive to the topology of
the underlying Fermi surface since close to pc a Lifshitz
transition takes place from a holelike to an electronlike Fermi
surface. This behavior must be contrasted with the one of the
superconducting order parameter, which appears unaltered by
the Lifshitz transition. On the overdoped side pseudogap and
superconductivity evolve then independently of each other.
Furthermore, if the PG disappearance were a phase transition,
it would be a first order one. This is expected for a Lifshitz
transition of electrons coupled to a lattice [59,60].

On the theory side, the relation between the pseudogap
and the Lifshitz transition is not a well settled issue. The
slowing down of the CDMFT solution approaching the van
Hove doping level in concomitant with a strong decreasing of
the dip depth is compatible with the experimental scenario,
though future CDMFT improvements are needed to settle
this issue. Interestingly, recent CDMFT calculations find
that the pseudogap only exists when the Fermi surface is
holelike [61,62].

VI. CONCLUSION

In conclusion, we have shown that the peak-dip structure
in the Raman B1g spectra, which is the hallmark of the PG in
the SC phase, is a universal feature of the hole-doped cuprates.
Following the PP-dip evolution with doping and temperature in
the case of Bi-2212, we show that the pseudogap persists on the
overdoped side before disappearing abruptly and its end draws
a vertical line in the T -p phase diagram just in between p =
0.222 and p = 0.226. This corresponds to the same doping
range where the normal-state pseudogap collapses, following
up a Lifshitz transition of the Bi-2212 antibonding band, where
the Fermi surface changes from holelike to electronlike.
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APPENDIX A: DETAILS OF THE RAMAN EXPERIMENTS

Raman experiments have been carried out using a JY-
T64000 spectrometer in single grating configuration us-
ing a 600 grooves/mm grating and a Thorlabs NF533-
17 notch filter to block the stray light. The spectrom-
eter is equipped with a nitrogen cooled back illumi-
nated 2048 × 512 CCD detector. Two laser excitation
lines were used: 532 nm and 647.1 nm from, respec-
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Fig. 1: Cuprate temperature-doping phase diagram. Long-range antiferromagnetic order (solid 

green line) gives way to superconductivity (solid blue line) near ݌ = 0.05. Orange diamonds 

designate dopings where quantum oscillations have been observed previously[52, 53], and 

stars denote the new dopings presented in this paper. Short-range antiferromagnetic order 

(green diamonds) terminates at a quantum critical point at ݌ = 0.08 [46, 54]; beyond 

݌ = 0.08, short-range charge order onsets above ௖ܶ (solid black diamonds [15, 27]). The 

charge order, the onset of the pseudogap (as defined by neutron spin-flip scattering (open red 

circles)[12], the polar Kerr effect (open red diamonds[13]), and the change in the slope of 

resistivity with temperature (open red triangles[55])) terminate near ݌ = 0.18, suggesting the 

possibility of a quantum critical point at this doping. Two thermodynamic quantities show 

enhancement near the critical dopings: the jump in the specific heat at ௖ܶ(ȟߛ, maroon 

diamonds [40, 41]), and the upper critical field (ܪ௖ଶ, purple points [39]). 
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FIG. 20: The phase diagram of LSCO showing the Nernst
region between Tc and Tonset (numbers on the contour curves
indicate the value of the Nernst coefficient ν in µV/KT). The
curve of Tonset vs. x has end-points at x = 0.03 and x = 0.26,
and peaks conspicuously near 0.10. The dashed line is T ∗

estimated from heat capacity measurements.

reflects the shrinking with increasing field of the length
scale over which phase stiffness holds. This loss occurs
in the field interval between Hm and the Hridge curve
(dashed line in Fig. 13). In Bi-based cuprates this loss is
quite gradual, whereas in OP/OV YBCO and LSCO it
is abrupt (Figs. 3 and 14, respectively). Further, above
Hm, the dissipation climbs much more rapidly than pre-
scribed by the Bardeen-Stephen law. This rapid increase
implies a very weak damping viscosity η and is known as
the fast-vortex problem (Sec. XI).

VIII. PHASE DIAGRAM, ONSET
TEMPERATURE AND MAGNITUDE

In the phase diagram of the cuprates, superconduc-
tivity occupies a dome-shaped region defined by the
curve of Tc vs. x. The pseudogap temperature T ∗ de-
creases monotonically from the scale 300-350 K to termi-
nate at the end-point xp (the Nernst experiments along
with many experiments indicate that xp ∼ 0.26, but
other groups [71] favor xp = 0.19). As reported previ-
ously [19, 23], in the phase diagram of LSCO, the onset
temperature of the Nernst signal Tonset falls between T ∗

and Tc. As x increases from 0.03, Tonset rises steeply to
a maximum value of 130 K at 0.10 and then falls more
gradually to a value near zero at ∼0.27 (Fig. 20).

We turn next to Tonset in bilayer Bi 2212. In Fig. 21,
we display the variation of Tonset in the 5 crystals inves-
tigated to date. The hole density x is estimated from the
empirical formula Tc(x) = Tc,max[1 − 82.6(x − 0.16)2],
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phole density
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FIG. 21: The phase diagram of Bi 2212 showing the Nernst
region between Tonset and Tc (based on Nernst measurements
on 5 crystals). As in LSCO (Fig. 20), the Nernst region does
not extend to the pseudogap temperature T ∗ on the OP and
OV side. In the UD regime, Tonset shows a decreasing trend
as x decreases below 0.15.

with Tc,max = 91 K [72]. The curve of Tonset shares
key features with that found in LSCO. As in LSCO, the
superconducting dome in Bi 2212 is nested inside the
curve of Tonset vs. x which lies under the curve of T ∗.
Whereas T ∗ appears to continue to increase as x falls be-
low 0.10, Tonset deviates downwards in qualitative sim-
ilarity with LSCO. The interval between Tonset and Tc

becomes systematically narrower towards the OV side,
but it remains quite broad on the UD side. Interestingly,
the maximum value of Tonset (∼130 K) is close to the
maximum in LSCO, despite the large difference in maxi-
mum Tc in the 2 families. The maximum value in YBCO
is ∼ 130 K as well. However, in the Hg-based cuprates,
evidence from torque magnetometry suggests that Tonset

lies higher [73].
In the phase diagrams in Figs. 20 and 21, the nest-

ing of the Tc dome within the curve of Tonset under-
scores once more the continuity of the region in which
the vortex-Nernst signal is observed with the region un-
der the superconducting dome. The high-temperature
eN associated with vortices is observed only inside the
superconducting dome. Once we move outside (either on
the UD or OV side), eN becomes very small. In LSCO
with x = 0.03 and 0.26, the tilted hill profile character-
istic of vortex flow is completely absent. Instead, the
observed eN is small and H-linear to fields as high as 33
T, which is characteristic of the qp current.

On the UD side, the rapid vanishing of the vortex-
Nernst signal for samples with x = 0.03, 0.05 and 0.07 was
already analyzed in detail in Ref. [19]. Because the vortex
signal is rapidly decreasing relative to the qp signal, it is

Ong 2005
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FIG. 2. (Color online) Nernst coe�cient ⌫ of YBCO at a
hole doping of p=0.12, plotted as ⌫ /T versus temperature T
for di↵erent magnetic fields (H =1T to 15T), as indicated.
The thermal gradient is applied in the b direction of the
orthorhombic crystal structure. Data are reproduced from
Ref. [20]. (a) The vertical line marks the superconducting
transition temperature at H =0, Tc =66.0K. (b) Zoom near
Tc, to show how Tmin is defined: it is the temperature at
which the Nernst signal at H =1T goes through a minimum,
at the foot of the large positive peak due to superconductiv-
ity. (c) Zoom at high temperature, where only quasiparticles
contribute to the Nernst signal. T⌫ (arrow) is defined as the
temperature below which ⌫(T ) /T starts to deviate down-
wards from its high-temperature linear behaviour.

positive Hall coe�cient.

At low temperature, the magnitude of the quasiparticle
Nernst signal is given approximately by [22–24]:

|⌫|
T

⇡ ⇡
2

3

k
2
B

e

µ

✏F
, (2)

where ⌫⌘N /H is the Nernst coe�cient, H is the mag-
netic field, T is the temperature, kB is Boltzmann’s con-
stant, e is the electron charge, µ is the carrier mobil-
ity, and ✏F is the Fermi energy. Eq. 2 works remarkably
well as a universal expression for the Nernst coe�cient
of metals at T ! 0, accurate within a factor two or so in
a wide range of materials [22]. It explains why a phase
transition that reconstructs a large Fermi surface into
small pockets (with small ✏F) can cause a major enhance-
ment of ⌫. The heavy-fermion metal URu2Si2 provides
a good example of this. As the temperature drops be-
low its transition to a metallic state with reconstructed
Fermi surface at 17K, the carrier density n (or ✏F) falls
and the mobility rises, both by roughly a factor 10, and
⌫ /T increases by a factor 100 or so [33]. Note that the
electrical resistivity ⇢(T ) is a↵ected only weakly by these
dramatic changes [34], since mobility and carrier den-
sity are modified in ways that compensate in the con-
ductivity �=1/ ⇢=neµ. This is why the Nernst e↵ect
can be a more sensitive probe of electronic transforma-
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FIG. 3. (Color online) Temperature-doping phase diagram
of YBCO, showing three characteristic temperatures. The
transition temperature Tc (open black circles) marks the on-
set of superconductivity in zero magnetic field, below which
the electrical resistivity is zero. The solid black line is a
guide to the eye through the Tc data points. The dotted
black line is a smooth extension of this line assuming that
the superconducting phase ends at a critical doping pc =0.27.
Blue diamonds mark Tmin (defined in Fig. 2(b)), the tem-
perature below which superconducting fluctuations become
significant (from a-axis data in Ref. [20]). The open diamond
shows Tmin for a previously measured sample with p=0.1 [30].
The solid blue line is a guide to the eye. Red circles mark
T⇢, the temperature below which the resistivity ⇢(T ) devi-
ates from its high-temperature linear dependence (from data
in Ref. [12]), a standard definition of the pseudogap tem-
perature T

? in YBCO [31] (see Fig. 5(a)). The open red
circle shows T⇢ for a sample with p=0.18 in which a high
level of disorder scattering was introduced by electron irradi-
ation [32]. In this case, T⇢ marks the onset of an upturn in
⇢(T ) (see text). Red squares mark T⌫ (defined in Fig. 2(c)),
the temperature below which the quasiparticle Nernst signal
departs from its high-temperature behaviour (from present
work and Ref. [20]). One can see that within error bars,
T⌫ 'T⇢, both measures of T ?. The red dashed line is a lin-
ear fit through the T

? data points. Beyond p=0.18, it is a
guide to the eye extending smoothly to reach p= p

? at T =0
(red diamond). p

? is the critical doping where the pseudo-
gap phase ends at T =0 in the absence of superconductivity.
In YBCO, p? =0.195± 0.005 [6]. The grey band marks the
range of T

? values measured in Bi-2212 from spectroscopic
probes (ARPES, STS and SIS) [15], detected up to p' 0.22.

tions, such as density-wave transitions, than the resis-
tivity. Here we use it to study the pseudogap phase of
cuprate superconductors. In Fig. 1, we illustrate how the
two contributions to the Nernst coe�cient, from quasi-
particles (red) and superconducting fluctuations (blue),
respectively, evolve with temperature, for YBCO (left)
and LSCO (right).

2

it is found to agree with T⇢ from resistivity. However,
there is no agreement on the location of p?. In Bi-2201,
STM measurements suggest that p

?
>pc2, the critical

doping below which superconductivity emerges at
high doping [16], while NMR measurements show that
p
?
<pc [17]. In Bi-2212, STM measurements find that

p
? =0.19 (in the superconducting state) [18], while

Raman measurements find p
? =0.22 (in the normal

state) [19].
In this Article, we show that the Nernst e↵ect can be

used to detect T ?, not only in YBCO and HgBa2CuO4+�

(Hg-1201), as shown previously [20,21], but also in the
LSCO-based cuprates (Fig. 1). We present new data
on YBCO, Nd-LSCO and Eu-LSCO, and combine these
with published data on LSCO, Nd-LSCO and Eu-LSCO
to determine the pseudogap boundary in all four mate-
rials. We find that the three LSCO-based cuprates have
the same T

?(p) line up to p' 0.17, irrespective of their
di↵erent crystal structures. This suggests that the in-
teractions responsible for the pseudogap have the same
strength. From the fact that p? is quite di↵erent in LSCO
and Nd-LSCO (0.18 vs 0.23), we infer that additional
mechanisms must dictate the location of the T =0 crit-
ical point. T

? lies on a line that connects TN at p=0,
the Néel temperature for antiferromagnetic order at zero
doping, to pc2. In YBCO, we again find that T ? lies on a
line connecting TN and pc2, even if TN is now a factor 1.5
larger. In other words, T ? in YBCO is 1.5 times larger
than in LSCO. This suggests a link between antiferro-
magnetism, pseudogap and superconductivity.
The Article is organized as follows. In sec. II, we give

a brief introduction to the Nernst e↵ect. In sec. III,
we establish the T

?(p) line for YBCO. In sec. IV, we
establish the T

?(p) line for LSCO, Nd-LSCO and Eu-
LSCO. We show in detail how T

? is independent of crys-
tal structure. In the discussion (sec. V), we compare
YBCO and LSCO, and draw general observations about
the pseudogap phase. We also plot the onset tempera-
tures of various orders on the phase diagrams of YBCO
and LSCO and discuss the implications. In the Appendix
(sec. VIII), we show how superconducting fluctuations in
YBCO and LSCO are limited to a region close to Tc,
well below T

?(p), and explain why previous interpreta-
tions suggested a much wider regime of fluctuations.

II. THE NERNST EFFECT

The Nernst e↵ect is the development of a transverse
electric field Ey across the width (y axis) of a metallic
sample when a temperature gradient @T / @x is applied
along its length (x axis) in the presence of a perpendicular
magnetic fieldH (along the z axis). Two mechanisms can
give rise to a Nernst signal N ⌘Ey / (� @T / @x) [22–24]:
superconducting fluctuations [25–27], which give a pos-
itive signal, and charge carriers (quasiparticles), which
can give a signal of either sign. The focus of this Article
is on the quasiparticle contribution to the Nernst e↵ect

�/
 T
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YBCOSC
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FIG. 1. (Color online) Cartoon illustrating the behaviour of
the Nernst coe�cient ⌫ in cuprate superconductors, plotted
as ⌫ /T vs T . The quasiparticle signal (QP, red) goes from
small at high T to large at low T , with a change of sign. It is
independent of magnetic field. The change occurs upon en-
tering the pseudogap phase, by crossing below a temperature
T⌫ =T

? (arrow). In YBCO (and Hg1201), ⌫ is positive at
high T (left panel), while in LSCO (and Nd/Eu-LSCO), ⌫ is
negative at high T . The superconducting signal (SC, blue)
develops below a temperature TB (arrow) slightly above the
zero-field Tc (vertical dotted line). It is always positive and
it is suppressed by a magnetic field.

in cuprates.
In the Appendix, we discuss the contribution of super-

conducting fluctuations to the Nernst signal in cuprates
and explain how the traditional assumption that it is the
only significant contribution is mistaken. We discrimi-
nate between the superconducting signal and the quasi-
particle signal by using the fact that only the former is
suppressed by a magnetic field. We show that the regime
of significant superconducting fluctuations is a relatively
narrow band that tracks Tc, completely distinct from T

?.
This confirms that the pseudogap phase is not caused by
fluctuations in the phase and / or the amplitude of the
superconducting order parameter.
The Nernst signal is related to the conductivity �

$ and
thermoelectric ↵

$ tensors via

N =
↵xy�xx � ↵xx�xy

�2
xx + �2

xy

' ↵xy

�xx
� S

�xy

�xx
, (1)

where S⌘↵xx /�xx is the Seebeck coe�cient. In-plane
isotropy is assumed (�xx =�yy) and the approximate ex-
pression on the right holds for �2

xx ��
2
xy.

The sign of N will thus depend on the relative
magnitude of ↵xy�xx and ↵xx�xy. In a single-band
metal with an energy-independent Hall angle ✓H, where
tan ✓H ⌘�xy /�xx, the two terms are equal and thus
N =0 [22–24]. This is the so-called Sondheimer cancella-
tion. An energy dependence of ✓H will o↵set this equal-
ity in a direction which is di�cult to predict, resulting
in a finite N whose sign can be either positive or nega-
tive [22–24]. In general, the sign of N in metals is not
understood. Even in single-band metals like overdoped
cuprates, it is unclear why N > 0 in the electron-doped
material Pr2�xCexCuO4 (PCCO) [28] and N < 0 in the
hole-doped material Nd-LSCO [29], since both have a
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model that proposed that the circulating super-
currents weaken the superconducting order pa-
rameter and allow the local appearance of a
coexisting spin density wave (SDW) and HTSC
phase (23) surrounding the core. In a more
recent model, which is an extension of (5) and
(22), the effective mass associated with spin
fluctuations results in an AF localization length
that might be substantially greater than the core
radius (30). An associated appearance of charge
density wave order was also predicted (31)
whose effects on the HTSC quasi-particles
should be detectable in the regions surrounding
the vortex core (23).

To test these ideas, we apply our recently
developed techniques of low-energy quasi-par-
ticle imaging at HTSC vortices (21). We choose
to study Bi-2212, because YBCO and LSCO
have proven nonideal for spectroscopic studies
because their cleaved surfaces often exhibit
nonsuperconducting spectra. Our “as-grown”
Bi-2212 crystals are generated by the floating
zone method, are slightly overdoped with Tc !
89 K, and contain 0.5% of Ni impurity atoms.
They are cleaved (at the BiO plane) in cryogen-
ic ultrahigh vacuum below 30 K and immedi-
ately inserted into the STM head. Figure 1A
shows a topographic image of the 560 Å square
area where all the STM measurements reported
here were carried out. The atomic resolution
and the supermodulation (with wavelength
"26 Å oriented at 45° to the Cu-O bond direc-
tions) are evident throughout.

To study effects of the magnetic field B on
the superconducting electronic structure, we
first acquire zero-field maps of the differential
tunneling conductance (G ! dI/dV) measured
at all locations (x, y) in the field of view (FOV)
of Fig. 1A. Because LDOS(E ! eV) # G(V ),
where V is the sample bias voltage, this results
in a two-dimensional map of the local density
of states LDOS(E, x, y, B ! 0). We acquire
these LDOS maps at energies ranging from –12
meV to $12 meV in 1-meV increments. The B
field is then ramped to its target value, and, after
any drift has stabilized, we remeasure the topo-
graph with the same resolution. The FOV
where the high-field LDOS measurements are
to be made is then matched to that in Fig. 1A
within 1 Å ("0.25a0) by comparing character-
istic topographic/spectroscopic features. Final-
ly, we acquire the high-field LDOS maps,
LDOS(E, x, y, B), at the same series of energies
as the zero-field case.

To focus preferentially on B field effects,
we define a type of two-dimensional map:

S E1

E2(x, y, B) ! !
E1

E2

%LDOS&E, x, y, B'

! LDOS&E, x, y, 0'(dE (1)

which represents the integral of all additional
spectral density induced by the B field be-
tween the energies E1 and E2 at each location

(x, y). We use this technique of combined
electronic background subtraction and energy
integration to enhance the signal-to-noise ra-
tio of the vortex-induced states. In Bi-2212,
these states are broadly distributed in energy
around )7 meV (21), so S)1

)12(x, y, B) effec-
tively maps the additional spectral strength
under their peaks.

Figure 1B is an image of S1
12(x, y, 5)

measured in the FOV of Fig. 1A. The loca-
tions of seven vortices are evident as the
darker regions of dimension "100 Å. Each
vortex displays a spatial structure in the inte-
grated LDOS consisting of a checkerboard
pattern oriented along Cu-O bonds. We have
observed spatial structure with the same pe-
riodicity and orientation, in the vortex-in-
duced LDOS on multiple samples and at
fields ranging from 2 to 7 T. In all 35 vortices
studied in detail, this spatial and energetic
structure exists, but the checkerboard is more
clearly resolved by the positive-bias peak.

We show the power spectrum from the
two-dimensional Fourier transform of
S1

12(x, y, 5),PS[S1
12(x, y, 5)]!{FT%S1

12&x, y, 5)]}2,
in Fig. 2A and a labeled schematic of these
results in Fig. 2B. In these k-space images,
the atomic periodicity is detected at the points
labeled by A, which by definition are at
(0,)1) and ()1,0). The harmonics of the
supermodulation are identified by the sym-
bols B1 and B2. These features (A, B1, and
B2) are observed in the Fourier transforms of
all LDOS maps, independent of magnetic
field, and they remain as a small background
signal in PS[S1

12(x, y, 5)] because the zero-
field and high-field LDOS images can only
be matched to within 1 Å before subtraction.
Most importantly, PS[S1

12(x, y, 5)] reveals
new peaks at the four k-space points, which
correspond to the spatial structure of the vor-
tex-induced quasi-particle states. We label
their locations C. No similar peaks in the
spectral weight exist at these points in the
two-dimensional Fourier transform of these
zero-field LDOS maps.

To quantify these results, we fit a Lorent-
zian to PS[S1

12(x, y, 5)] at each of the four
points labeled C in Fig. 2B. We find that they
occur at k-space radius 0.062 Å*1 with width
+ ! 0.011 ) 0.002 Å*1. Figure 2C shows
the value of PS[S1

12(x, y, 5)] measured along
the dashed line in Fig. 2B. The central peak
associated with long-wavelength structure,
the peak associated with the atoms, and the
peak due to the vortex-induced quasi-particle
states are all evident. The vortex-induced
states identified by this means occur at ()1/4,
0) and (0, )1/4) to within the accuracy of the
measurement. Equivalently, the checkerboard
pattern evident in the LDOS has spatial peri-
odicity 4a0 oriented along the Cu-O bonds.
Furthermore, the width + of the Lorentzian
yields a spatial correlation length for these
LDOS oscillations of L ! (1/,+) - 30 ) 5

Å (or L - 7.8 ) 1.3a0). This is substantially
greater than the measured (21) core radius. It
is also evident in Figs. 1B and 2A that the
LDOS oscillations have stronger spectral
weight in one Cu-O direction than in the

Fig. 1. Topographic and spectroscopic images of
the same area of a Bi-2212 surface. (A) A topo-
graphic image of the 560 Å field of view (FOV ) in
which the vortex studies were carried out. The
supermodulation can be seen clearly along with
some effects of electronic inhomogeneity. The
Cu–O–Cu bonds are oriented at 45° to the su-
permodulation. Atomic resolution is evident
throughout, and the inset shows a 140 Å square
FOV at .2 magnification to make this easier to
see. The mean Bi-Bi distance apparent here is
a0 ! 3.83 Å and is identical to the mean Cu-Cu
distance in the CuO plane "5 Å below. (B) A map
of S1

12(x, y, 5) showing the additional LDOS in-
duced by the seven vortices. Each vortex is ap-
parent as a checkerboard at 45° to the page
orientation. Not all are identical, most likely be-
cause of the effects of electronic inhomogeneity.
The units of S1

12(x, y, 5) are picoamps because it
represents /dI/dV!0V. In this energy range, the
maximum integrated LDOS at a vortex is "3
pA, as compared with the zero field integrated
LDOS of "1 pA. The latter is subtracted from
the former to give a maximum contrast of "2
pA. We also note that the integrated differen-
tial conductance between 0 and *200 meV is
200 pA because all measurements reported in
this paper were obtained at a junction resis-
tance of 1 gigaohm set at a bias voltage of
–200 mV.
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model that proposed that the circulating super-
currents weaken the superconducting order pa-
rameter and allow the local appearance of a
coexisting spin density wave (SDW) and HTSC
phase (23) surrounding the core. In a more
recent model, which is an extension of (5) and
(22), the effective mass associated with spin
fluctuations results in an AF localization length
that might be substantially greater than the core
radius (30). An associated appearance of charge
density wave order was also predicted (31)
whose effects on the HTSC quasi-particles
should be detectable in the regions surrounding
the vortex core (23).

To test these ideas, we apply our recently
developed techniques of low-energy quasi-par-
ticle imaging at HTSC vortices (21). We choose
to study Bi-2212, because YBCO and LSCO
have proven nonideal for spectroscopic studies
because their cleaved surfaces often exhibit
nonsuperconducting spectra. Our “as-grown”
Bi-2212 crystals are generated by the floating
zone method, are slightly overdoped with Tc !
89 K, and contain 0.5% of Ni impurity atoms.
They are cleaved (at the BiO plane) in cryogen-
ic ultrahigh vacuum below 30 K and immedi-
ately inserted into the STM head. Figure 1A
shows a topographic image of the 560 Å square
area where all the STM measurements reported
here were carried out. The atomic resolution
and the supermodulation (with wavelength
"26 Å oriented at 45° to the Cu-O bond direc-
tions) are evident throughout.

To study effects of the magnetic field B on
the superconducting electronic structure, we
first acquire zero-field maps of the differential
tunneling conductance (G ! dI/dV) measured
at all locations (x, y) in the field of view (FOV)
of Fig. 1A. Because LDOS(E ! eV) # G(V ),
where V is the sample bias voltage, this results
in a two-dimensional map of the local density
of states LDOS(E, x, y, B ! 0). We acquire
these LDOS maps at energies ranging from –12
meV to $12 meV in 1-meV increments. The B
field is then ramped to its target value, and, after
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graph with the same resolution. The FOV
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S E1

E2(x, y, B) ! !
E1

E2

%LDOS&E, x, y, B'

! LDOS&E, x, y, 0'(dE (1)
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)12(x, y, B) effec-
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Figure 1B is an image of S1
12(x, y, 5)

measured in the FOV of Fig. 1A. The loca-
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vortex displays a spatial structure in the inte-
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We show the power spectrum from the
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12(x, y, 5)] because the zero-
field and high-field LDOS images can only
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new peaks at the four k-space points, which
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Å (or L - 7.8 ) 1.3a0). This is substantially
greater than the measured (21) core radius. It
is also evident in Figs. 1B and 2A that the
LDOS oscillations have stronger spectral
weight in one Cu-O direction than in the

Fig. 1. Topographic and spectroscopic images of
the same area of a Bi-2212 surface. (A) A topo-
graphic image of the 560 Å field of view (FOV ) in
which the vortex studies were carried out. The
supermodulation can be seen clearly along with
some effects of electronic inhomogeneity. The
Cu–O–Cu bonds are oriented at 45° to the su-
permodulation. Atomic resolution is evident
throughout, and the inset shows a 140 Å square
FOV at .2 magnification to make this easier to
see. The mean Bi-Bi distance apparent here is
a0 ! 3.83 Å and is identical to the mean Cu-Cu
distance in the CuO plane "5 Å below. (B) A map
of S1

12(x, y, 5) showing the additional LDOS in-
duced by the seven vortices. Each vortex is ap-
parent as a checkerboard at 45° to the page
orientation. Not all are identical, most likely be-
cause of the effects of electronic inhomogeneity.
The units of S1

12(x, y, 5) are picoamps because it
represents /dI/dV!0V. In this energy range, the
maximum integrated LDOS at a vortex is "3
pA, as compared with the zero field integrated
LDOS of "1 pA. The latter is subtracted from
the former to give a maximum contrast of "2
pA. We also note that the integrated differen-
tial conductance between 0 and *200 meV is
200 pA because all measurements reported in
this paper were obtained at a junction resis-
tance of 1 gigaohm set at a bias voltage of
–200 mV.
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Charge modulations in strong competition with SC stat

Kapitulnik, 2002
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Figure 26. Pressure dependence of the CDW and superconducting phase transitions of NbSe3, o-TaS3,
m-TaS3 and (TaSe4)2I. Reprinted figure with permission from M. Nunez-Regueiro et al., Synthetic Metals
55–57, p. 2653, 1993 [165]. Copyright (1993) by the Elsevier.

CDW can be suppressed. The strong el–ph interaction becomes then available for generating a
superconducting state whose the transition temperature is now given by

Tc = 1.44θD exp
(

− 1
λs

)
= 1.44θD exp

[
− 1

N(EF)V

]
, (35)

where V is the electron pairing potential, θD the Debye temperature.
Pressure dependence up to 10 GPa [165,166](The author acknowledges M. Núñez-Regueiro

for having collected all his data [165,166] in this single figure.) of CDW and superconducting
transition temperatures is shown in Figure 26 for NbSe3, both phases of TaS3 and (TaSe4)2I. SC
occurs in NbSe3, o-TaS3 and (TaSe4)2I when the CDW is suppressed. No zero resistivity was
measured in o-TaS3 indicating likely a filamentary type of SC. TCDW for the upper transition in
m-TaS3 and for (TaSe4)2I first increases with pressure, followed by a decrease with increasing
pressure.

It was shown [167] that the lower CDW in NbSe3 is suppressed at a critical pressure of
about P2 = 0.75 GPa while SC appears, with Tc rising rapidly to 3.3 K. It was noted that the
logarithmic pressure slope of TP2 is approximately the same as that of Tc, suggesting that both,
the low-temperature CDW and SC above P2, occur on the same crystallographic chains. The same
behaviour is observed for the upper CDW suppressed [166] around P1 = 4 GPa. Tc increases with
increasing pressure above 2.5 GPa and exhibits the maximum value near P1, while it decreases
gradually up to 7.2 GPa. It was also suggested [166] that the SC above P1 and the high T CDW
occur on the same chains (type III) and that SC and CDW coexist between 2.5 and 3.5 GPa.

Data shown in Figure 26 were obtained using an opposite-type anvil device with steatite as
a solid pressure-transmitting medium [165–167]. This results in some pressure inhomogeneity
leading to broad superconducting transitions. Homogeneous high pressure set-up has been devel-
oped [169] using a cubic anvil device with Daphne 7373 oil as a pressure-transmitting medium. The
superconducting transition of NbSe3 under pressure using the cubic anvils are shown in Figure 27.
Extremely sharp superconducting transitions are observed [168] above 3.2 GPa. The broad tran-
sitions around 2.6 GPa cannot be attributed to the pressure inhomogeneity but correspond to the
coexistence between CDW and SC as shown in Figure 58(b).

Presence of competing orders
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Induced long-range phase correlation
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             random phase distribution :

            centered distribution :
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Emergent symmetry



QDW

SC

✓

SU(2)-rotations

  Emergent symmetries in the under-doped regime 

Sachdev et al (2013)

Efetov, Meier, CP (2013)

Degenerescence of 
levels:

accidental ?
symmetry related ?

At some energy scale in the phase 
diagrams  SC and Charge sectors are 

related by and SU(2) symmetry

2

following way :

⌘ =

⌘† = .

With these definitions, the SU(2) algebra
R
is verified.

The operators (⌘, ⌘†) have the form of a superconduct-
ing order parameter with finite momentum equal to the
momentum of the charge modulaltions. They carry the
di↵erence of phases between the charge and pairing order
parameters.

The T⇤ line as a Higgs mechanism

The SU(2) structure exposed above admits a few exact
exact realizations. In the case of the attractive Hubbard
model at half-filling, the symmetry is fully realized with a
commensurate modulation wave vector Q = (⇡,⇡). The
eight hot spots model provides as well a realization of the
SU(2) symmetry with incommensurate modulation wave
vector relying two adjacent hot spots on the diagonal. Al-
though the SU(2) emergent symmetry leads to a robust
phenomenology for the competition of charde modula-
tiosn and sueprconductivity, which matches a good num-
ber of experimental observations, its weakness is that it
is fragile. In the case of the half-filled Hubbard model for
example, a few percent of doping destroy the exact SU(2)
symmetry. In the remaining of this paper we give a mech-
anism by which the SU(2) fluctations are protected by a
Higgs mechanism, and although the exact SU(2) sym-
metry is not exactly verified (for example in the ground
state) tehre exists a wide regime of temperature where
the SU(2) gaps area already formed whereas fluctuations
are still present. Let’s have two complex order param-
eters z1 and z2 forming a spinor  = (z1, z2). In our
case we take z1 = SC and z2 = charge. We consider the
following Lagrangian

LCP 1 =
1

2g
|Dµ |2 + V ( ) , (1)

where Dµ = @µ � iAµ, and  † = ( ⇤)T . The potential
V ( ) is such that the lagrangian in Eq.(1) is invariant
under the gauge transformation

 ! ei✓ , (2)

and meanwhile Aµ ! Aµ � @µ✓. The form of the poten-
tial requires only generically a bi-linear structure in  ,

V ( ) ⇠  †Â , with Â a generic 2x2 matrix. The phase
✓ is the same for both components of the spinor  . To
the U(1) gauge invariance of the lagrangian Eq.(1) can
be associated a Higgs mecanism, a freezing of the phase
✓ correlated with the opening of a gap. In order to see
which gap is opening, one first evaluates the gauge field
Aµ. Using the parametrization  = ei✓ (z1, z2) and solv-
ing for the minimiztion equation �LCP 1/�Aµ = 0 leads to
Aµ = @µ✓. It is instructive to compare with the simpler
field lagrangien

L� =
1

2g
|Dµ�|2 + V (�) , (3)

where � = ei✓
q

|z1|2 + |z2|2. The same minimization

�L�/�Aµ = 0 leads to Aµ = @µ✓. The equivalent U(1)
gauge structure between LCP 1 and L� bring the conclu-
sion that the freezing of the phase ✓ corresponds to the
opening of a gap �⇤ in the field � , with

q
|z1|2 + |z2|2 = �⇤. (4)

In order to complete the proof, one can go back to the
Eq.(1), and check that upon condensation of | |0 = �⇤ =q
|z1|2 + |z2|2, the Golgstone boson Aµ becomes massive

with a contribution to the Lagrangian

�LCP 1 =
1

2
m2

AAµA
µ, mA =

p
2�⇤. (5)

. The diagram is represented in Fig. [#] and one can
check that the leading order, the condensate contribution
to the polarization amplitude leads the inverse propaga-
tor D�1

Aµ
= hT AµA⌫i�1 = im2

A

�
gµ⌫ � kµk⌫

k2

�
.

The Higgs mechanism exposed above has deep roots
into the Hopf fibration of the sphere S3 which can be
factorized into S2 by taking out a U(1) phase, S3 ⇠
U(1)⇥ S2. Take Eq.

Experimental consequences
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Pseudo-gap from quantum criticality
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AFM QCP in d=2

2

the effective SU(2) non-linear σ-model are strong and
prevent the two suborders from disentangling. Here
the two suborders are mixed together but fluctuations
destroy any long-range order.

In this paper, we generalize the non-linear σ-model
derived in Ref. [16] and include an external magnetic
field B affecting the orbital motion. As the electron pair-
ing is purely singlet, effects of the magnetic field on the
electron spins is negligible. The magnetic field B favors
the QDW suborder of the pseudogap. Sufficiently strong
fields B > B0 may even surmount the curvature thresh-
old and establish a QDW phase at low temperatures. The
system is thus allowed to switch between the two subor-
ders, superconductivity and QDW, which is controlled by
the strength of the applied field. At the critical field B0,
the system is degenerate between superconducting and
particle-hole order states. The fact that such a simple
switching mechanism might be at the heart of the physics
of the pseudogap state in the cuprates is remarkable by
itself and may even have the potential to restrain the
window of validity of theoretical interpretations.

Our main results are illustrated by Fig. 1 representing
in the T -B plane the regions of QDW, d-wave supercon-
ductivity (SC), and the pseudogap state. We see that
the border between the QDW and SC state is flat at low
temperatures while QDW–pseudogap and SC–pseudogap
borders depend on the magnetic field B only logarithmi-
cally. This picture agrees very well with the experimental
T -B phase diagram of Ref. [15].

FIG. 1: (Color online) B-T phase diagram following our
analysis of the fluctuations around the mean-field order pa-
rameter of the spin-fermion model. The quadrupole density
wave (QDW) state shows up only for magnetic fields exceed-
ing the critical field BQDW from Eq. (14). The dark red
dots are from the sound velocity measurements reported in
Ref. [15] with B0 ≈ 18 T and Tc ≈ 60.7 K while the red
curve BQDW(T ) has been fitted to the experimental data with
the constraint that BQDW(Tc) = 2B0, cf. the discussion of
Eq. (13). The inset shows the elementary quadrupole in the
Cu-O plane.

Model for the pseudogap state. We investigate the
pseudogap state in the cuprate superconductors begin-
ning with an effective spin-fermion model (see, e.g.,
Refs. [17, 18]) that describes electrons interacting with
quantum critical antiferromagnetic paramagnons. The
Lagrangian for the (2+1)-dimensional model is written
as

L = χ† (∂τ + ε(−i!∇) + λ&φ&σ
)
χ . (1)

The field &φ describes the paramagnons that couple to the
spin &σ of the electronic fields χ. Paramagnon excitations
are modeled by the correlation function

〈φiω,kφ
j
−ω,−k〉 ∝

δij
(ω/vs)2 + (k−Q)2 + a

(2)

where vs is the wave velocity and Q the antiferromag-
netic ordering vector below the QCP. The distance to
the QCP is controlled by the parameter a with the QCP
itself situated at a = 0. In this study, we consider the
region in the proximity to the QCP to its right (a ≥ 0)
but, at finite temperatures, the result should also quali-
tatively apply to the near quantum critical region on its
left (a < 0).

The mean-field analysis [16] of the spin-fermion
model (1) indicates that below a temperature T ∗, or-
ders in both superconducting and particle-hole channel
emerge and combine to form a composite order parame-
ter O(ε) = b(ε)u with b(ε) a function of fermionic Mat-
subara frequencies and u denoting an SU(2) matrix in
the Gor’kov-Nambu particle-hole space. The typical en-
ergy scale of the function b (ε) is of order kBT ∗. The
matrix u can be parametrized in terms of two complex
order parameters ∆+ and ∆− for superconducting and
particle-hole suborders, respectively,

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
(3)

while unitarity imposes the constraint |∆+|2+|∆−|2 = 1.
As shown in Ref. [16], fluctuations around a particular

mean-field solution are accurately described in terms of
a two-dimensional SU(2) non-linear σ-model. At tem-
peratures T > 0, the partition function for the low-lying
Goldstone modes has the form Z =

∫
exp(−F)Du with

F =
1

t

∫
tr
[
∇u†∇u+ κ2u†τ3uτ3

]
d2r . (4)

The coupling constant t is related to microscopic parame-
ters as t = (8π/J1 sin δ) (kBT/!vS), where v is the Fermi
velocity, S the typical size of a hot spot on the Fermi
surface covered by the gap, and δ the angle between the
Fermi velocities at two hot spots connected by the order-
ing vector Q [19]. For T < T ∗, J1 ∼ J̄1 ≈ 0.25 whereas
approaching T ∗, J1 turns to zero (cf. the supplemental
material of Ref. [16]). The temperature T ∗ itself may be
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destroy any long-range order.
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are modeled by the correlation function
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where vs is the wave velocity and Q the antiferromag-
netic ordering vector below the QCP. The distance to
the QCP is controlled by the parameter a with the QCP
itself situated at a = 0. In this study, we consider the
region in the proximity to the QCP to its right (a ≥ 0)
but, at finite temperatures, the result should also quali-
tatively apply to the near quantum critical region on its
left (a < 0).

The mean-field analysis [16] of the spin-fermion
model (1) indicates that below a temperature T ∗, or-
ders in both superconducting and particle-hole channel
emerge and combine to form a composite order parame-
ter O(ε) = b(ε)u with b(ε) a function of fermionic Mat-
subara frequencies and u denoting an SU(2) matrix in
the Gor’kov-Nambu particle-hole space. The typical en-
ergy scale of the function b (ε) is of order kBT ∗. The
matrix u can be parametrized in terms of two complex
order parameters ∆+ and ∆− for superconducting and
particle-hole suborders, respectively,

u =

(
∆− ∆+
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+ ∆∗
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(3)

while unitarity imposes the constraint |∆+|2+|∆−|2 = 1.
As shown in Ref. [16], fluctuations around a particular

mean-field solution are accurately described in terms of
a two-dimensional SU(2) non-linear σ-model. At tem-
peratures T > 0, the partition function for the low-lying
Goldstone modes has the form Z =

∫
exp(−F)Du with

F =
1

t

∫
tr
[
∇u†∇u+ κ2u†τ3uτ3

]
d2r . (4)

The coupling constant t is related to microscopic parame-
ters as t = (8π/J1 sin δ) (kBT/!vS), where v is the Fermi
velocity, S the typical size of a hot spot on the Fermi
surface covered by the gap, and δ the angle between the
Fermi velocities at two hot spots connected by the order-
ing vector Q [19]. For T < T ∗, J1 ∼ J̄1 ≈ 0.25 whereas
approaching T ∗, J1 turns to zero (cf. the supplemental
material of Ref. [16]). The temperature T ∗ itself may be

hot spot. Our RG approach, defined in terms of a cutoff !
which measures distance from the hot spot, is unable to regu-
late the first logarithm: the Fermi surface is present at mo-
menta all the way up to !.

An alternative RG is necessary to analyze the conse-
quences of the log-squared term. One possible approach is
that of Son,21 who introduced for the problem of fermions
coupled to a gauge field an RG defined in terms of momen-
tum shells a fixed distance from the Fermi surface. We leave
such investigations for future work.

VI. DENSITY VERTICES

In this section we focus attention on one of the interesting
consequences of the pseudospin symmetries of the critical
theory of the SDW transition, specified by Eq. !2.6". Note
that the pseudospin rotations can be performed indepen-
dently on different pairs of hot spots.

Under the operation in Eq. !2.6", the pairing operator !5.1"
in the particle-particle channel becomes exactly degenerate
with certain operators in the particle-hole channel which
connect opposite patches of the Fermi surface. Indeed, con-
sider spin-singlet operators that can be built out of fermions
coming from hot spots ! and −!. Using the spinor represen-
tation !2.3", we may write these as

V"#
! = Mij$%%!&i"%

−! & j#%!
! . !6.1"

The indices ", # of V"# carry spin 1 /2 under the indepen-
dent SU−!!2" and SU!!2" particle-hole symmetries. Hence,
we have a set of four degenerate operators. Choosing "=1,
#=1,

V11
! = Mij$%%!'i%

−!' j%!
! . !6.2"

The mixing matrix Mij is fixed by lattice symmetries to give
operators,

V(
!,Q! =!0,0" = $%%!!'1%

−!'1%!
! + ('2%

−!'2%!
! " , !6.3"

V(
!,Q! =!),)" = $%%!!'1%

−!'2%!
! + ('2%

−!'1%!
! " , !6.4"

which correspond to superconducting order parameters with
momenta !0,0" and !) ,)", respectively. The index (= *1
determines the parity of the operator under a reflection about
a lattice diagonal. Operator !6.3" was considered above. We
will not discuss the other operator !6.4" below; due to kine-
matics, its renormalization at one-loop order contains neither
the large-N enhancement, nor the unusual powers of loga-
rithm squared.

Now, let us discuss the particle-hole partners of Eq. !6.3".
Setting "=2, #=2 in Eq. !6.1" simply gives rise to the Her-
mitian conjugate of Eq. !6.3". On the other hand "=2, #
=1 gives the operators,

O(
! = '1%

−!†'1%
! + ('2%

−!†'2%
! . !6.5"

The other choice "=1, #=2 generates the Hermitian conju-
gates of Eq. !6.5". Following Fig. 19, the O(

! operators are
illustrated in Fig. 21. To determine the wavevectors of these

operators, let the !=1, i=1 hot spot be at K! 1= !Kx ,Ky". !Note
that here we are using the principal axes of the square lattice
for the momentum coordinates, not the diagonal axes indi-
cated in Fig. 1." Then, from Fig. 1 we note that the !=1, i
=2 hot spot is at !−Ky ,−Kx", and so the value of the SDW
wave vector Q! = !) ,)" implies that Kx+Ky=). Also from
Fig. 1, the !=−1, i=1 hot spot is at !−Kx ,−Ky", and so we
conclude that the ordering wave vector of the first term in O(

1

is !2Kx ,2Ky". Similarly, the ordering wave vector of the sec-
ond term in O(

1 is seen to be !−2Ky ,−2Kx". Using Kx+Ky
=), we observe that these two ordering wave vectors are
actually equal and take the common value Q! 1=2Ky!−1,1",
which is therefore the momentum of the O(

1 order param-
eters, as shown in Fig. 19. Similarly, the momentum of the
O(

2 order parameters is seen to be Q! 2=2Ky!−1,−1". Thus the
O(

! represent density modulations along the diagonals of the
square lattice.

For a clearer physical interpretation of the O(
! orders, it is

useful to express them in terms of the lattice fermions ck!%,
where the momentum k! ranges over the full square lattice
Brillouin zone. Then by looking at the transformations of Eq.
!6.5" under all square lattice space group operations, and
under time reversal, we find that the O+

! are orders are char-
acterized by

#ck!−Q! !/2,%
† ck!+Q! !/2,%$ = O+

! f0!k!" , !6.6"

where f0!k!" is any periodic function on the Brillouin zone
that is invariant under the point group operations which leave
the wavevector Q! ! invariant, i.e., under the little group of Q! !.
Also time-reversal and inversion symmetries imply f0!k!" is
real and even. The little group consists only of reflections

FIG. 21. Spin singlet density operators !%'†'" of the electrons
at the != *1 hot spots of Fig. 1 !see also Fig. 19", shown with an
arrow pointing from the Brillouin zone location of '† to that of '.
The dashed arrows are the density operators in the first Brillouin
zone. The full arrows are in an extended zone scheme which shows
that these operators have net momentum Q! 1=2Ky!−1,1", where
!Kx ,Ky" is the location of the !=1, i=1 hot spot. The density op-
erator with opposite signs !(=−1" on the two arrows is enhanced
near the SDW critical point. Similarly the != *2 hot spots contrib-
ute density operators at Q! 2=2Ky!1,1".

QUANTUM PHASE… . II. SPIN DENSITY WAVE… PHYSICAL REVIEW B 82, 075128 !2010"

075128-17

SU(2)-symmetry

M. Metlitsky and S. Sachdev (2010)

Dispersion linearized around 8 hot spots

3

FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.

The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-

4

FIG. 2: Gap function. (a) The mean field solution b(ε, T )
at the hot spots as a function of the Matsubara frequency ε
and temperature T . All energies are measured in units of Γ.
(b) In our weak-coupling model, the gap b(0,p) is essentially
non-zero only in the vicinity of hot spots. The order param-
eter has opposite signs at the hot spots located on the same
arcs within the Brillouin zone of the Fermi surface, corre-
sponding to a d-wave-like symmetry. (c) The gap function for
the SF model on the square lattice appropriate to the cuprates
[cf. Fig. 1(b)] as obtained numerically in Ref.21. Note that
the gaps of two hot-spots adjacent to the same antinode are
smeared. Beyond the weak-coupling limit λ2 ! vp0, we may
expect them to merge into one single gap situated at the antin-
ode.

homogeneities and, as a result, lead to a d-wave-like de-
pendence on the position on the Fermi surface. We refer
to the state that emerges from the non-trivial solution of
Eqs. (6) as a pseudogap state.
The SU(2) matrix u reflects the degeneracy of the order

parameter O(ε) = b(ε)u and may be parametrised as

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
with |∆+|2 + |∆−|2 = 1 . (7)

The complex numbers ∆+ and ∆− should be inter-
preted as order parameters for the superconducting and
particle-hole order, respectively. In contrast to the con-
ventional superconductivity where electron-electron pairs
are formed, we have here quartets consisting of two par-
ticles and two holes, see Fig. 3 (a) and (b). Depending on
the relation between the horizontal and vertical coupling,
one of the pairings is more favourable but one should deal
with the entire quartet when considering fluctuations.

The nature of the particle-hole pairing in our theory
is different from those conjectured in SU(2) theories on
the basis of symmetries of t − J models1. Studying the
symmetries of this order, we find that the d-wave struc-
ture does not lead to local charge or current modulations.
However, as a consequence of the electron-hole pairing,
the rotational symmetry of the electron gas is broken,

FIG. 3: Pseudogap orders and phase diagram. Pair-
ing types of electrons and holes at opposite hot spots for (a)
quadrupole-density wave (QDW) order and (b) d-wave super-
conductivity. (c) In the phase diagram for the spin-fermion
model, AF denotes the antiferromagnetic (SDW) state, SC is
the phase of the d-wave superconductivity, and PG the pseu-
dogap state. The dashed line represents the solution of the
equation a(T ) = 0. The question mark “?” indicates that the
present consideration is not sufficient to identify the phase in
the region between AF and SC.

FIG. 4: Chequerboard structure. The quadrupole den-
sity amplitude (normalized to values between ±1) is repre-
sented in real space. It is incommensurate with the square
Cu lattice of the compound. The marked vectors are R± =
2πQ±/|Q±|2, cf. Fig. 1(b).

giving rise to finite modulated quadrupole density17

Dxy(r) ∝
∣∣∆−

∣∣ sin
(
Q+r− ϕ+

)
cos
(
Q−r− ϕ−

)
(8)

with ϕ+ and ϕ− denoting phases. This formula de-
scribes a spatial oscillation of the off-diagonal elements
of the quadrupole moment with the wave vectors Q+ =
(Q1 +Q2)/2 and Q− = (Q1 −Q2)/2, where Q1 and Q2

denote the vectors connecting two hot spots at ±p, cf.
Fig. 1(b) and (c). Note that the vectorsQ± are consider-
ably smaller than the SDW wave vector Q and that the
resulting chequerboard structure is incommensurate with
the original lattice. This new type of the particle-hole or-
der discovered within the SF model shall in the following
be referred to as a quadrupole density wave (QDW).

The appearance of a quadrupole structure becomes es-

SU(2) symmetry and 
fluctuations

Composite order parameter



evidence (explaining the rotational symmetry breaking) over a broad
temperature range in YBa2Cu3Oy (refs 14, 19–22). Therefore, instead
of being a defining property of the ordered state, the small amplitude of
the charge differentiation is more likely to be a consequence of stripe
order (the smectic phase of an electronic liquid crystal17) remaining
partly fluctuating (that is, nematic).

In stripe copper oxides, charge order at T 5 Tcharge is always accom-
panied by spin order at Tspin , Tcharge. Slowing down of the spin

fluctuations strongly enhances the spin–lattice (1/T1) and spin–spin
(1/T2) relaxation rates between Tcharge and Tspin for 139La nuclei. For
the more strongly hyperfine-coupled 63Cu, the relaxation rates become
so large that the Cu signal is gradually ‘wiped out’ on cooling below
Tcharge (refs 18, 23, 24). In contrast, the 63Cu(2) signal here in
YBa2Cu3Oy does not experience any intensity loss and 1/T1 does not
show any peak or enhancement as a function of temperature (Fig. 3).
Moreover, the anisotropy of the linewidth (Supplementary
Information) indicates that the spins, although staggered, align mostly
along the field (that is, c axis) direction, and the typical width of the
central lines at base temperature sets an upper magnitude for the static
spin polarization as small as gÆSzæ # 2 3 1023mB for both samples in
fields of ,30 T. These consistent observations rule out the presence of
magnetic order, in agreement with an earlier suggestion based on the
presence of free-electron-like Zeeman splitting6.

In stripe-ordered copper oxides, the strong increase of 1/T2 on
cooling below Tcharge is accompanied by a crossover of the time decay
of the spin-echo from the high-temperature Gaussian form
exp(2K(t/T2G)2) to an exponential form exp(2t/T2E)18,23. A similar
crossover occurs here, albeit in a less extreme manner because of the
absence of magnetic order: 1/T2 sharply increases below Tcharge and the
decay actually becomes a combination of exponential and Gaussian
decays (Fig. 3). In Supplementary Information we provide evidence
that the typical values of the 1/T2E below Tcharge imply that antiferro-
magnetic (or ‘spin-density-wave’) fluctuations are slow enough to
appear frozen on the timescale of a cyclotron orbit 1/vc < 10212 s.
In principle, such slow fluctuations could reconstruct the Fermi sur-
face, provided that spins are correlated over large enough distances25,26

(see also ref. 9). It is unclear whether this condition is fulfilled here. The
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Figure 4 | Phase diagram of underdoped YBa2Cu3Oy. The charge ordering
temperature Tcharge (defined as the onset of the Cu2F line splitting; blue open
circles) coincides with T0 (brown plus signs), the temperature at which the Hall
constant RH changes its sign. T0 is considered as the onset of the Fermi surface
reconstruction11–13. The continuous line represents the superconducting
transition temperature Tc. The dashed line indicates the speculative nature of
the extrapolation of the field-induced charge order. The magnetic transition
temperatures (Tspin) are from muon-spin-rotation (mSR) data (green stars)27. T0

and Tspin vanish close to the same critical concentration p 5 0.08. A scenario of
field-induced spin order has been predicted for p . 0.08 (ref. 8) by analogy with
La1.855Sr0.145CuO4, for which the non-magnetic ground state switches to
antiferromagnetic order in fields greater than a few teslas (ref. 7 and references
therein). Our work, however, shows that spin order does not occur up to ,30 T.
In contrast, the field-induced charge order reported here raises the question of
whether a similar field-dependent charge order actually underlies the field
dependence of the spin order in La22xSrxCuO4 and YBa2Cu3O6.45. Error bars
represent the uncertainty in defining the onset of the NMR line splitting (Fig. 1f
and Supplementary Figs 8–10).
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Figure 3 | Slow spin fluctuations instead of spin order. a, b, Temperature
dependence of the planar 63Cu spin-lattice relaxation rate 1/T1 for p 5 0.108
(a) and p 5 0.12 (b). The absence of any peak/enhancement on cooling rules
out the occurrence of a magnetic transition. c, d, Increase in the 63Cu spin–spin
relaxation rate 1/T2 on cooling below ,Tcharge, obtained from a fit of the spin-
echo decay to a stretched form s(t) / exp(2(t/T2)a), for p 5 0.108 (c) and
p 5 0.12 (d). e, f, Stretching exponent a for p 5 0.108 (e) and p 5 0.12 (f). The
deviation from a 5 2 on cooling arises mostly from an intrinsic combination of
Gaussian and exponential decays, combined with some spatial distribution of
T2 values (Supplementary Information). The grey areas define the crossover
temperature Tslow below which slow spin fluctuations cause 1/T2 to increase
and to become field dependent; note that the change of shape of the spin-echo
decay occurs at a slightly higher (,115 K) temperature than Tslow. Tslow is
slightly lower than Tcharge, which is consistent with the slow fluctuations being a
consequence of charge-stripe order. The increase of a at the lowest
temperatures probably signifies that the condition cÆhz

2æ1/2tc= 1, where tc is
the correlation time, is no longer fulfilled, so that the associated decay is no
longer a pure exponential. We note that the upturn of 1/T2 is already present at
15 T, whereas no line splitting is detected at this field. The field therefore affects
the spin fluctuations quantitatively but not qualitatively. g, Plot of NMR signal
intensity (corrected for a temperature factor 1/T and for the T2 decay) against
temperature. Open circles, p 5 0.108 (28.5 T); filled circles, p 5 0.12 (33.5 T).
The absence of any intensity loss at low temperatures also rules out the presence
of magnetic order with any significant moment. Error bars represent the added
uncertainties in signal analysis, experimental conditions and T2 measurements.
All measurements are with H | | c.
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Magnetic-field-induced charge-stripe order in the
high-temperature superconductor YBa2Cu3Oy
Tao Wu1, Hadrien Mayaffre1, Steffen Krämer1, Mladen Horvatić1, Claude Berthier1, W. N. Hardy2,3, Ruixing Liang2,3, D. A. Bonn2,3

& Marc-Henri Julien1

Electronic charges introduced in copper-oxide (CuO2) planes
generate high-transition-temperature (Tc) superconductivity but,
under special circumstances, they can also order into filaments
called stripes1. Whether an underlying tendency towards charge
order is present in all copper oxides and whether this has any
relationship with superconductivity are, however, two highly con-
troversial issues2,3. To uncover underlying electronic order, mag-
netic fields strong enough to destabilize superconductivity can be
used. Such experiments, including quantum oscillations4–6 in
YBa2Cu3Oy (an extremely clean copper oxide in which charge
order has not until now been observed) have suggested that super-
conductivity competes with spin, rather than charge, order7–9. Here
we report nuclear magnetic resonance measurements showing that
high magnetic fields actually induce charge order, without spin
order, in the CuO2 planes of YBa2Cu3Oy. The observed static, uni-
directional, modulation of the charge density breaks translational
symmetry, thus explaining quantum oscillation results, and we
argue that it is most probably the same 4a-periodic modulation
as in stripe-ordered copper oxides1. That it develops only when
superconductivity fades away and near the same 1/8 hole doping
as in La22xBaxCuO4 (ref. 1) suggests that charge order, although
visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic pro-
pensity of the superconducting planes of high-Tc copper oxides.

The ortho II structure of YBa2Cu3O6.54 (p 5 0.108, where p is the
hole concentration per planar Cu) leads to two distinct planar Cu
NMR sites: Cu2F are those Cu atoms located below oxygen-filled
chains, and Cu2E are those below oxygen-empty chains10. The main
discovery of our work is that, on cooling in a field H0 of 28.5 T along the
c axis (that is, in the conditions for which quantum oscillations are
resolved; see Supplementary Materials), the Cu2F lines undergo a
profound change, whereas the Cu2E lines do not (Fig. 1). To first order,
this change can be described as a splitting of Cu2F into two sites having
both different hyperfine shifts K 5 Æhzæ/H0 (where Æhzæ is the hyperfine
field due to electronic spins) and quadrupole frequencies nQ (related to
the electric field gradient). Additional effects might be present (Fig. 1),
but they are minor in comparison with the observed splitting. Changes
in field-dependent and temperature-dependent orbital occupancy (for
example dx2{y2 versus dz2{r2 ) without on-site change in electronic
density are implausible, and any change in out-of-plane charge density
or lattice would affect Cu2E sites as well. Thus, the change in nQ can
only arise from a differentiation in the charge density between Cu2F
sites (or at the oxygen sites bridging them). A change in the asymmetry
parameter and/or in the direction of the principal axis of the electric
field gradient could also be associated with this charge differentiation,
but these are relatively small effects.

The charge differentiation occurs below Tcharge 5 50 6 10 K for
p 5 0.108 (Fig. 1 and Supplementary Figs 9 and 10) and 67 6 5 K for
p 5 0.12 (Supplementary Figs 7 and 8). Within error bars, for each of
the samples Tcharge coincides with T0, the temperature at which the
Hall constant RH becomes negative, an indication of the Fermi surface

reconstruction11–13. Thus, whatever the precise profile of the static
charge modulation is, the reconstruction must be related to the trans-
lational symmetry breaking by the charge ordered state.

The absence of any splitting or broadening of Cu2E lines implies a
one-dimensional character of the modulation within the planes and
imposes strong constraints on the charge pattern. Actually, only two
types of modulation are compatible with a Cu2F splitting (Fig. 2). The
first is a commensurate short-range (2a or 4a period) modulation
running along the (chain) b axis. However, this hypothesis is highly
unlikely: to the best of our knowledge, no such modulation has ever
been observed in the CuO2 planes of any copper oxide; it would there-
fore have to be triggered by a charge modulation pre-existing in the
filled chains. A charge-density wave is unlikely because the finite-size
chains are at best poorly conducting in the temperature and doping
range discussed here11,14. Any inhomogeneous charge distribution
such as Friedel oscillations around chain defects would broaden rather
than split the lines. Furthermore, we can conclude that charge order
occurs only for high fields perpendicular to the planes because the
NMR lines neither split at 15 T nor split in a field of 28.5 T parallel
to the CuO2 planes (along either a or b), two situations in which
superconductivity remains robust (Fig. 1). This clear competition
between charge order and superconductivity is also a strong indication
that the charge ordering instability arises from the planes.

The only other pattern compatible with NMR data is an alternation of
more and less charged Cu2F rows defining a modulation with a period
of four lattice spacings along the a axis (Fig. 2). Strikingly, this corre-
sponds to the (site-centred) charge stripes found in La22xBaxCuO4 at
doping levels near p 5 x 5 0.125 (ref. 1). Being a proven electronic
instability of the planes, which is detrimental to superconductivity2,
stripe order not only provides a simple explanation of the NMR splitting
but also rationalizes the striking effect of the field. Stripe order is also
fully consistent with the remarkable similarity of transport data in
YBa2Cu3Oy and in stripe-ordered copper oxides (particularly the
dome-shaped dependence of T0 around p 5 0.12)11–13. However, stripes
must be parallel from plane to plane in YBa2Cu3Oy, whereas they are
perpendicular in, for example, La22xBaxCuO4. We speculate that this
explains why the charge transport along the c axis in YBa2Cu3Oy

becomes coherent in high fields below T0 (ref. 15). If so, stripe fluctua-
tions must be involved in the incoherence along c above T0.

Once we know the doping dependence of nQ (ref. 16), the difference
DnQ 5 320 6 50 kHz for p 5 0.108 implies a charge density variation
as small as Dp 5 0.03 6 0.01 hole between Cu2Fa and Cu2Fb. A
canonical stripe description (Dp 5 0.5 hole) is therefore inadequate
at the NMR timescale of ,1025 s, at which most (below T0) or all
(above T0) of the charge differentiation is averaged out by fluctuations
faster than 105 s21. This should not be a surprise: the metallic nature of
the compound at all fields is incompatible with full charge order, even
if this order is restricted to the direction perpendicular to the stripes17.
Actually, there is compelling evidence of stripe fluctuations down to
very low temperatures in stripe-ordered copper oxides18, and indirect

1Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UJF-UPS-INSA, 38042 Grenoble, France. 2Department of Physics and Astronomy, University of British Columbia, Vancouver,
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Figure 1 | Field dependence of the sound velocity in underdoped
YBa2Cu3Oy. a,b, Field dependence of the longitudinal mode c11

(propagation q and polarization u of the sound wave along a axis) in

underdoped YBCO (p= 0.108) at different temperatures from T= 4.2 K to

T= 24.9 K (a), and from T= 29.5 K to T= 50 K (b). The curves are shifted

for clarity. The measurements were performed in static magnetic field up to

28 T. Black arrows indicate the field Bm corresponding to the vortex lattice

melting. At low temperature, the loss of the vortex lattice compression

modulus can be estimated and is in agreement with previous studies (see

Supplementary Information). For T> 40 K, Bm cannot be resolved. Red

arrows indicate the field Bco where the charge-order phase transition

occurs. This transition is not related to vortex physics because it is also

seen in acoustic modes c44 and c55 (Fig. 3 and Supplementary Fig. S3),

which are insensitive to the flux line lattice because those modes involve

atomic motions parallel to the vortex flux lines (u kH k c).

phase stabilized by the magnetic field above Bco is straightforward.
High-field NMR measurements in YBCO at similar doping have
shown that charge order develops above a threshold field Bco >15 T
and below T

RMN
co = 50± 10K (ref. 4). Given the similar field and

temperature scales, it is natural to attribute the anomaly seen in
the elastic constant at Bco to the thermodynamic transition towards
the static charge order.

The phase diagram in Fig. 2 shares common features with the
theoretical phase diagram of superconductivity in competition
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Figure 2 | Thermodynamic phase diagram. Magnetic field–temperature

phase diagram of underdoped YBCO (p= 0.108) obtained from the

anomalies seen in the elastic constant c11 (Fig. 1). Black squares indicate the

transition from a vortex lattice to a vortex liquid at Bm, which cannot be

resolved above 40 K. Red circles correspond to the phase transition

towards static charge order at Bco, as observed in c11. The error bars on the

field scale Bm (Bco) correspond to the width of the transition in the

derivative (raw data) of c11(B). The charge-order transition is almost

temperature independent up to ⇡40 K. Above 40 K the field scale Bco at

which charge order sets in rises. In the Supplementary Information, we

argue that the overall behaviour of the charge-order phase boundary in this

B–T diagram is consistent with a theoretical model of superconductivity in

competition with a density-wave state
21

. The green diamond is the

temperature T
NMR
co

= 50± 10 K at which NMR experiments detect the onset

of a charge modulation at a field B= 28.5 T in YBCO at doping p= 0.11

(ref. 4). Within the error bars, this onset temperature agrees with our

findings. Dashed lines are guides to the eye.

with a density-wave order21 (see discussion in the Supplementary
Information). For T below 40K or so, static charge order sets
in only above a threshold field of 18 T, akin to the situation in
La2�xSrxCuO4 (x = 0.145) in which a magnetic field is necessary
to destabilize superconductivity and to drive the system to a
magnetically ordered state9. Close to the onset temperature of
static charge order, Tco, the threshold field Bco sharply increases
and the phase boundary tends to become vertical. This is in
agreement with the theoretical phase of competing order with
superconductivity that predicts that superconducting fluctuations
have no significant effect on charge order in this part of
the phase diagram.

We now turn to the analysis of the symmetry of the charge
modulation. In the framework of the Landau theory of phase
transitions, an anomaly in the elastic constant occurs at a phase
transition only if a coupling in the free energy Fc = gmnQ

m "n (where
m and n are integers and gmn is a coupling constant) between the
order parameter Q and the strain " is symmetry allowed, that is,
only if Qm and "n transform according to the same irreducible
representation22. In Fig. 3 we compare the field dependence at
T = 20K of four different modes c11, c44, c55 and c66 that display
an anomaly at Bco. To explain the presence of such coupling for
all these modes, we rely on group theory arguments. YBCO is
an orthorhombic system (point group D2h), and given the even
character of the strains we have only to consider the character table
of point groupD2 shown in Table 1.

To represent the different symmetric charge modulations that
transform according to each irreducible representation of the point
groupD2 and to determine to which acoustic mode they couple, we
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FIG. 3. The applied magnetic field-temperature phase diagram in a
GL theory with competing ψ and φ orders for different strengths of
competition. At low γ, a coexisting phase with both CO and SC or-
ders is stable at low magnetic fields and temperatures. With increased
γ, the fields repel each other strongly to reduce the coexisting region
with its disappearance at γ = 1. At γ = 1, the two second order
magenta lines (given by Eqs. (17) and (18)) merge to form a first
order line, as shown in (d). The first order magenta line has an en-
larged symmetry of O(N1 + N2) with αψ = αφ. The topology of
the phase diagram remains same for all values of γ ≥ 1. We have
scaled the magnetic field with B0 and temperature with Tc and used
asc = aco = 1. The first order magenta line B = B0 in (d) is inde-
pendent of temperature primarily because we choose asc = aco = 1
(see Eq. (19)). We also choose βψ = βφ = 1.

B-T phase diagram

We now use the free energy density in Eq. (15) to construct
the B-T phase diagram. As illustrated earlier in Sec. II A, we
can access a coexisting SC and CO phase if the repulsion be-
tween the SC and CO fields is weak enough. In this regime of
weak interaction between the fields (γ2 < βψβφ), the coex-
isting phase is restricted to a region in the B-T phase diagram
bounded by two lines obtained from the conditions in Eqs. (7)
and (8). The boundary line separating the SC phase and the
coexisting phase is given by:

Bsc→sc+co(T ) =
1

ζ

[(
γα′

φ

βφ
− α′

ψ

)
+

(
γaco
βφ

− asc

)
T 2

]

(17)
and the boundary line separating the coexisting phase and the
CO phase is given by:

Bsc+co→co(T ) =
1

ζ

[(
βψα′

φ

γ
− α′

ψ

)
+

(
βψaco
γ

− asc

)
T 2

]

(18)
If γ2 = βψβφ, the two lines in Eqs. 17 and 18 merge to form
a single line. If βψ = βφ = γ, this single line reduces to:

Bsc→co(T ) =
1

ζ

[(
α′
φ − α′

ψ

)
+ (aco − asc)T

2
]

(19)

For the analysis of the phase diagram, we choose α′
ψ = −1,

α′
φ = −0.6, βψ = βφ = 1, ζ = 1.
In Fig. 3, we plot the B-T phase diagram corresponding to

the free energy in Eq. (15) with increasing coupling strength
between the fields for asc = aco = 1. The magnetic field
lines (blue lines in Fig. 3) marking the transition from the SC
phase to the normal phase is given by the condition αψ = 0
in Eq. (13), which yields B(T ) = (1/ζ)(−α′

ψ − ascT 2). At
B = 0, αψ = 0 gives the transition temperature (Tc) as:

Tc =

√
−α′

ψ

asc
(20)

The transition from the CO phase to the normal state at high
magnetic field is independent of the magnetic field. This tran-
sition (brown line in Fig. 3) is given by the condition αφ = 0
in Eq. (16) and occurs at a temperature Tco given by:

Tco =

√
−α′

φ

aco
(21)

For γ < 1 (regime of weak repulsion), the coexisting phase is
stable in a region of the phase diagram bounded by two lines
(magenta lines in Fig. 3) given by expressions in Eqs. (17) and
(18). The magenta lines meet the blue lines (characterizing
the transition from the SC phase to the normal phase) and the
brown lines (characterizing the transition from the CO phase
to the normal phase) at a multicritical point (Tco, B0), where
B0 = |α′

ψ| − |α′
φ|. If γ < |α′

φ|/|α′
ψ|, the coexisting phase is

stable even at B = 0 (Fig. 3(a)). Increasing γ shrinks the re-
gion of coexistence with eventual overlap of the two magenta
lines at γ = 1.

As explained in Sec. II A, the free energy has an enlarged
symmetry for γ2 = βψβφ. For our choice of parameters
(βψ = βφ = 1) in this section, the condition for the enhanced
symmetry reduces to γ = 1. If γ = 1, there is no coexis-
tence of the SC and the CO phase. The transition magnetic
field line from the SC phase to the CO phase is governed by
Eq. (19) and is shown by the magenta line in Fig. 3(d). The in-
dividual masses αψ and αφ become equal along this magenta
line. For B < B0, the mass of the SC field is smaller than
the mass of the CO field (αψ < αφ). This stabilizes only the
SC phase. The mass of the SC field increases with increas-
ing magnetic field and becomes equal to the mass of the CO
field at B = B0. For B > B0, the mass of the SC field be-
comes greater than the mass of the CO field. Consequently,
the CO phase gets stabilized for B > B0. Therefore, when
γ = 1, the transition from the SC phase to the CO phase is
decided by the individual masses of each of the fields. If we
further strengthen γ, the stable phase is still governed by the
size of the individual masses only. The topology of the B-T
phase diagram remains same for all γ ≥ 1. The effect of the
competition between the fields is visible only for T < Tco.
The transitions from the SC to the normal phase and from the
CO phase to the normal phase are independent of the coupling
strength. So, the brown lines and the blue lines in Fig. 3 are
at the same place for all γ. Tco and Tc are the temperatures
where the individual masses (αψ and αφ) vanish and are not
connected to each other in general.

5

and γαψ > αφβψ (8)

The conditions in Eqs. (6), (7) and (8) can only be satisfied
with αψ < 0 and αφ < 0, which is a necessary but not suf-
ficient condition. With both masses (αψ and αφ) being neg-
ative, conditions in Eqs. (7) and (8) can also be re-written as
γ |αφ| < |αψ|βφ and γ |αψ| < |αφ|βψ .

We plot the free energy density (f ) in Fig. 2 for βψ = βφ =
1. We first discuss the case when the coupling between the
fields is weak enough satisfying condition in Eq. (6). Addi-
tionally, if we satisfy both the conditions in Eqs. (7) and (8),
the coexisting phase becomes stable as shown in Fig. 2(c) and
(g). If one of these conditions is not satisfied, the coexisting
phase is not stable any more and the positions of the minima
of f shift to either φ = 0 if |αφ| < γ |αψ| (shown in Fig. 2(d)
and (h)) or ψ = 0 if |αφ| > |αψ| /γ.

If we increase the coupling between the fields such that we
satisfy γ2 = βψβφ, the system of Eqs. (2) and (3) has no
unique solution. Hence, we show that this coupling is spe-
cial and results into an enhanced symmetry in the free en-
ergy density. Indeed, if we scale the masses and the fields by
the corresponding coefficients of their quartic potentials such
that ᾱψ = αψ/

√
βψ , ᾱφ = αφ/

√
βφ, ψ̄2 = ψ2/

√
βψ and

φ̄2 = φ2/
√
βφ, we can rewrite the system of Eqs. (2) and (3)

as:

ᾱψ + ψ̄2 + φ̄2 = 0 (9)

and ᾱφ + φ̄2 + ψ̄2 = 0 (10)

If these scaled masses of the two fields are the same (ᾱψ =
ᾱφ), we have a larger symmetry between ψ and φ fields: the
free energy is invariant if we keep ψ̄2 + φ̄2 fixed. The two
fields are degenerate with no energy cost needed to rotate from
one to the other. In this case the free energy, which is O(N1)×
O(N2) symmetric in general, displays a higher symmetry of
O(N1 + N2). This O(N1 + N2) symmetry is visible in the
Mexican hat like form of the free energy in Fig. 2(e) and (i).
The constraint of fixed ψ̄2+φ̄2 introduces fluctuations in each
ψ̄ and φ̄. These fluctuations can be treated within a O(N1 +
N2) non linear sigma model (see Sec. III for details).

Further increasing γ2 above βψβφ, pushes the minima in
the free energy to either the SC phase or the CO phase de-
pending on their relative masses. If αψ = αφ, all the four
minima are degenerate as shown in Fig. 2(f) and (j).

B. Free energy in the presence of an external magnetic field

In a type-II superconductor, the external magnetic field
does not penetrate the sample below a lower critical field Bc1

due to the Meissner effect. If the magnetic field (B) is in-
creased above Bc1, the magnetic field couples to the orbital
motion of the electrons and the flux lines penetrate the sam-
ple through different locations creating vortices. This state
is commonly known as the mixed phase. The magnitude of
the SC order parameter vanishes at the core of these vortices.

The inhomogeneities arising due to the vortices will add gra-
dient terms in the free energy functional of the superconductor
which is given by:

Fsc−Fn =

∫
α′
ψψ

2(r)+
βψ
2
ψ4(r)+

λ

2

∣∣∣∣∣

(
∇
i
−

2e 'A

c

)
ψ(r)

∣∣∣∣∣

2

dR

(11)
where Fsc is the free energy functional of the superconductor
alone, Fn is the free energy functional of the normal state and
'A is the vector potential corresponding to the magnetic field.
Cuprates are commonly known as extremely type-II supercon-
ductors with a high Ginzburg-Landau parameter (which is the
ratio of the penetration depth and the coherence length of the
superconductor). As a result, these superconductors have a
very small Bc1 and there is effectively no screening of mag-

netic field by Meissner currents, i.e., ∇× 'A = Bẑ, where B
is the external applied magnetic field. We choose z as the di-
rection perpendicular to the orbital motion of the electrons in
the 2D CuO2 planes of the superconductor. As the magnetic
field is further increased, the number of vortices increases and
their separation decreases. There exists an upper critical mag-
netic field Bc2 where the order parameter collapses resulting
in a second order transition to the normal phase. Close to Bc2,
the SC order parameter ψ is small and the free energy density
can be treated (see appendix A) within an effective homoge-
neous theory. In terms of an average order parameter ψ, the
free energy density of the superconductor is written as:

fsc − fn = αψψ
2 +

βψ
2
ψ4 (12)

where the mass term αψ is renormalized due to magnetic field
and is given by:

αψ = α′
ψ + ζB + ascT

2 (13)

with α′
ψ < 0 and ζ is a positive constant. We take a quadratic

temperature dependence of αψ as we are expanding near zero
temperature. Near the transition temperature, the temperature
dependence of αψ can be well approximated as linear in T .
asc is the measure of the tolerance of the superconducting or-
der to thermal suppression. The mass term αψ changes its
sign when the magnetic field reaches its upper critical value:

Bc2 = (α′
ψ + ascT

2)/ζ (14)

We can now include the form of the SC free energy in
Eq. (12) in our free energy functional for the coupled SC and
CO system:

f [ψ,φ] = fsc − fn + αφφ
2 +

βφ
2
φ4 + γψ2φ2 (15)

where αφ is parametrized as:

αφ = α′
φ + acoT

2 (16)

with α′
φ < 0. aco is the measure of the thermal suppression of

the CO order parameter. We neglect the temperature depen-
dence of βψ and βφ. The form of Eq. (15) is the same as in
Eq. (1), but in Eq. (15), ψ or φ are the effective homogeneous
order parameters and αψ is the renormalized SC mass.
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strength between the two orders. This helps us quantifying164

the relation between the region of the coexisting phase and165

different parameters in the Ginzburg-Landau theory (like166

coupling strength and the mass of the two order parameters).167

We show that a strong competition between the SC and the CO168

leads to a phase diagram with no coexisting phase. Within this169

mean field picture, we infer that the temperature insensitivity170

of Bco is specific to an extreme fine tuning of the temperature171

dependence of each mass parameter. We demonstrate that, for172

a range of parameters, there is an enlarged symmetry between173

the SC and the CO where they are energetically degenerate. For174

this regime of parameters, the associated massless fluctuations175

[81,82] of the two order parameters become important and176

cannot be captured in a Ginzburg-Landau picture.177

A similar enhanced symmetry between the SC and the178

CO is proposed in Ref. [82] in the pseudogap phase of the179

underdoped cuprates. In this approach, the pseudogap phase is180

characterized by a composite SU(2) order parameter compris-181

ing the SC and the CO. The SU(2) symmetry between these182

suborders imposes a constraint on them, reflecting their strong183

competition. Fluctuations associated with this symmetry are184

described by a non linear sigma model [82]. This SU(2) theory185

is successful in describing some of the phenomenological186

aspects [83–88] of the much debated pseudogap phase. A187

similar non linear sigma model describing the fluctuating CO188

and SC was also studied in Refs. [89–91], which explain many189

trends of the zero or low field x-ray scattering data.190

In Sec. III, we study the competition of the SC and the191

CO within the SU(2) theory. We use a renormalization group192

treatment of the associated nonlinear sigma model (similar to193

the one developed in Ref. [83]) and illustrate the B-T phase194

diagram. We show that the temperature insensitivity of Bco195

at low temperatures is a unique feature of the SU(2) theory.196

Our analysis shows that Tco ≈ Tc, another exclusive feature of197

the SU(2) theory. We discuss the role of the underlying SU(2)198

symmetry in the pseudogap phase, which is characterized as199

a disordered phase of the fluctuating SC or CO. We further200

illustrate the possibility of the presence of a coexisting phase201

even in the existence of a strong constraint between the SC and202

the CO. This coexisting phase is likely to stabilize the PDW203

order (showing supersolidity) and might serve as a candidate204

for explaining the recently observed unusual effects [92] in the205

density of states.206

We also predict some features of the B-T phase diagram207

in the doping range 0.13 ! p ! 0.2 (close to the pseudogap208

quantum critical doping under the superconducting dome).209

Using a quantum non linear sigma model [93], we postulate210

that Bco becomes temperature dependent as the doping goes211

close to the pseudogap quantum critical doping. Very similar212

temperature dependence of Bco is observed recently in sound213

velocity measurements [55] for 0.13 ! p ! 0.14.214

II. GINZBURG-LANDAU THEORY OF215

COMPETING ORDERS216

A. Generic features of the free energy:217

Conditions for coexistence218

Ginzburg-Landau (GL) theories are used extensively to219

describe phase transitions phenomenologically without getting220

into the microscopic details of a system. The main idea behind 221

this formulation is to write the free-energy density in powers 222

of the order parameters corresponding to broken symmetries 223

near the transition. The GL free energy describing systems 224

with multiple broken symmetries can be written as a sum 225

of the free energies for each broken symmetry if there is 226

no interaction between the fields describing individual order 227

parameters. The competition or repulsion between the fields 228

increases this free energy. This imposes a restriction on the 229

strength of the interaction for the existence of a coexisting 230

phase. In the following, we derive the conditions imposed 231

on this interaction strength based on the GL theory of two 232

competing order parameters: the superconducting and the 233

charge order parameters. The free-energy density functional 234

of two complex order parameters, ψ (describing the SC order) 235

and φ (describing the CO), is given by 236

f [ψ,φ] = αψ |ψ |2 + βψ

2
|ψ |4 + αφ|φ|2

+ βφ

2
|φ|4 + γ |ψ |2|φ|2, (1)

where ψ and φ are N1 and N2 component fields, respectively, 237

γ is the coupling between the two fields and βψ ,βφ > 0. In 238

Eq. (1), we have kept terms up to the fourth order in fields. 239

Our calculation in this section is for general N1 and N2, unless 240

mentioned. 241

In the absence of any coupling between the two fields, both 242

the fields condense to form a state with ψ "= 0 and φ "= 0 if 243

αψ < 0 and αφ < 0. In the presence of the coupling between 244

the fields, there exists four possible phases: the SC phase (ψ "= 245

0 and φ = 0), the CO phase (φ "= 0 and ψ = 0), the coexisting 246

phase (ψ "= 0 and φ "= 0), and a normal state (φ = 0 and ψ = 247

0). An illustration of these phases is shown in Figs. 2(a) and 248

2(b). The mean-field solution of Eq. (1) can be obtained by 249

minimizing the free energy with respect to the order parameters 250

ψ and φ. For the SC phase and the CO phase, we have the 251

solutions |ψ |2 = −αψ/βψ and |φ|2 = −αφ/βφ , respectively. 252

When both the orders coexist, we can obtain the solution by 253

minimizing the free energy simultaneously with respect to ψ 254

and φ, which yields 255

αψ + βψ |ψ |2 + γ |φ|2 = 0, (2)

and αφ + βφ|φ|2 + γ |ψ |2 = 0. (3)

These coupled equations have a unique solution for γ 2 "= 256

βψβφ : 257

|ψ |2 = γαφ − αψβφ

βψβφ − γ 2
, |φ|2 = γαψ − αφβψ

βψβφ − γ 2
. (4)

The mean-field free-energy density for the SC phase and 258

the CO phase is fsc = −α2
ψ/(2βψ ) and fco = −α2

φ/(2βφ), 259

respectively. The free energy corresponding to the coexisting 260

phase is given by 261

fsc+co = fsc − (αφβψ − γαψ )2

2βψ (βψβφ − γ 2)
= fco − (αψβφ − γαφ)2

2βφ(βψβφ − γ 2)
.

(5)
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= fco − (αψβφ − γαφ)2

2βφ(βψβφ − γ 2)
.

(5)
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If κ0 > 0, only the SC phase is stable. In this phase, we
study the fluctuations around the corresponding mean field so-
lution of u. In the absence of external magnetic field, the gap
in the excitations of the pseudo-spin corresponds to the differ-
ence of the masses of the SC and CO fields. So, Eg = 2κ0.
The transition temperature from the SC phase to the pseudo-
gap phase i.e., the temperature where the effective coupling
constant t diverges is given by:

Tc =
2πρ0s

ln
(

Λ2

2κ0

) (30)

At this temperature, the anisotropy κ also goes to zero. The
pseudogap temperature (T ∗) is controlled by ρ0s and thus can
be significantly higher than Tc.

In the presence of an external magnetic field, the gap in the
excitation spectrum Eg or the energy required to break the
long-range SC coherence is replaced by:

Esc
g = 2κ0 − ζB (31)

where ζ is a constant. In the presence of magnetic field, the
SC order parameter becomes inhomogeneous below a length
scale which is given by the coherence length (ξ) of the su-
perconductor. Hence, the minimum length of this effective
homogeneous RG analysis is constrained by ξ and thus the
upper momentum cutoff is given by Λ = ξ−1. In a cuprate
superconductor, ξ is quite small compared to the penetration
depth. The transition magnetic field (Bsc) where t diverges is
given by:

Bsc = B0

{
1−

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(32)

where the SC phase is stabilized for B < B0 and B0 =
(2κ0)/ζ. If the ground state is the CO phase, we have to con-
sider the fluctuations of the nonlinear sigma model around the
mean field solution u = I. RG equations and solutions are
equivalent to the case when the ground state is the SC phase,
but Eg is now replaced by:

Eco
g = −2κ0 + ζB (33)

The transition magnetic field (Bco) is thus given by:

Bco = B0

{
1 +

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(34)

where the CO phase is stabilized for B > B0.
It is important to note that Bco(T = 0) = Bsc(T = 0) =

B0. B0 is the zero temperature upper critical field for the su-
perconductor in the presence of strong competition with the
CO phase. At T = 0, the ground state of the system is the
SC phase for B < B0 and the ground state is the CO phase
for B > B0. Thus, there is no coexisting phase in the B-
T phase diagram if only the quadratic symmetry is broken
(κ0 "= 0, z0 = 0). In terms of the composite order parameter,
the pseudo-spin flops from a direction aligned in the SC easy
plane to a direction aligned in the CO easy plane at B = B0.

FIG. 6. The B-T phase diagram obtained within a renormaliza-
tion group treatment of the classical nonlinear sigma model. (a):
Anisotropy (κ0) between the masses of the SC and CO fields induces
a quadratic symmetry breaking at T = 0 and B = 0. Increasing the
magnetic field destroys the SC order giving rise to the CO marked by
a pseudo-spin flop transition at B = B0 for T < Tmin. Bco remain
flat at low T due to suppressed thermal fluctuations and rises steeply
for T > Tmin. The thermal fluctuations drive the anisotropy to zero
on the Bco and Bsc lines. As a result, the system hesitates between
the CO phase and the SC phase with no visible long-range order
marking the pseudogap phase with SU(2) fluctuations for T < T ∗.
(b): If the coupling strength (γ) between the SC and CO is not exactly
equal to the coefficient (β) of each biquadratic terms, the biquadratic
SU(2) symmetry is also broken (z0 != 0). B0

sc and B0
co (the transition

fields at T = 0) are different with a region of coexistence in between
for T < Tcs for γ < β. The renormalized effective anisotropy be-
tween the CO and the SC fields become zero at T = Tcs and the
SU(2) fluctuations are observable for Tcs < T < T ∗. If γ > β, the
strong repulsion between the fields destabilizes any coexisting phase
with a pseudo-spin flop transition at B = B0 and the B-T phase
diagram is exactly same as in (a). We sketch the phenomenological
temperature dependence of the vortex melting transition field Bm to
distinguish the upper critical field Bsc from the melting transition,
see text for details.

The thermal fluctuations are absent at T = 0. Thus, we expect
the mean field solutions for the transition fields should give
the same result as the solutions obtained in Eqs. (32) and (34)
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4. Heisenberg-Heisenberg FP: β∗
ψ != 0, β∗

φ != 0, γ∗ = 0

5. First order FP: β∗
ψ = β∗

φ = γ∗, α∗
ψ = α∗

φ

6. Second order FP: β∗
ψ != β∗

φ != γ∗, α∗
ψ != α∗

φ

The first four FP give γ∗ = 0 where the SC order and the
CO are decoupled. They represent the transition from the SC
phase to the normal state and the transition from the CO phase
to the normal state. The fifth FP corresponds to the situation
of the enhanced symmetry of O(N1+N2) where the effective
free energy landscape looks similar to Fig. 2(e) and (i). This
FP describes the first order transition from the SC phase to the
CO phase. The sixth FP satisfies the mean field criterion for
coexistence (γ∗2 < β∗

ψβ
∗
φ) and represent the free energy land-

scape similar to Fig. 2(c) and (g). The bare parameters depend
on the applied magnetic field (B) and temperature (T ). The
transition lines in the B-T phase diagram can be determined by
studying the stability of the FP. The stability of the FP depends
crucially on the values of N1, N2, N1 + N2 and the dimen-
sion of the system. There are several analytical and numerical
studies of the stability of these FP in three dimensions.82–85

But the stability of the FP in the case of two dimensions86–89

is more complex and is still an open question. So, it is diffi-
cult to pinpoint whether the B-T phase diagram obtained in a
competing order formalism can include a coexisting phase or
not.

Moreover, in 2D, the amplitude fluctuations play no role
in deciding the critical behavior. Instead, the thermal phase
fluctuations, captured by the renormalizations of the gradi-
ent terms, are important in deciding the phase boundaries.90,91

The RG approach discussed in the preceding paragraph treats
only the amplitude renormalizations and does not take care of
the renormalizations of the gradient terms. Hence, the temper-
ature dependence in the B-T phase diagrams found from the
analysis of Eq. (1) is not expected to give the correct trends in
two spatial dimensions.

In this section, we described the GL theory of the compet-
ing superconducting and charge orders in the presence of a
magnetic field. We constructed the B-T phase diagram for
different strengths of the competition and discussed the possi-
bility of explaining the experimentally observed features. As
evident from Fig. 3, strengthening the competition between
the SC and the CO fields disfavors any coexisting phase in
the phase diagram. Bsc→sc+co for γ2 < βψβφ and Bsc→co

for γ2 ≥ βψβφ are flat only if the temperature dependences
of αψ and αφ are extremely fine tuned (Fig. 5). Further, the
similarity of the Tc at zero field and Tco at high field cannot
be established in this picture (see Eqs. (20) and (21)). These
features make us believe that the B-T phase diagram of un-
derdoped cuprates is hard to explain within a GL theory of
competing orders.

In Sec. II A, we could identify a parameter regime where the
free energy shows an enlarged O(N1 + N2) symmetry. The
enlarged symmetry puts a constraint (Eq. 9) on the SC and the
CO fields if the two orders are energetically degenerate. We
now turn our discussion to an emergent SU(2) theory where
the strongly competing SC order and the CO are nearly de-

generate in energy. In the next section, we will first introduce
this SU(2) theory and then construct the B-T phase diagram
using a renormalization group treatment.

III. SU(2) SYMMETRY BETWEEN CO AND SC: NON
LINEAR SIGMA MODEL

Underdoped cuprates69,92 are often described by a two di-
mensional spin-fermion model.93,94 This model features the
pseudogap phase69 characterizing an emergent SU(2) sym-
metry connecting a d-wave superconductor and a quadrupole
density wave. This quadrupole density wave corresponds to
charge density modulations65,95–97 in the 2D CuO2 plane. The

wave vector ( $Q) of this CO is typically incommensurate and

is taken to be momentum dependent.96 $Q can therefore cor-
respond to both a unidirectional stripe-like charge order and
a bidirectional checkerboard charge order.96,97 In this section,
we focus on the SU(2) symmetry between the SC and the 2D
CO, without going into the details of the directionality of the
CO. This theory though has broader applicability in describ-
ing the symmetry of the CO. We expect that the presence of an
interlayer coupling between the 2D CuO2 planes will magnify

the intensity of a specific component of $Q in X-ray scattering
experiments.77

Within this formalism, we can define a composite SU(2)
order parameter, uSU(2) = u∆SU(2),

69 where u is:

u =

(
φ ψ

−ψ∗ φ∗

)
(22)

The matrix u is parametrized by two complex order parame-
ters: the d-wave SC order parameter (ψ) and the d-wave CO
order parameter (φ). u is a unitary matrix imposing a strong
constraint on each of its components:

φ2 + ψ2 = 1 (23)

Thus, u2
SU(2) = ∆2

SU(2). The composite order parameter can

be thought of as a pseudo-spin in four dimensions with two
SC components and two CO components. ∆2

SU(2) sets the

length of this pseudo-spin. The length of this pseudo-spin can
be described by a Ginzburg-Landau mean field theory. It goes
to zero at a high mean field temperature, which we character-
ize as the pseudogap temperature (T ∗).69 T ∗ controls the high
energy physics of the problem. Below T ∗, Eq. 23 describes a
three dimensional hypersphere S3 in a four dimensional space.
The transverse fluctuations of the composite order parameter
on this hypersphere are described by an O(4) non linear sigma
model (NLSM):69

F

T
=

1

t0

∫
tr[∇u†∇u+ κ0τ3u

†τ3u]dR (24)

where κ0 = (α′
φ − α′

ψ)/2 is the difference of the zero tem-

perature masses of the SC and CO fields, t0 = 2T/ρ0s is the
scaled temperature, ρ0s being the stiffness associated with spa-
tial variation of the composite order parameter u, τ3 is the
third Pauli spin matrix in the space of the matrix u, tr is the

Non linear Sigma Model 
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trace over the space of u and the integration is over the two di-
mensional real space coordinates. ρ0s is proportional to T ∗.69

The free energy functional in Eq. (24) has two primary contri-
butions:

• The first term tr[∇u†∇u] can be written in terms of the
fields as 2(|∇ψ|2 + |∇φ|2). This term describes the
spatial fluctuations of ψ and φ. If the mass of the SC
field (α′

ψ) is same as the mass of the CO field (α′
φ), i.e.,

κ0 = 0, the SC and CO ground states are energetically
degenerate resulting in an exact SU(2) symmetry. There
is then no energy cost associated with the rotation of the
pseudo-spin in the four dimensional space of the com-
posite order parameter u. With κ0 = 0, the two dimen-
sional NLSM in Eq. (24) at finite t produces divergent
fluctuations69,80 destroying any long-range order in ψ or
φ.

• The second term tr[κ0τ3u†τ3u] can be written in terms
of the fields as 2κ0(|φ|2 − |ψ|2). This term breaks the
degeneracy between the SC and CO ground states. If
κ0 > 0, the pseudo-spin prefers the easy plane in the
SC space characterized by a gapless Goldstone mode.
If κ0 < 0, the pseudo-spin prefers the easy plane in
the CO space characterized by another gapless Gold-
stone mode. κ0 introduces an anisotropy between the
SC and CO easy planes. Thus, κ0 defines the energy
cost to rotate the pseudo-spin from one easy plane to
the other and introduces a gap in the excitations of the
pseudo-spin. This gap is small compared to the pseudo-
gap energy scale (T ∗) and the fluctuations governed by
the first term in Eq. (24) are still important indicating
an approximate SU(2) symmetry. Since this anisotropy
term in Eq. (24) is quadratic in fields, we refer to its
effect as quadratic symmetry breaking.

The energy difference between the two ground states can be
further enhanced if the exact SU(2) symmetry is broken by the
biquadratic terms in the free energy of the composite order
parameter. The contribution from the biquadratic symmetry
breaking in the free energy is given by:

Fbq

T
=

1

t0

∫
z0
{(

tr[τ3u
†τ3u]

)2 − 1
}
dR (25)

where z0 = (β − γ)/4 with γ being the coupling strength
between the two orders and β being the strength of the self
interaction of both the fields. Expressing u in terms of ψ and
φ, Eq. (25) is given as −4z0|ψ|2|φ|2. If γ = β, Fbq = 0
and the biquadratic terms do not contribute to the free energy.
For γ < β, the gap in the excitations of the pseudo-spin is
modified by the strength of the biquadratic symmetry breaking
(z0). In the parameter regime −z0 < κ0 < z0, the total free
energy (F +Fbq) accommodates a coexisting phase with both
the SC and the CO being stable. The pseudo-spin prefers an
intermediate direction making a finite angle with both the SC
easy plane and the CO easy plane. On the other hand, if γ >
β, the repulsion between the fields is large and there exists no
coexistence and the situation is similar to the case when Fbq =
0. We will assume that z0 is small such that the approximate
SU(2) symmetry is still valid for T < T ∗.

A. Renormalization group treatment of the classical NLSM

As discussed Sec. II C, the thermal fluctuations play a sig-
nificant role in deciding the critical phenomenon in two spa-
tial dimensions. We perform a renormalization group calcu-
lation to take care of these critical fluctuations described by
the NLSM. In this section, we will not consider any time-
dependent fluctuations nor the fluctuations in the modulus of
the order parameters. Although, we will discuss the effects
of time-dependent fluctuations in Sec. III B. Here, we will
look at two cases of weak SU(2) symmetry breaking: a) only
quadratic symmetry breaking (κ0 #= 0 and z0 = 0), where the
free energy will be given by Eq. (24) b) both quadratic and
biquadratic symmetry breaking (κ0 #= 0 and z0 #= 0), where
the total free energy is given by F + Fbq (F obtained from
Eq. (24) and Fbq obtained from Eq. (25)).

First, we consider the case with only quadratic symmetry
breaking (z0 = 0). We treat the fluctuations around the mean
field phase of the classical NLSM in Eq. (24) using the renor-
malization group approach. We integrate out the fast varying
components of the free energy in Eq. (24) and write an effec-
tive slow varying counterpart with effective coupling constant
t and anisotropy parameter κ. Within one loop approxima-
tion, the RG flow equations (for details see appendix B) for
the effective parameters are given by:

dt

dl
=

t2

2π
(26)

d
(
ln
(
κ
t

))

dl
= −

t

π
+ 2 (27)

where l is the running logarithm variable of the RG. The so-
lutions of Eqs. (26) and (27) determine the flow of the renor-
malized parameters of the free energy. At l = 0, t = t0 and
κ = κ0, where t0 and κ0 are the bare values of the parame-
ters. There is an ultraviolet momentum cutoff, Λ which cor-
responds to the inverse of the minimum length of the theory.

Additionally, there is an infrared cutoff E1/2
g where Eg corre-

sponds to the gap in the excitation spectrum. The RG flow of

Eqs. (26) and (27) stops at l = ln(Λ/E1/2
g ). The solutions of

the effective parameters are:

t = t0

(
1−

t0
2π

ln

(
Λ

E1/2
g

))−1

(28)

κ = κ0

(
Λ

E1/2
g

)2(
1−

t0
2π

ln

(
Λ

E1/2
g

))
(29)

The divergence of the effective coupling constant t in Eq. (28)
can be seen as an evidence of a transition from an ordered
phase to a disordered phase. Along with the divergence of t,
the effective anisotropy κ also goes to zero. The system, thus
goes to a mixture of fluctuating SC and CO with no long-range
order, which is characterized as the pseudogap phase.
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If κ0 > 0, only the SC phase is stable. In this phase, we
study the fluctuations around the corresponding mean field so-
lution of u. In the absence of external magnetic field, the gap
in the excitations of the pseudo-spin corresponds to the differ-
ence of the masses of the SC and CO fields. So, Eg = 2κ0.
The transition temperature from the SC phase to the pseudo-
gap phase i.e., the temperature where the effective coupling
constant t diverges is given by:

Tc =
2πρ0s

ln
(

Λ2

2κ0

) (30)

At this temperature, the anisotropy κ also goes to zero. The
pseudogap temperature (T ∗) is controlled by ρ0s and thus can
be significantly higher than Tc.

In the presence of an external magnetic field, the gap in the
excitation spectrum Eg or the energy required to break the
long-range SC coherence is replaced by:

Esc
g = 2κ0 − ζB (31)

where ζ is a constant. In the presence of magnetic field, the
SC order parameter becomes inhomogeneous below a length
scale which is given by the coherence length (ξ) of the su-
perconductor. Hence, the minimum length of this effective
homogeneous RG analysis is constrained by ξ and thus the
upper momentum cutoff is given by Λ = ξ−1. In a cuprate
superconductor, ξ is quite small compared to the penetration
depth. The transition magnetic field (Bsc) where t diverges is
given by:

Bsc = B0

{
1−

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(32)

where the SC phase is stabilized for B < B0 and B0 =
(2κ0)/ζ. If the ground state is the CO phase, we have to con-
sider the fluctuations of the nonlinear sigma model around the
mean field solution u = I. RG equations and solutions are
equivalent to the case when the ground state is the SC phase,
but Eg is now replaced by:

Eco
g = −2κ0 + ζB (33)

The transition magnetic field (Bco) is thus given by:

Bco = B0

{
1 +

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(34)

where the CO phase is stabilized for B > B0.
It is important to note that Bco(T = 0) = Bsc(T = 0) =

B0. B0 is the zero temperature upper critical field for the su-
perconductor in the presence of strong competition with the
CO phase. At T = 0, the ground state of the system is the
SC phase for B < B0 and the ground state is the CO phase
for B > B0. Thus, there is no coexisting phase in the B-
T phase diagram if only the quadratic symmetry is broken
(κ0 "= 0, z0 = 0). In terms of the composite order parameter,
the pseudo-spin flops from a direction aligned in the SC easy
plane to a direction aligned in the CO easy plane at B = B0.

FIG. 6. The B-T phase diagram obtained within a renormaliza-
tion group treatment of the classical nonlinear sigma model. (a):
Anisotropy (κ0) between the masses of the SC and CO fields induces
a quadratic symmetry breaking at T = 0 and B = 0. Increasing the
magnetic field destroys the SC order giving rise to the CO marked by
a pseudo-spin flop transition at B = B0 for T < Tmin. Bco remain
flat at low T due to suppressed thermal fluctuations and rises steeply
for T > Tmin. The thermal fluctuations drive the anisotropy to zero
on the Bco and Bsc lines. As a result, the system hesitates between
the CO phase and the SC phase with no visible long-range order
marking the pseudogap phase with SU(2) fluctuations for T < T ∗.
(b): If the coupling strength (γ) between the SC and CO is not exactly
equal to the coefficient (β) of each biquadratic terms, the biquadratic
SU(2) symmetry is also broken (z0 != 0). B0

sc and B0
co (the transition

fields at T = 0) are different with a region of coexistence in between
for T < Tcs for γ < β. The renormalized effective anisotropy be-
tween the CO and the SC fields become zero at T = Tcs and the
SU(2) fluctuations are observable for Tcs < T < T ∗. If γ > β, the
strong repulsion between the fields destabilizes any coexisting phase
with a pseudo-spin flop transition at B = B0 and the B-T phase
diagram is exactly same as in (a). We sketch the phenomenological
temperature dependence of the vortex melting transition field Bm to
distinguish the upper critical field Bsc from the melting transition,
see text for details.

The thermal fluctuations are absent at T = 0. Thus, we expect
the mean field solutions for the transition fields should give
the same result as the solutions obtained in Eqs. (32) and (34)
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Figure 10. Model for a hc/2e vortex. The SU(2) quantization axis
points for the north pole at the centre (forming a staggered flux
vortex core) and rotates smoothly towards the equatorial plane as
one moves out radially.

Figure 11. Schematic picture of the quantization axis I in different
parts of the phase diagram shown in figure 2. (a) In the
superconducting phase I is ordered in the x–y plane. (b) In the
Nernst phase, I points to the north or south pole inside the vortex
core. (c) The pseudogap corresponds to a completely disordered
arrangement of I. (I is a three dimensional vector and only a
two-dimensional projection is shown.)

is raised, vortices are created with staggered flux cores and
the proliferation of these vortices drives the Berezinskii–
Kosterlitz–Thouless transition in the standard way. Above this
transition (which is the true superconducting Tc), vortex and
anti-vortex proliferates giving rise to the Nernst phase. At even
higher temperature the I vector is completely disordered and
this is our picture of the pseudogap phase.

We emphasized that in this theory the pseudogap
phenomenon and superconductivity are intimately connected.
There is no separate pairing mechanism for superconductivity.
What drives superconductivity is the coherence of the boson
to select the true ground state out of a myriad of fluctuating
possibilities. This is very different from the competing order
scenario which does require a separate pairing mechanism and
a completely separate energy gap scale. This dichotomy has
spurred a debate concerning one gap versus two gaps, i.e.
whether a smaller energy gap appears which scales with Tc

[80]. The debate is often couched in a black and white
language, with one gap favouring a superconducting gap
destroyed by phase fluctuations and two gaps implying the
need for some kind of competing order. In my view, the
truth is likely to be more complicated. In the mean field
RVB picture, a sharp quasiparticle peak appears below Tc

with weight x which follows the d-wave dispersion with only
one gap. The mean field picture is probably too simplistic.
For example, it is possible that the large gap at (0, π) is
a spin gap which can remain broad while the low energy
quasiparticles near the nodes become coherent below Tc. To
a first approximation, the coherent nodal quasiparticle has a
dispersion which extrapolates to the large pseudogap at (0, π).
There could be a coherence energy scale which scales with Tc,
but exactly how this coherence scale affects the density of states
and how it develops as a function of temperature is an open
question.

The issue of one gap/two gaps is not settled
experimentally. For moderately underdoped Bi2212 (Tc >

50 K) the evidence from ARPES is that the quasiparticle in
the superconducting state is reasonably peaked even near the
antinodes and obey the d-wave dispersion with a single gap
which increases with decreasing doping. This is supported
by low temperature thermal conductivity data which measures
the ratio vF/v" where v" is the quasiparticle velocity in the
direction of (0, π) [81]. It is found that v" increases with
decreasing x and extrapolates to the antinodal gap measured by
ARPES. On the other hand, for severely underdoped samples
and one layer cuprates with low Tcs, there are claims based
on ARPES that the energy gap in the Fermi arc region near
the nodal point does not scale with the pseudogap at (0, π),
which increases with decreasing doping as mentioned before
[82]. Instead, it seems to stay constant or increase with
decreasing doping. It is argued that this reveals a new gap scale
associated with superconductivity. I should caution that deeply
underdoped samples are known to be strongly disordered, and
the disorder increases with reduced doping. Furthermore,
the lineshape remains very broad in the antinodal direction
even in the superconducting state. Thus it is risky to draw a
strong conclusion from lineshapes without an understanding
of disorder effects and of the lineshape.

Other support for two gaps comes from Andreev reflection
studies [83] and Raman scattering [84]. In a superconductor-
normal metal junction in conventional superconductors,
normal electrons incident on the junction has an extra
channel for transport, by tunnelling as a Cooper pair into the
superconductor and Andreev reflected as a hole. This leads
additional conductance below an energy scale of the energy
gap. Such extra conductance was observed in underdoped
cuprates, but the energy scale observed is much lower than the
pseudogap and is more related to Tc. I note that in contrast
to conventional tunnelling, Andreev reflection does not simply
measure the density of states, but requires coherence of the
quasiparticle in its interaction with the condensate. What is
seen in the Andreev data may be this coherence scale.

I must emphasize that the simple cartoon shown in
figure 11 is only an approximate picture. We have assumed
that the bosons are locally condensed and can be treated as
a c-number which varies in space and time. However, even
at T = 0, the vortex configurations shown in figure 10 can
tunnell between each other and destroy the staggered flux
order at some time scale. I think the correct answer requires a
quantum mechanical treatment of the boson strongly coupled
to gauge fields, which is not available at present. In particular,
we have not yet been able to compute the ARPES spectrum
and make a satisfactory comparison with experiment. We
make crude approximations such as assuming a binding of
the bosons with fermions via gauge fluctuations [73]. As
an example of an alternative aproach, Ribeiro and Wen [85]
introduced a new formulation which hybridizes the physical
hole with the spin carrying fermions and have had success in
understanding the higher energy spectra. Their theory seems to
favour the two gap scenario. The truth is that the theory of the
spectral function is not under control at present: the problem
of a fermion and boson strongly interacting with a gauge field
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FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].

symmetry in a region of the Brillouin zone, in the sense
that one can define an SU(2) algebra relating the two
[38]. This symmetry is exact on a line of the Brillouin
zone joining the hot-spots, and is broken away from it
[38]. This naturally causes the arising of the fluctuations
associated to this symmetry, which we call SU(2) fluctu-
ations [38].
The degeneracy of the various channels at the hot-

spots introduced above has been shown to be lifted by
considering the SU(2) fluctuations through the diagram
in Fig. 2B [38], similarly to what happens in the order-
by-disorder formalism, first described by Villain in the
classical context [50].
Remarkably, the choice of the starting charge modula-

tion wave vector becomes irrelevant at this point, since it
was found that the SU(2) fluctuations select three wave
vectors characterizing respectively d-wave nematic order-
ing at Q0 = (0, 0) and axial modulations with or without
C4 symmetry breaking at Q0 = (±Qx, 0) and (0,±Qy)
[38] (Fig. 2A). Both nematic and axial orders are there-
fore naturally selected by the SU(2) fluctuations.
These axial modulations have been described in a pre-

vious work by the arising of excitonic patches prolifer-
ating in some regions of the phase diagram [38]. In the
following, we give a topological interpretation of the pro-
liferation of local objects in real space, by introducing the
SU(2) order parameter, which enables us to encompass
many aspects of the phase diagram of the cuprates in an
integrated manner.

SU(2) order parameter

The order parameter that naturally emerges from the
previous discussion to describe the pseudogap is a com-
posite of � and �, which can be cast into the form:

�̂SU2 =

✓
� �

��⇤ �⇤

◆
, (3)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
SU2 = �2

R + �2
I +�2

R +�2
I . (4)

where the indices R and I denote the real and imaginary
parts of the operators, respectively. In this picture, �SU2

represents the energy scale below which the fluctuations
between the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.
At every doping x, equation (4) describes a three di-

mensional hypersphere S3 in a four-dimensional space.
The transverse fluctuations of the order parameter on
this hypersphere are naturally described by an O(4) non-
linear �-model [48]
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where ↵ = 1, 4 are the four-component vector subject
to the constraint n

2 = 1, with n1,2 = �I ,�R, n3,4 =
�I ,�R, where � = �/�SU2, � = �/�SU2 and the sign
of the masses m↵ depends on the presence or absence
of an applied magnetic field. The amplitude modes, or
massive modes, can be safely neglected since the energy
di↵erence between the charge and superconducting states
is much smaller than both their energies.
In the specific context of the S3 sphere, no topological

defect is generated, since a careful examination of the
corresponding homotopy class gives ⇡2

�
S3

�
= 0 [51]. In

the following, we discuss the case where one degree of
freedom is lost, allowing for topological defects to appear.

Topological defects

We now argue that, as the temperature is lowered,
the phase of the charge modulations is frozen in some
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Topological states of matter are at the root

of some of the most fascinating phenomena in

condensed matter physics. Here we argue that

skyrmions in the pseudo-spin space related to an

emerging SU(2) symmetry enlighten many myste-

rious properties of the pseudogap phase in under-

doped cuprates. We detail the role of the SU(2)

symmetry in controlling the phase diagram of the

cuprates, in particular how a cascade of phase

transitions explains the arising of the pseudogap,

superconducting and charge modulation phases

seen at low temperature. We specify the struc-

ture of the charge modulations inside the vor-

tex core below Tc, as well as in a wide temper-

ature region above Tc, which is a signature of the

skyrmion topological structure. We argue that

the underlying SU(2) symmetry is the main struc-

ture controlling the emergent complexity of exci-

tations at the pseudogap scale T ⇤
. The theory

yields a gapping of a large part of the anti-nodal

region of the Brillouin zone, along with q = 0
phase transitions, of both nematic and loop cur-

rents characters.

The pseudo-gap (PG) phase in the under-doped region
of cuprate superconductors remains one of the most mys-
terious known states of matter. First observed as a de-
pression in the Knight shift of nuclear magnetic resonance
(NMR) [1–3], it was soon established that, for a region
of intermediate dopings around 0.08 < x < 0.20, part
of the Fermi surface was gapped in a region close to the
(0,⇡) and (⇡, 0) points of the Brillouin zone, called anti-
nodal region because of its remoteness from the point
were the d-wave superconducting gap changes sign on
the (0, 0) � (⇡,⇡) segment of the Brillouin zone. In this
anti-nodal region, the Fermi surface was found to be
“wiped out”, and only some lines of massless quasiparti-
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This puzzling situation became more complex with the
observation of a reconstruction of the Fermi surface by
quantum oscillation and other transport measurements
in the same doping region [10–17]. This was attributed
to the presence of incipient charge modulations with in-
commensurate wave vectors developing along the crys-
tallographic axes: Qx,Qy ' 0.3⇥ (2⇡/a), where a is the
lattice spacing in a tetragonal structure, detected by X-
ray scattering [18–30]. In real space, patches of charge
modulation of a size of the order of twenty lattice sites
have been observed at low temperatures (T ⇠ 4 K) using
both scanning tunneling microscopy (STM) [31–34] and
nuclear magnetic resonance (NMR) [35] measurements.

FIG. 1: In the some regions of real space, the SU(2) order
parameter is constrained to a two-dimensional hemisphere,
where the vertical axis corresponds to a charge order param-
eter, and the horizontal plane to the superconducting order
parameter. This leads to the proliferation of merons (or half-
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These take the form of oscillations of the charge density
on the copper oxide planes of a frequency comparable to
twice the lattice spacing. The amplitude of these oscil-
lations decreases away from its centerpoint in real space
and disappears around ten lattice lengths away from it.

Charge modulations were observed at the core of
the superconducting vortices, below the superconducting
transition temperature (Tc). When voltage bias is in-
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0(3) non linear σ-model 3

FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].
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FIG. 2. Schematic temperature (T)- hole doping (p) phase diagram
for a cuprate superconductor. The vertical dotted black line demon-
strates an adiabatic decrease in temperature from a representative
high temperature (T > T ⇤) point in the phase diagram. As explained
in the text, the system hits the first Higgs mechanism freezing the
global phase of the p-p and p-h preformed pairs entangling them at
T ⇤. This induces a constraint between the amplitudes of the two or-
der parameters. The fluctuations of the relative phase and the two
amplitudes can be described by an O(3) non linear �-model. Lower
temperature crossover lines Tco and T 0

c correspond to the mean field
lines where the amplitudes of the two preformed pairs get condensed
giving a uniform component to each. A second Higgs mechanism
occurs at Tc, where the relative phase also gets quenched. We also
note that the theory described in this paper is strictly valid for dop-
ings p > 6%. Especially, we do not intend to explain the Neel tem-
perature (TN ) demarcating the anti-ferromagnetic phase. For lower
dopings (p < 6%), there are other effects like competing magnetic
orders or modifications in the effective action owing to the strong
electronic correlations.73 We neglect these effects in the current pic-
ture.

4. Phase diagram

With this prelude, we describe the phase diagram of the un-
derdoped cuprates. A first Higgs mechanism at T ⇤ freezes
the global phase of the two preformed pairs. The PG state
below T ⇤ is thus a state with entangled p-p and p-h pairs
with no long-range order. The concept of two kinds of pre-
formed pairs makes the amplitude and the phase fluctuations
of the d-SC and d-BDW orders distinct. As a result, this opens
up possibilities of different temperature lines existing in the
rich phase diagram of underdoped cuprates, as depicted in
Fig. 2. Lower temperature crossover lines Tco and T 0

c corre-
spond to the mean field lines of the p-h and p-p pairs respec-
tively, where the amplitudes of the d-BDW and d-SC orders
condense to give uniform components in the same spirit as
that of Bose condensation of preformed pairs (for details see
Sec. II D). At Tco, the short-range d-CDW can be observed in
X-ray, STM or NMR measurements due to the pinning of the
phase of the d-BDW order. An NMR perspective on pinning

of the charge order in YBCO and its similarity with pinning
in layered metals is given in Ref. 34. Since Tco and T 0

c are
mean-field lines, their relative position in the phase diagram
depends crucially on the details of the microscopic models.
Here, we consider Tco > T 0

c. A possible justification comes
from the microscopic model (Eq. (42)) chosen in this study.
A large off-site density-density interaction in this model can
lead to an enhanced Tco. The mean-field precursor gaps of
both the d-SC and d-BDW orders become well defined below
T 0
c. But the relative phase still fluctuates and thus there is no

phase coherence in d-SC or d-BDW orders. T 0
c marks the on-

set of the pairing fluctuations as observed in Nernst effect,18

transport studies16 and Josephson SQUID experiments.17 The
relative phase of the two orders gets frozen at a lower tem-
perature Tc, where the phase coherence sets in for both the
d-SC and d-BDW orders with a formation of a ‘super-solid’
like phase. Some signatures of a ‘super-solid’ like phase can
be seen by the observation of the charge order in X-ray,28,74

STM75,76 and NMR34 measurements even in the supercon-
ducting state at zero magnetic field for temperatures below
Tc down to T = 0. The correlation length of the charge order
is not expected to increase for T < Tc due to a strong compe-
tition with d-SC.77,78 Instead, the correlation length features
a maximum at Tc

79 showing an intimate connection between
the d-SC and d-BDW orders. We remark that if the pinning
of the d-BDW order is too strong, no superconductivity can
emerge below Tc. Our formalism thus implies that the pin-
ning is present but weaker than the Higgs mechanism giving
rise to a bulk superconductor at Tc. Lastly, as already noted,
since the d-BDW is a complex field, preemptive orders break-
ing discrete symmetries like parity, time reversal or lattice ro-
tation, usually discussed in the context of Q = 0 orders such
as electronic nematicity or loop current state, at higher tem-
perature have to be present, in the same line of thought as in
previous studies.54,80,81

The phase diagram can also viewed from the perspective
of fractionalization of the PDW field. As mentioned earlier,
the entanglement of p-p and p-h pairs at T ⇤ is equivalent to
fractionalizing a PDW �PDW = �ij�⇤

ij into elementary p-p
and p-h pairs. The PDW reconfines locally when either of the
two elementary constituents condenses. Similar confinement
transition occurs in the theories of electron’s fractionalization
where electron reconfines when either of the elementary con-
stituents ‘spinons’ and ‘holons’ condense. At T = Tco, the
PDW field reconfines locally due to the condensation of the
d-BDW field amplitude. The system will show a short-range
PDW state. For T < Tco, the theory allows for two possible
PDW fields: �̃PDW = �ij�ij involving the global phase of
the p-p and p-h pairs and �PDW involving the relative phase.
While �̃PDW acquires global phase coherence at T 0

c, �PDW
obtains global phase coherence only at Tc.

A true long-range charge order, PDW or ‘super-solid’ is
never established in the absence of magnetic field due to
the omnipresence of disorder in cuprates. Disorder acts on
the charge order as a ‘random-field’.82 Following Imry-Ma
criterion,83 any strength of ‘random-field’ disorder disrupts
the long-range coherence in charge order in dimensions d  4.
This is not the case for the superconducting order as disorder
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Pseudo-Gap Phase and Fractionalization : a Test Experiment

C. Pépin,1 A. Banerjee,1 and A. Ferraz2

1Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France.
2International Institute of Physics - UFRN, Natal, Brazil.

The Pseudo-Gap (PG) regime of cuprate superconductors arguably remains the most enigmatic phases
of condensed matter physics. A recent body of theoretical ideas suggested that the “fractionalization” of
a bosonic field could participate to the formation of the PG, by opening a gap in the Anti-Nodal (AN) - or
(0,±⇡), (±⇡, 0), region of the Brillouin zone. Proposals for the fractionalized boson include modulated
particle-particle pairs or Pair Density Wave (PDW), a magnetic stripe or again a modulated spin one
particle-hole pair -like a Spin Density Wave (SDW) boson. The main picture goes as follows. In the
under-doped regime, electrons under strong coupling have the tendency to form several types of unstable
bosons at high temperature, like PDW or a spin one boson. As temperature gets lower, the compact
object gets more an more unstable and in order to minimize the entropy, it finally fractionalizes into
elementary components, linked by a constraint. The process of fractionalization involves an emergent
gauge field, whose fluctuations generate the constraint between the elementary components of the field.
This constraint in turn, couples to the Fermi surface of electronic carriers and opens a gap in the AN
region of the Brillouin zone, which could be partly responsible for the formation of the PG. Alternative
theoretical approaches invoke a simple co-existence between the multiple quasi-degenerate orders that
are observed at low temperature, in particular CDW, SC and magnetic orders. The PG formation is then
attribute to a “vestigial” order showing up at T ⇤, which can be understood as a “precursor” to the zero
temperature orders. This intricate situatuation calls for a key experimental test, which could enable us
to discriminate between the various theoretical scenario. In this paper we focus on the example where
the PDW boson has fractionalized into a Charge Density Wave ( CDW) and Superconducting order (SC)
below T ⇤, and we compare to the situation where the two orders are in simple co-existence.

A. Theoretical concepts for “fractionalized” PDW and
co-existing orders

We focus on the idea of a PDW order parameter, fractional-
izing into a CDW and SC orders. This choice has the advan-
tage of simplicity, since the two orders in competition are the
ones that have been observed inside the PG phase -,the CDW
�̂ =

P
k,�

D
c†k,�ck+Q0,�

E
with Q0, the modulation wave

vector, and the SC order �̂ =
P

k,� hck,�c�k,�i, where c† (c)
are the standard creation annihilation) operators for electrons
( the conjugated operators are straightforward). The origin of
the creation of this unstable boson at high temperature most
certainly comes from strong coupling of the electrons, but is
not detailed in this paper. The PDW can be written as a combi-
nation of those elementary operators �̂PDW =

h
�̂⇤, �̂

i
and

�̂⇤
PDW =

h
�̂⇤, �̂

i
where [a, b] stands for the commutator of

the operators a and b.

1. Fractionalization

The key idea behind the fractionalization of the PDW is that
at the PG temperature T ⇤ a U(1) gauge field emerges

�̂r ! �̂re
i✓r ,

�̂r ! �̂re
i✓r , (1)

under which �̂PDW and �̂⇤
PDW remain invariant. Fluctua-

tions of the gauge field in any effective field theory generates
a constraint ( remind that � and � have the dimension of en-

ergy)

|�r|2 + |�r|2 = (E⇤)2 , (2)

where E⇤ is an energy scale typical of the PG, which is con-
stant in temperature, and with respect to spatial variations, but
doping dependent. When coupling to the conductions elec-
trons is considered, the constrain Eq.(2) opens a gap, primarily
in the AN region of the Fermi surface, leading to the presence
of Fermi arcs in the nodal region.

The typical effective field theory describes a �̂PDW - mode,
in the form of quantum rotor model

S =
1

2

Z
d2x

2X

a,b=1

|!ab|2 ,

with !ab = za@µzb � zb@µza, (3)

with z1 = �, z2 = �, z⇤1 = �⇤, z⇤2 = �⇤. The gauge
fluctuations within the transformation za ! zaei✓, (z⇤a !
z⇤ae

�i✓) is naturally described by the constraint
P

a |za|
2 =

Cst, which is equivalent to Eq.(2).
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C. Pépin,1 A. Banerjee,1 and A. Ferraz2
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to discriminate between the various theoretical scenario. In this paper we focus on the example where
the PDW boson has fractionalized into a Charge Density Wave ( CDW) and Superconducting order (SC)
below T ⇤, and we compare to the situation where the two orders are in simple co-existence.

A. Theoretical concepts for “fractionalized” PDW and
co-existing orders

We focus on the idea of a PDW order parameter, fractional-
izing into a CDW and SC orders. This choice has the advan-
tage of simplicity, since the two orders in competition are the
ones that have been observed inside the PG phase -,the CDW
�̂ =

P
k,�

D
c†k,�ck+Q0,�

E
with Q0, the modulation wave

vector, and the SC order �̂ =
P

k,� hck,�c�k,�i, where c† (c)
are the standard creation annihilation) operators for electrons
( the conjugated operators are straightforward). The origin of
the creation of this unstable boson at high temperature most
certainly comes from strong coupling of the electrons, but is
not detailed in this paper. The PDW can be written as a combi-
nation of those elementary operators �̂PDW =

h
�̂⇤, �̂

i
and

�̂⇤
PDW =

h
�̂⇤, �̂

i
where [a, b] stands for the commutator of

the operators a and b.

1. Fractionalization

The key idea behind the fractionalization of the PDW is that
at the PG temperature T ⇤ a U(1) gauge field emerges

�̂r ! �̂re
i✓r ,

�̂r ! �̂re
i✓r , (1)

under which �̂PDW and �̂⇤
PDW remain invariant. Fluctua-

tions of the gauge field in any effective field theory generates
a constraint ( remind that � and � have the dimension of en-

ergy)

|�r|2 + |�r|2 = (E⇤)2 , (2)

where E⇤ is an energy scale typical of the PG, which is con-
stant in temperature, and with respect to spatial variations, but
doping dependent. When coupling to the conductions elec-
trons is considered, the constrain Eq.(2) opens a gap, primarily
in the AN region of the Fermi surface, leading to the presence
of Fermi arcs in the nodal region.

The typical effective field theory describes a �̂PDW - mode,
in the form of quantum rotor model

S =
1

2

Z
d2x

2X

a,b=1

|!ab|2 ,

with !ab = za@µzb � zb@µza, (3)

with z1 = �, z2 = �, z⇤1 = �⇤, z⇤2 = �⇤. The gauge
fluctuations within the transformation za ! zaei✓, (z⇤a !
z⇤ae

�i✓) is naturally described by the constraint
P

a |za|
2 =

Cst, which is equivalent to Eq.(2).

Zaanen and Nussinov
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term. The resultant action is quadratic in the fields ∆Qi

and these fields can be integrated out. For the parameter
regime we examine, the phases with non-zero ∆4e,s and
∆4e,d are energetically unfavorable. Consequently we set
these fields to zero. Additionally, the remaining fields
have Ising symmetry, so it is reasonable to treat these at
a mean-field level. This leads to the following effective
action

Seff

A
=

l2x
2|β3|

+
l2y

2|β4|
−

ψ2

2β1
−
ε2xy
2β2

+

∫
d2q

4π2
ln
[
(χ−1

1,q + εxy + lx + ly)(χ
−1
1,q + εxy − lx − ly)

(χ−1
2,q − εxy + lx − ly)(χ

−1
2,q − εxy − lx + ly)

]
, (7)

where A is the area, χ−1
1,q = r0+ψ+κ1q2+κ2(q2x− q2y)+

2κ3qxqy, χ
−1
2,q = r0 + ψ + κ1q2 + κ2(q2x − q2y) − 2κ3qxqy.

The anisotropy due to κ2 and κ3 can be removed by
rotating and re-scaling qx and qy, yielding (q̃2x + q̃2y)/κ̃

with κ̃ =
√
κ21 − κ22 − κ23, and the integrals over momenta

can then be carried out. Treating Seff within a mean
field approximation leads to the following self-consistency
equations

r∗ = r̄0 − β̃1 ln
{[
(r∗ + ε∗xy)

2 − (l∗x + l∗y)
2]

[(r∗ − ε∗xy)
2 − (l∗x − l∗y)

2
]}
,

ε∗xy = −β̃2 ln

[
(r∗ + ε∗xy)

2 − (l∗x + l∗y)
2

(r∗ − ε∗xy)2 − (l∗x − l∗y)2)

]
,

l∗x = −β̃3 ln

[
(r∗ + l∗x)

2 − (ε∗xy + l∗y)
2

(r∗ − l∗x)2 − (ε∗xy − l∗y)2

]
,

l∗y = ln

[
(r∗ + l∗y)

2 − (ε∗xy + l∗x)
2

(r∗ − l∗y)
2 − (ε∗xy − l∗x)

2

]
,

where r∗ = r∗0 + ψ∗, the ∗ denotes a rescaling by a
factor 4πκ̃/|β4|, β̃i = βi/|β4|, r̄0 = r∗0 + 8β̃1 lnΛ +
4β̄1 ln(4πκ̃/|β4|) and Λ is the momentum cutoff. We find
that for parameters βi such that the ME PDW state is
stable, the mean field solution is given by εxy = lx = 0
and ly "= 0. The mathematical analysis of this solution
is the same as that used to examine preemptive nematic
order in Ref. 24. This work implies that there is a sec-
ond order transition into a ME loop current state when
β̃1 > 2 (this becomes first order transition if β̃1 < 2).
This analysis can be extended to three dimensions and,
provided κ4/κ̃ is sufficiently small, a second order tran-
sition into a loop current phase will occur24. Such a
preemptive ME loop current phase will exhibit: SC and
CDW correlations consistent with experiment9–11,13,14;
broken time-reversal symmetry; broken parity symme-
try; and is invariant under the product of time-reversal
and parity symmetry.

K1

−K4

K2

−K3

(a)

O

Cu

(b)

FIG. 4. (Color online) The ME PDW state for tetragonal
symmetry. (a) The arrows Ki depict the non-zero compo-
nents of the PDW order parameter in the ME PDW state
(which order at Qi = 2Ki). This state has the same sym-
metry properties as the ME loop current phase discussed in
Ref. 23. (b) ME Loop current state introduced in Ref. 23.
Here the larger dark circles are Cu sites, the smaller circles
are O sites, the arrows represent the direction of the current,
and the arrow heads and tails give the direction of the mag-
netic moments induced by the currents.

VI. IN-PLANE LOOP CURRENT ORDER -
TETRAGONAL SYMMETRY

The ME PDW state found in Section VA has a natu-
ral generalization to tetragonal symmetry. In particular,
(∆Q1

,∆Q2
,∆Q3

,∆Q4
,∆−Q1

,∆−Q2
,∆−Q3

,∆−Q4
) =

(∆1,∆2, 0, 0, 0, 0,∆2,∆1) is a stable state of the tetrag-
onal GLW action (this will become apparent in the
analysis that follows). This state is depicted in Fig. 4(a),
it shares the same symmetries as the ME loop current
state shown in Fig. 4(b) which has been discussed in
Refs. 23 and 30. Note that ∆1 "= ∆2, however, as
δKy = 0, we recover the state examined in Ref. 15 for
which ∆1 = ∆2, so for sufficiently small δKy, we expect
that ∆1 ≈ ∆2. To carry out an analysis of this phase, we
follow the approach used in Section V for orthorhombic
symmetry. In particular, we re-write the free energy
terms denoted by β1 to β7 as squares of basis functions
of irreducible invariants for tetragonal symmetry. This
allows for a straightforward HS transformation. While
we can also introduce HS fields for the terms βci, for the
loop current phases we are interested in, these fields van-
ish (as they did in the orthorhombic case), consequently,
we will not include these terms in the following. To refor-
mulate the quartic portion of the effective action, we set
li = |∆Qi

|2 − |∆−Qi
|2 and εi = |∆Qi

|2 + |∆−Qi
|2. Basis

functions for irreducible representations of D4h are then
p1x = −l3 − l4, p1y = l1 + l2, p2x = l1 − l2, p2y = l3 − l4
(p1 and p2 are both bases for the Eu representation),
ψ =

∑
i εi (corresponding to the A1g representation),

γ = ε1 − ε2 + ε3 − ε4 (corresponding to the A2g repre-
sentation), εx2−y2 = ε1 + ε2 − ε3 − ε4 (corresponding
to the B1g representation), εxy = ε1 − ε2 − ε3 + ε4
(corresponding to the B2g representation). In terms of
these basis functions Eq. (4) can be rewritten as

Agterberg (2015)

 The fractionalized PDW supports the 
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FIG. 1. Qualitative temperature (T ) versus hole doping (p)
phase diagram. Here LC represents the ME loop current
phase, PDW represents the pair density wave phase, AF rep-
resents antiferromagnetism, and d-SC represents d-wave su-
perconductivity.

metry properties of PDW order and introduce the trans-
lational invariant loop current order parameter. This
is followed by the relevant PDW action for tetragonal
symmetry. For tetragonal symmetry, it is not possible
to analytically find all possible ground states. For this
reason we then turn to an analysis of PDW order for
a theory with orthorhombic symmetry. This theory al-
lows for a complete understanding of all allowed PDW
ground states and can be used to establish the existence
of a phase which has long-range translation invariant
loop current order but no long-range superconducting
or CDW order. We then return to tetragonal symme-
try and examine a loop current phase that is a natural
generalization of that found for orthorhombic symmetry.
After this we show there exists a PDW state that shares
the same symmetry properties as the recent tilted loop
current phase discussed by Yakovenko26. This phase is
consistent with all observations of broken time-reversal
symmetry in the underdoped cuprates. Finally, we exam-
ine the quasi-particle (qp) properties relevant to ARPES
measurements for the tetragonal ME PDW phase. We
show that while the qp properties of the ME PDW phase
are similar to those found by Lee15 for a PDW phase
without loop current order, there are observable differ-
ences that will allow these two phases to be distinguished.

II. PDW INDUCED TRANSLATIONAL
INVARIANT LOOP CURRENT ORDER

PDW order originates when paired fermions have a fi-
nite center of mass momentum. It is characterized by
order parameter components ∆Q which, under a trans-
lation T , transform as ∆Q → eiT ·Q∆Q . Key here are
the transformation properties under time-reversal T and
parity symmetries P :

∆Q
T−→ ∆∗

−Q ∆Q
P−→ ∆−Q . (1)

These symmetries suggest a consideration of the sec-
ondary ME loop current order parameter l = (|∆Qi

|2 −
|∆−Qi

|2). This order parameter has translational invari-
ance, is odd under both T and P , and invariant un-
der the product T P . If a PDW ground state satisfies
|∆Qi

| #= |∆−Qi
|, then the state will have non-zero l. This

condition is not satisfied by any of the PDW states pro-
posed in the context of the cuprates14,15,18,19. This mo-
tivates the question, are there stable PDW ground states
that do exhibit loop current order? Below we show there
are. We find that there exists a PDW ground state that
can qualify as a pseudogap mean-field order parameter.
We impose the following four criteria on such a state:

1- It is a mean-field ground state of a Ginzburg-Landau-
Wilson (GLW) action (for parameters that are not a set
of measure zero in the GLW action parameter space).

2- It has finite l and accounts for the Kerr effect and
intracell magnetic order.

3- It has CDW correlations at the observed momenta.

4- It can account for ARPES spectra.

Prior to defining the PDW order parameter we con-
sider in more detail, it is useful to point out that there
are two previously found PDW ground states that should
have finite l. The first is the well known Fulde-Ferrel
(FF) phase for which ∆(x) = eiQ·x. This state has no
CDW order and therefore cannot represent a pseudogap
order parameter. The second state is found in Ref. 21,
for which the gap can qualitatively be represented as
∆(x) = ∆Q [eiQx·x + eiQy·x]. This state has CDW or-
der, but this order is not at a wavevector that matches
experiment and, consequently, cannot be a pseudogap
order parameter.
Criterion 4 strongly restricts our search for a pseu-

dogap order parameter. Specifically, we require that
the Fermi arc is reproduced, the low energy bands near
the anti-nodal point are reproduced (which has a gap
minimum at momentum kG #= kF , where kF is Fermi
momentum)5, and the Fermi arc is derived from occu-
pied states moving up towards the Fermi energy5,15. The
PDW state discussed in Ref. 15 gives rise to these prop-
erties, and it is natural to use this as a starting point.
However, the GLW theory based on the PDW momenta
chosen in Ref. 15 does not produce a ground state that
satisfies the above four criteria and we must therefore
consider generalizations of this state. To identify such a
generalization, we note that a key feature of Ref. 15 that
allows the ARPES spectra to be reproduced is the choice
of the momenta about which fermions are paired. In
particular, the mean-field pairing Hamiltonian for PDW
order is

H =
∑

p,s

εpc
†
pscps +

∑

Qi,p

[∆Qi
(p)c†p+Ki↑

c†−p+Ki,↓
+ h.c.],

(2)
where cks is the fermion destruction operator with mo-
mentum k and spin s, εk is the bare dispersion, and h.c.
means Hermitian conjugate. The momenta about which

l = (|�Q|2 � |��Q|2)
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following way :

⌘ =

⌘† = .

With these definitions, the SU(2) algebra
R
is verified.

The operators (⌘, ⌘†) have the form of a superconduct-
ing order parameter with finite momentum equal to the
momentum of the charge modulaltions. They carry the
di↵erence of phases between the charge and pairing order
parameters.

The T⇤ line as a Higgs mechanism

The SU(2) structure exposed above admits a few exact
exact realizations. In the case of the attractive Hubbard
model at half-filling, the symmetry is fully realized with a
commensurate modulation wave vector Q = (⇡,⇡). The
eight hot spots model provides as well a realization of the
SU(2) symmetry with incommensurate modulation wave
vector relying two adjacent hot spots on the diagonal. Al-
though the SU(2) emergent symmetry leads to a robust
phenomenology for the competition of charde modula-
tiosn and sueprconductivity, which matches a good num-
ber of experimental observations, its weakness is that it
is fragile. In the case of the half-filled Hubbard model for
example, a few percent of doping destroy the exact SU(2)
symmetry. In the remaining of this paper we give a mech-
anism by which the SU(2) fluctations are protected by a
Higgs mechanism, and although the exact SU(2) sym-
metry is not exactly verified (for example in the ground
state) tehre exists a wide regime of temperature where
the SU(2) gaps area already formed whereas fluctuations
are still present. Let’s have two complex order param-
eters z1 and z2 forming a spinor  = (z1, z2). In our
case we take z1 = SC and z2 = charge. We consider the
following Lagrangian

LCP 1 =
1

2g
|Dµ |2 + V ( ) , (1)

where Dµ = @µ � iAµ, and  † = ( ⇤)T . The potential
V ( ) is such that the lagrangian in Eq.(1) is invariant
under the gauge transformation

 ! ei✓ , (2)

and meanwhile Aµ ! Aµ � @µ✓. The form of the poten-
tial requires only generically a bi-linear structure in  ,

V ( ) ⇠  †Â , with Â a generic 2x2 matrix. The phase
✓ is the same for both components of the spinor  . To
the U(1) gauge invariance of the lagrangian Eq.(1) can
be associated a Higgs mecanism, a freezing of the phase
✓ correlated with the opening of a gap. In order to see
which gap is opening, one first evaluates the gauge field
Aµ. Using the parametrization  = ei✓ (z1, z2) and solv-
ing for the minimiztion equation �LCP 1/�Aµ = 0 leads to
Aµ = @µ✓. It is instructive to compare with the simpler
field lagrangien

L� =
1

2g
|Dµ�|2 + V (�) , (3)

where � = ei✓
q

|z1|2 + |z2|2. The same minimization

�L�/�Aµ = 0 leads to Aµ = @µ✓. The equivalent U(1)
gauge structure between LCP 1 and L� bring the conclu-
sion that the freezing of the phase ✓ corresponds to the
opening of a gap �⇤ in the field � , with

q
|z1|2 + |z2|2 = �⇤. (4)

In order to complete the proof, one can go back to the
Eq.(1), and check that upon condensation of | |0 = �⇤ =q
|z1|2 + |z2|2, the Golgstone boson Aµ becomes massive

with a contribution to the Lagrangian

�LCP 1 =
1

2
m2

AAµA
µ, mA =

p
2�⇤. (5)

. The diagram is represented in Fig. [#] and one can
check that the leading order, the condensate contribution
to the polarization amplitude leads the inverse propaga-
tor D�1

Aµ
= hT AµA⌫i�1 = im2

A

�
gµ⌫ � kµk⌫

k2

�
.

The Higgs mechanism exposed above has deep roots
into the Hopf fibration of the sphere S3 which can be
factorized into S2 by taking out a U(1) phase, S3 ⇠
U(1)⇥ S2. Take Eq.

Experimental consequences
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q

|z1|2 + |z2|2. The same minimization

�L�/�Aµ = 0 leads to Aµ = @µ✓. The equivalent U(1)
gauge structure between LCP 1 and L� bring the conclu-
sion that the freezing of the phase ✓ corresponds to the
opening of a gap �⇤ in the field � , with

q
|z1|2 + |z2|2 = �⇤. (4)

In order to complete the proof, one can go back to the
Eq.(1), and check that upon condensation of | |0 = �⇤ =q
|z1|2 + |z2|2, the Golgstone boson Aµ becomes massive

with a contribution to the Lagrangian

�LCP 1 =
1

2
m2

AAµA
µ, mA =

p
2�⇤. (5)

. The diagram is represented in Fig. [#] and one can
check that the leading order, the condensate contribution
to the polarization amplitude leads the inverse propaga-
tor D�1

Aµ
= hT AµA⌫i�1 = im2

A

�
gµ⌫ � kµk⌫

k2

�
.

The Higgs mechanism exposed above has deep roots
into the Hopf fibration of the sphere S3 which can be
factorized into S2 by taking out a U(1) phase, S3 ⇠
U(1)⇥ S2. Take Eq.

Experimental consequences
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Fractionalization of a Pair Density Wave

Modulated particle-particle pair :

PDW fractionalization :

Uniform particle-particle pair :

Modulated particle-hole pair :

Phase transformation :

Charge (2)

Translation symmetry

Ansatz : + constraint

�PDW
ij =

⇥
�ij ,�

⇤
ij

⇤
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Strange metals



Phase diagram 

AFM suppressed with the addition 
of only a few percent of holes. 
 
Superconductivity emerges at a hole 
concentration p ~ 0.05. 
 
Maximum Tc occurs at an optimal 
doping of p = 0.16. 
 
Superconductivity vanishes again 
around p > 0.30. 
 
Dip in Tc also seen around p = 0.125 
– so-called 1/8-anomaly. 
 
Normal state phase diagram 
dominated by strange metallic 
phase and the pseudogap. 

ͻ Their transition temperatures are anomalously high 
 

ͻ Their superconducting order parameter is unconventional (d-wave) 
 

ͻ The superconductivity emerges out of a highly correlated insulating state 
 

ͻ Their normal metallic state is unlike anything that has been seen before 
 

Tab 10~ DDU �

Martin et al., Phys. Rev. B (1990) 

Bi2+xSr2-xCuO6+G 

Ando et al., Phys. Rev. B (1999) 

Bi2+xSr2-xLaxCuO6 

Why are high temperature superconductors interesting?  

Most strongly Correlated/
Entangled QCP ?

 Planckian regime for the resistivity, 
minimal viscosity

Zaanen 2019 
Black hole models, SYK etc…

 At the same time Drude like optical 
conductivity driven by T

Van der Marel 90

Drude model 

Hall effect                 ac conductivity 
 
 
In steady state, current is independent of t 
                Seek steady state solution of the form 
px and py thus satisfy 
 
                Thus   
 
where Zc = eB/m (B//z)  
 
Thus                Current density 
 
 
Hall field is determined by condition jy = 0 
 
     where 
 
 
Hence, Hall coefficient  
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ͻ Their transition temperatures are anomalously high 
 

ͻ Their superconducting order parameter is unconventional (d-wave) 
 

ͻ The superconductivity emerges out of a highly correlated insulating state 
 

ͻ Their normal metallic state is unlike anything that has been seen before 
 

Tab 10~ DDU �

Martin et al., Phys. Rev. B (1990) 

Bi2+xSr2-xCuO6+G 

Ando et al., Phys. Rev. B (1999) 
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FIG. 13. Hall number versus doping for LSCO from Hwang et al. [? ] and Ando et al.[21], and for Nd-LSCO [24]. For LSCO
the data is taken at T = 50K to avoid the effects of superconductivity or localization, whereas for Nd-LSCO nH is extrapolated
to T = 0.

the b-direction only and will have zero Hall-conductivity σxy. By adding the plane and the chain conductivity tensors,

it is found that the Hall number coming from the planes alone np
H is simply related to the measured Hall number nH

by

np
H =

ρb
ρa

nH.

Unfortunately, as far as we are aware, there is no reported data for the normal state resistivity anisotropy (ρb/ρa)

at low temperature and high fields ( T = 50K, µ0H > 70T) where the Hall effect data were collected. Using the

values at the lowest temperature for which data is available (T = 100K) and zero field [? ], results in values for np
H

which are quite consistent with our data for Tl2201 (Figure 12). ρb/ρa is however, found [? ] to be quite temperature

dependent, decreasing with decreasing temperature, and for the most overdoped sample in Ref. [19] nH was found

to increase slightly with decreasing temperature. Both of these effects would increase np
H for Y123 above the Tl2201

data. So despite the apparent consistency of the scaled np
H data for Y123 with that for Tl2201 shown in Figure 12,

further experiments are required to evaluate the true behaviour for nH for Y123.

In Figure 13 we show the reported data for nH of LSCO [21? ]. There is good agreement between the two data

sets shown and also a third study [22] which extends measurements to higher field and lower temperature (but has a

more limited range of doping). For LSCO at low doping (x < 0.08) nH follows closely the nH = p line but for higher

dopings nH deviates strongly upwards monotonically with no discernable feature as it crosses the nH = 1 + p line,

Recent controversy
Prutzke  et al. 
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FIG. 3. Bottom panel: High field and low temperature values of the Hall number nH(0) versus doped holes (p) for Tl2201 and
Bi2201, from the extrapolations shown in Figure 2. The data point for the most overdoped sample is taken from Ref. [48]. The
grey dashed lines show the behaviour expected for nH(0) = p and nH(0) = 1 + p and the black dashed line is a guide for the
eye. The error bars in nH reflect the geometric uncertainty, whereas those for p reflect the uncertainty in Tc. The assumed
evolution of Tc(p) is shown with a solid red line for each compound (right hand scale, see SI). The shaded area on the Tl2201
panel shows the doping range where quantum oscillations have been observed. The end of the pseudogap regime (p∗) as found
from ρxx(T ) measurements in our samples is indicated (0.20 < p < 0.215). Top Panels: Evolution of linear-in-T coefficient of
the zero field resistivity of Tl2201 [12] and Bi2201. The A error bars reflect the geometric uncertainty.
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Spectral weight missing in the Strange Metal 
regime ?

Our answer : two types of carriers, fermions and 

charge-2 bosons with finite momentum



H/T scaling in the SM phase

Figure 1: Quadrature scaling of the in-plane magnetoresistance (MR) in heavily

overdoped cuprates. A: Superconducting dome of overdoped cuprates. For LSCO and
Bi2201, we have assumed the same blue parabolic Tcppq curve, based on the Presland formula
[29] with pSC “ 0.27 (blue curve), while for Tl2201, pSC “ 0.31 [30] where pSC marks the edge
of the dome. The grey, blue and red shaded regions delineate the doping ranges over which the
H-linear MR has been observed in LSCO [31], Bi2201 and Tl2201, respectively. The dots denote
the actual dopings investigated in this study. B: ⇢abpHq of a highly doped Bi2201 crystal (Tc §
1 K) at T “ 4.2 K. Note that the H-linear MR appears above 10 T. C-J: Scaled derivatives
of the in-plane MR at di↵erent fixed temperatures between 4.2 K and 60 K for various Tl2201
and Bi2201 samples with Tc values as indicated. The dashed lines are fits to the derivative of
the function �⇢abpHq “ ↵kBT

a
1 ` p�µ0H{T q2. The sections of individual curves that reside

within the superconducting transition are here plotted faintly, since only in the normal state
can the quadrature MR be probed. K,L: Plots of the scaling parameter � for Bi2201 and
Tl2201 respectively. M: Comparison of the coe�cients of the T -linear resistivities in Bi2201
and Tl2201 divided by d, the corresponding distance between adjacent CuO2 planes [21].

lifetimes, add in accordance with the classic Matthiessen’s rule. Hence, here we assume the
following form for ⇢abpp, T,Hq, taking into account the observation (described later) that the
in-plane MR only exhibits the Planckian quadrature form:

⇢abpp, T,Hq “ gppT q ` hppT qFppxh̄q (1)

where gppT q = ⇢0 ` AgT ` BT
2 [32] and hppT q “ ↵kBT . The parameter xh̄ captures the

Planckian time, though it is not restrictive given the general functions gp and Fp. To isolate the
e↵ect of the magnetic field, consider d⇢ab/dpµ0Hq. It follows that pT {hppT qq(d⇢abq/dpµ0Hq =
dFppxh̄q/dxh̄ and the data should collapse by plotting the derivative of the l.h.s. as a function
of xh̄. Indeed, as shown in panels C-J of Fig. 1, all the data above Tc collapse on a single curve

given by the x-derivative of the function Fppxh̄q “
b
1 ` x

2
h̄: the dashed line in Fig. 1 C-J. This,

combined with the result on LSCO [31], indicates that cuprates are characterized by Planckian
quadrature scaling over the whole strange metal range of overdoping where Tc is finite. Finally,
as shown in panels K and L, the values of � do not show any significant p-dependence in either

3

Ayres et al., preprint 2020, courtesy N.Hussey

The high-Tc cuprates are exceptional in that they exhibit both bad and strange metallic
behavior; the in-plane resistivity ⇢abpT q near optimal doping grows linearly in T right up to
its melting point [2] with a relaxation time ⌧h̄ “ ah̄{pkBT q where a is of order unity [5]. This
so-called ‘Planckian dissipation’ time ⌧h̄ has been conjectured to be the shortest time at which
energy can be dissipated [6, 7], and is associated with the quantum thermalization in a dense
many-body entangled, scale invariant system [8]. Such a condition is fulfilled in the strongly
interacting critical state anchored at a quantum critical point (QCP) whereby a phase transition
is tuned to zero temperature [9]. Within the quantum critical ‘fan’ above the QCP, ⇢pT q
typically displays the same non-FL T -linear behavior seen in cuprates [10–14]. However, while
evidence exists for a conventional QCP in cuprates near a hole doping p

˚ „ 0.19 [15] – where the
pseudogap in the single-particle response is believed to close – recent analysis of the anti-nodal
states across p˚ in photoemission [16], as well as analysis of transport and thermodynamic data
[17, 18], has cast doubt on the existence of a QCP at p˚.

In this report, we explore further the issue of criticality in cuprates via a study of the in-
plane magnetoresistance (MR) of overdoped (OD) cuprates in high magnetic fields up to 35 T.
It has been widely assumed that beyond p

˚, conventional FL physics (e.g. ⇢abpT q 9 T
2) is re-

established [19]. Yet ⇢abpT q „ ⇢0`AT `BT
2 across this entire regime [4]. Though the ‘strange’

component AT gradually diminishes as function of overdoping [4, 20], its persistence (at low T )
is again di�cult to reconcile within a conventional QCP scenario [4]. Moreover, recent high-field
Hall e↵ect studies have revealed an anomalous drop in carrier density over a wide doping range
[21], while the observed drop in superfluid density with overdoping is claimed to be distinctly
non-BCS [22]. As we show below, the in-plane MR is also highly unconventional.

In a conventional FL (Drude) metal, the magneto-transport can be captured by elementary
dimensional analysis. The magnetic field H appears via the cyclotron frequency !c “ eµ0H{m˚

where e is the elementary charge. This combines with the transport relaxation time ⌧tr into a
dimensionless parameter x “ !c⌧tr. The low-field Hall angle 9 x while the longitudinal MR
�⇢pHq{⇢p0q = r⇢pHq ´ ⇢pH “ 0qs{⇢pH “ 0q 9 x

2 9 pH{⇢p0qq2. The latter relationship, found
in many standard metals with isotropic scattering, is known as Kohler’s scaling.

A recent magneto-transport study on the quantum critical metal BaFe2(As1´xPx)2 (P-
Ba122) revealed a marked departure from Kohler’s scaling [23]. There, at the QCP, �⇢pH,T q “
⇢pH,T q ´ ⇢p0, 0q “

a
p↵kBT q2 ` p�µBµ0Hq2 where � and ↵ are constants independent of

T,H and �{↵ „ 1. In analogy with the Drude metal, we can re-express this MR response
in terms of a new dimensionless parameter xh̄ “ �µ0H{T , where � “ �µB{↵kB and thus

�⇢pT, xq “ ↵kBT

b
1 ` x

2
h̄. This implies that the timescale associated with the field (1{!c)

plays an identical role to the thermal time ⌧h̄ (“ h̄
kBT ) in this state. Starting from generalities

of thermal quantum field theory, it is unclear why this should be the case [24], and even within
a more conventional e↵ective medium approach, such ‘Planckian quadrature’ behavior requires
significant fine tuning [25, 26]. Nevertheless, similar behavior has been reported in both the
electron-doped cuprates [27] and in FeSe1´xSx [28] at or near their respective QCPs.

We measured the in-plane MR of two families of heavily OD, single layer cuprates – (Pb/La)-
doped Bi2Sr2CuO6`� (Bi2201) and Tl2Ba2CuO6`� (Tl2201) – across an extended doping range
as indicated in Figure 1A. In both families and at all doping levels, the MR was found to exhibit
the same field dependence seen in P-Ba122 - quadratic at low fields, linear at high fields – as
exemplified in the data for a highly OD Bi2201 sample (Tc § 1 K) at T = 4.2 K in Fig. 1B. A
similar H-linear MR was also reported recently in La2´xSrxCuO4 (LSCO) near p˚ “ 0.19 [31].
In that report, it was concluded that there were in fact two quantum critical fans in cuprates,
one in the T ´ p plane and one in the H ´ p plane, both of which terminate at a QCP at p˚.
However, our observation of a similar MR response at low H,T at p " p

˚ (for a recent discussion
of the location of p˚ in Tl2201 and Bi2201, see Ref. [21]) suggests that, just as the T -linear
⇢abpT q persists over a wide doping range beyond p

˚ [4], so too does the anomalous linear MR.
The specific form of ⇢abpT q in OD cuprates [4] suggests that scattering rates, rather than

2

• Isotropic

• Planckian limit

• Incoherent
�xy = 0



35

Presence of « another species » in this regime : MEELS experiment

exhibit a plasmon mode at ωp ∼ 1 eV, which was previously
reported in many studies (SI Appendix, Fig. S1). Its broad line-
width indicates that this plasmon is overdamped.
As the momentum is increased to beyond q> 0.15 r.l.u., the

plasmon fades into a featureless, energy-independent continuum
resembling that of early Raman studies (16, 17). This continuum
is extremely strong, comprising >99% of the total spectral weight
in the f-sum rule, and is constant up to an energy scale of 1 eV,
suggesting it is electronic in origin. The continuum was found to
be essentially isotropic in the ða, bÞ plane (SI Appendix, Fig. S2)
and temperature-independent between room temperature and
T = 20 K (Fig. 3A). At energies above 1 eV the susceptibility
decays like a power law, χ″∼ 1=ω2.
The momentum dependence of χ″ðq,ωÞ is highly anomalous

(Fig. 2A). While its magnitude grows like q2, which is required to
be consistent with the f-sum rule (18, 19), the shape of the
spectrum is momentum-independent from q = 0.15 r.l.u. up to
the highest momentum studied, q = 0.5 r.l.u. This behavior is
highly unlike that of a Fermi liquid whose propagating quasi-
particles lead to a strongly momentum-dependent susceptibility,
as illustrated in Fig. 1 C and D.
The broad plasmon linewidth at small momentum is evidence

that the continuum is present even for q < 0.15 r.l.u., which
would lead to decay of the plasmon via Landau damping (18). To
evaluate this possibility, we determined the polarizability of the
system, Πðq,ωÞ, which is related to the susceptibility by (18)

χðq,ωÞ= Πðq,ωÞ
«∞ −V ðqÞΠðq,ωÞ

, [1]

where V ðqÞ is the Coulomb interaction and «∞ is the background
dielectric constant, equal to 4.5 in this case (23). The denomina-
tor of Eq. 1, «ðq,ωÞ= «∞ −V ðqÞΠðq,ωÞ, may be thought of as the

dielectric function of the system. The difference between the
polarizability and the susceptibility is that the former excludes
the long-ranged part of the Coulomb interaction, revealing the
particle-hole excitation spectrum without interference from
plasmon effects.
Determining Πðq,ωÞ from Eq. 1 is complicated by the fact that

the functional form of the Coulomb interaction, V ðqÞ, is not
precisely known. In a homogeneous, 3D system, V ðqÞ= 4πe2=q2;
however, M-EELS is a surface probe, and other functional forms
are possible near a surface, in layered materials like BSCCO, or
in the presence of strong screening (24, 25).
For this reason, we modeled the particle-hole continuum using

the empirical expression (26)

Π″ðq,ωÞ=−Π0ðqÞtanh
!
ω2
cðqÞ
ω2

"
. [2]

This function mimics the experimental data at q > 0.15 r.l.u.,
where Π and χ are expected to be equal, interpolating between
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Fig. 1. Probing anomalous density fluctuations in the normal state of
cuprates. (A) Scattering geometry of the M-EELS experiment. ki and kf
represent momenta of the incident and scattered electron, respectively, and
q is the in-plane momentum transfer. (B) Schematic temperature-doping
phase diagram of BSCCO showing the points investigated in this work, with
filled symbols indicating where a complete q dependence was carried out.
AFI, antiferromagnetic insulator; FL, Fermi liquid; PG, pseudogap; SC, supercon-
ductivity; SM, strange metal; T*, pseudogap temperature; Tc, superconducting
critical temperature; TN, Néel temperature. (C) Charge susceptibility, χ″ðq,ωÞ,
of a layered electron gas calculated in the RPA using the Fermi surface pa-
rameterization of ref. 40. (D) Associated charge polarizability Π″ðq,ωÞ.
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1 and 2. (B–D) Parameters used for the fits at every momentum measured (red
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mental momentum resolution. Parameter errors represent systematic un-
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where c
†
k,↵ is the creation operator for conduction electrons,

↵ is the spin projection of the electrons, b†q is the creation op-
erator for charge-two bosons, with implicit assumptions that
the bosons have a minimum dispersion around a finite wave-
vector Q0, such that q = Q � Q0 is the deviation of the
momentum Q from this wavevector. This is illustrated in
Fig. (1b), where the bosonic dispersion has a minimum at
Q = Q0. The quantities e and m are, respectively, the ele-
mentary charge and the quasielectron mass, whereas A is the
vector potential associated with the magnetic field given by
H = r ⇥A. The quantities ✏F and µ0 denote, respectively,
the chemical potential of the electrons and the bare bosonic
mass term. The next term refers to the coupling of the elec-
tron spins to the Zeeman field, where ~�↵↵0 are the Pauli ma-
trices. The term Ve�e represents the interactions between the
electrons and the environment that can consist of other types
of hydrodynamic modes or impurities. Finally, the last two
terms in Eq. (1) are, respectively, the boson-boson interaction
and the fermion-boson interaction. In the interaction term that
contains gI , we allow for the possibility of the bosons to be
either spin-0 or spin-1.

III. RESULTS

We study the electromagnetic response of the system within
the Kubo formalism, considering not only the electronic, but
also the bosonic response to the electromagnetic field. The
Feynman diagrams contributing to the charge transport prop-
erties, as well as to the self-energy corrections are presented
in Fig. (2). Naturally, charged bosons have a markedly differ-
ent behavior from fermions. At low temperatures, fermions
scatter around the Fermi surface, and scattering with finite
wavevectors affects only small regions of the Fermi surface,
creating a transport anisotropy commonly referred to as “hot
spots” and “cold spots”.45 The hot-spots are shown by the cir-
cles in the Fig. (1a). Such fermions participate both in the
coherent transport and in the Drude weight.8,9,33 On the other
hand, bosons do not have a Fermi surface and, consequently
they scatter uniformly through other species in the sample.
Therefore, the bosonic pathway of charge transport is pro-
tected against short circuit of hot regions by the cold ones
unlike the fermionic counterpart.45
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FIG. 1. (a) Shows the Fermi surface observed in overdoped cuprates
with the hot-spots denoted by brown circles. (b) Presents the disper-
sion of the bosons as a function of the momentum Q. The dispersion
has a minimum at a finite wave-vector Q0 (for the representative case
shown, there is a gap of µ0). Note that µ0 varies with the doping and
vanishes at the quantum critical point (QCP). (c) Displays a skele-
ton phase diagram in the temperature-doping plane. The T

⇤ sets the
psuedogap energy scale in the system, which vanishes at the QCP,
xc. For larger dopings, the Fermi liquid behavior is established. The
strange metal phase is expected to reside in the quantum critical fan
in between these two regions. The energy scale that separates the
two distinct regions is µ0/�, where µ0 is the doping-dependent bare
bosonic mass term, and the � is the Landau damping coefficient of
the diffusive bosons.

A momentum relaxation mechanism is necessary to obtain
a steady current flow upon the application of external elec-
tric field.46 However, the zero momentum bosons preserve
the translational invariance, and hence it is essential to invoke
other mechanisms that can break the Galilean symmetry.47 On
the other hand, bosons with finite momentum have a natural
scattering mechanism to decay the current. Take for example
the charge-two bosons b

†
q =

D
c
†
kc

†
�k+Q0+q

E
made of elec-

trons on the Fermi surface of Fig. (1a). Since Q0 relates two
portions of the Fermi surface, which are distinct translations
in reciprocal space by factors of 2⇡, the boson-boson scatter-
ing generates Umklapp processes through the coupling to the
lattice. Therefore, finite-momentum charged bosons have the
lifetime equal to the transport time. Hence, this study is de-
voted to the careful analysis of the finite momentum bosonic
contribution to the transport. Since the bosons have a finite
wavevector, Q0, and are made of high-energy fermions, such
that they naturally participate in the decay of the electric cur-

3

rent. Consequently, the two species contribute to the trans-
port, both terms must be included to obtain the total optical
sum rule.

When the coupling between the bosons is stronger than the
damping coefficient, our key findings are encapsulated in the
phase diagram of Fig. (1c). Above a threshold temperature
T > µ0/�, we find a linear-in-T resistivity and a vanish-
ing Hall conductance (where � is the Landau-damping coef-
ficient of the diffusive bosons to be defined shortly). Here,
µ0 is the doping-dependent bare mass of the boson as illus-
trated in Fig. (1b), which vanishes at the quantum critical
point or a critical phase. Our phenomenological study can-
not distinguish between a quantum critical point and quan-
tum critical phase as observed in Ref. 48. Furthermore, when
T > µ0/�, the incoherent bosons contribute to the Drude-
like conductivity with a scattering rate reminiscent of Planck-
ian dissipation.10,11,49,50 On the other hand, when the temper-
ature is below T < µ0/�, the traditional Fermi-liquid behav-
ior is established due to the additional presence of a coherent
fermionic pathway.31,32 The bare bosonic mass, µ0 determines
the crossover from the strange metallic to conventional metal
regime, as exhibited in Fig. (1c).

(a) (b)

(c) (d)

FIG. 2. Feynman diagrams corresponding to the transport proper-
ties and the interactions of the bosons among themselves and with
the fermions of the model defined in Eq. (1): (a), (b) and (d) rep-
resent contributions to the bosonic self-energy in the present the-
ory, whereas (c) stands for the diagram associated with the current-
current correlation function.

A. Boson scattering via the fermions

In the overdoped and optimally doped region of the
cuprates, the electrons are rather coherent. Hence, we con-
sider the scattering process of bosons from electrons as the
predominant one. Evaluating the diagram on Fig. (2a) (de-
tailed calculations are given in Appendix A), we note that
such polarization bubble is proportional to g

2
I

and produces
a Landau damping term. This distinctive feature is typical
of a charge-two boson with finite momentum, which couples
to electrons in the same way as a pair-density-wave (PDW).

After integrating out the electronic degrees of freedom the
bosonic propagator reads

D
�1(q, i!n) = � |!n|+ q

2 + µ(T ). (2)

Here, !n is the Matsubara frequency, where
the Landau-damping constant is given by
� = g

2
I
N (✏F )/(2⇡

p
(2kFQ0)2 �Q

4
0), where N (✏F ) is

density of states at the Fermi energy and kF is the cor-
responding Fermi momentum and µ(T ) is the bosonic
“mass-term” at finite temperatures. This form of the bosonic
Green’s function is valid for all the frequencies below
!c ⇡ kFQ0. From Eq. (2), it becomes clear that the bosons
are diffusive near the critical point (or critical phase) where
the bare mass of the boson vanishes. Moreover, the form
factor of the electron pairs does not have a qualitative
influence on this diffusive behavior of the bosons. We have
checked numerically, e.g., that a d-wave form factor for the
electron pairs also lead to such Landau damping term, albeit
with a different coefficient. We show below that the bosonic
propagator of Eq. (2) can contribute to the incoherent part of
the resistivity that was recently reported in Ref. 13 and 15.

B. Kubo formula for the conductivity

Since the charge-two boson directly couples to the electro-
magnetic field, the main bosonic contribution to the longitudi-
nal resistivity is given within the Kubo formula by the diagram
in Fig. (2c) (see Appendix B, for detailed evaluation of this di-
agram). The leading-order contribution to the conductivity is
given by
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where the analytical continuation i!n ! ! + i� needs to
be performed, the indices i, j refer to the spatial directional,
v̂x =

�
�i@x � iH@ky

�
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) are the
velocity kernels. The longitudinal conductivity (independent
of the magnetic field H) is then given by
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Note that since the bosons have a finite momentum, the ve-
locity kernels in Eq. (3) become proportional to Q0, which
result in a prefactor for the above integral. Thus, performing
the corresponding integration, we find in the first regime, i.e.,
T ⌧
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!2/4 + µ2/�2, that the optical conductivity becomes
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checked numerically, e.g., that a d-wave form factor for the
electron pairs also lead to such Landau damping term, albeit
with a different coefficient. We show below that the bosonic
propagator of Eq. (2) can contribute to the incoherent part of
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FIG. 4. Shows real and imaginary parts of the optical conductivity
�(!) = �

0(!) + i�
00(!) for the following parameter choices: � =

1.0, g̃b = 1.0 and µ0 = 0.05. (a) T = 0.07, (b) T = 0.2, (c)
T = 0.4 and (d) T = 0.7. Here, �(!) shows the traditional Drude
form with the width of real part increasing with temperature. Thus,
the linear-in-T resistivity from the incoherent bosons contributes to
a Drude-like response at finite frequencies.

� in Eq. (2). The corresponding polarization bubble reads
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where q0 is the incoming frequency that is assumed to be a
small parameter during the evaluation. The renormalization
of the µ and � to the second order for �T � µ0 is given by
(details presented in Appendix D)
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where � = min[µ0, �T ]. Now we take the limit �T/µ0 � 1
and find that the second-order terms are negligible. Next, eval-
uating the same quantities for �T ⌧ µ0, we get

µ ⇡ µ0 +
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2⇡6�µ4
0

, (13)
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If we assume �T/µ0 ⌧ 1, the second order contributions then
become negligible. The constants c1 = 0.323 and c2 = 0.284
are evaluated by employing numerical techniques. Therefore,
in both regimes, the higher-order terms are small compared to
the first-order ones and, therefore, we can safely ignore their
effects from now on in our analysis.

Effect of a magnetic field

E. Hall conductivity

We begin the discussion on the effect of magnetic field
on the charged bosons with the Hall conductivity. The term
linear-in-H in Eq. (3) leads to the following expression for
the Hall conductivity, which is given by
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Evaluating this term with Eq. (2), we obtain that it naturally
vanishes (details can be found in Appendix E). This result is
not surprising, since the bosons are incoherent and the the-
ory has a particle-hole symmetry. This can be confirmed
by noting that the bosonic propagator in Eq. (2) is symmet-
ric under ! ! �! transformation. The fact that diffusive
bosons do not participate in the Hall number could explain
the recent studies where the number of Hall carriers is seen
to gradually decrease, as the doping is reduced from the over-
doped region to the underdoped regime.19 Similarly, vanishing
Hall conductivity is reported in the normal state of the stripe-
ordered cuprates,20 and in two-dimensional superconducting
thin-films.21,51 The emergence of particle-hole symmetry of
the charged incoherent bosons in this study also implicates a
tendency towards the vanishing Hall conductivity.

F. Second-moment of conductivity

The contribution quadratic in H of the conductance in
Eq. (3) writes
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This orbital contribution from Eq. (16) is a bit more involved
(see Appendix F) and it reads in the two possible theoretical
regimes as follows
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Again, we emphasize that the second regime is never realized
when the interaction between the electrons is stronger than the
Landau damping coefficient. Armed with the expression for
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xx , �(1)

xx , and �
(2)
xx , we proceed to evaluate the magnetic field

dependence of magnetoresistance.
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of a Drude conductivity, with the scattering rate given by
~⌧�1 = (2µ/�). However, in the second regime, i.e., T �p

!2/4 + µ2/�2, the optical conductivity does not exhibit the
traditional Drude form
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We will show in the next section that this latter regime (non-
Drude-like) is never obtained if the coupling strength between
the bosons is larger than the Landau-damping parameter.

C. Renormalization of the bosonic “mass-term”

In order to figure out the temperature dependence of
the static resistivity, we evaluate the renormalization of the
bosonic “mass-term” due to its scattering with strength gb.
This is given by the diagram in Fig. (2b) which is propor-
tional to the number of bosons, Nb = T

P
⌫n

P
q D(⌫n,q).

The bosonic mass term of the Eq. (2) is renormalized by

µ = µ0 + gbNb, (7)

where µ0 is the temperature independent part of the mass-
term, which vanishes at the quantum critical point. The
leading-order correction to the mass-term evaluates to (for de-
tails refer to Appendix B)
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where we have defined, g̃b = gb/(4⇡). Therefore, for an in-
termediate to strong coupling regime, i.e., g̃b � �, we will
always have �T ⌧ µ. For this reason, the second regime
displaying the non-Drude form of the optical conductivity
is not attained if the coupling is stronger than the damping.
In the main text, we mainly focus on the g̃b � � regime.
The possibility of the other theoretical limits are explored in
Appendix C 1. Thus, plugging the temperature-dependence
of the bosonic “mass-term” calculated in Eq. (8) back into
Eq. (5), the static ! ! 0 becomes
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Therefore, up to logarithmic corrections, we obtain a linear-
in-T regime for the resistivity when �T � µ0. The first term
is a T -independent contribution. To further confirm our ana-
lytical results, we perform numerical integration to obtain the
static resistivity as a function of temperature. The Fig. (3a)
shows a clear linear-in-T behavior of resistivity for the follow-
ing parameter choices, � = 1.0, Q0 = ⇡/2, µ0 = 0.05 and
g̃b = 1.0. As can be seen, there is a very good match between

the numerical and the approximate analytical behavior. Sim-
ilarly, in Fig. (3b) we show the same for a larger interaction
parameter g̃b = 1.5, which again displays a linear dependence
with temperature, albeit with a different slope (for details, see
Appendix C).

FIG. 3. Displays the linear-in-T evolution of resistivity obtained
from the analysis of the model. In all the plots, we set the Landau-
damping constant equal to � = 1.0 and the temperature independent
mass term µ0 = 0.05. Besides, we choose also the input parameters
(a) g̃b = 1.0 and (b) g̃b = 1.5. Above T > µ0/� the linear-in-T
behavior sets in. We also compare both the numerical and the ana-
lytical expressions in these plots which are in good agreement with
each other.

Our calculations reveal that the incoherent transport due to
the charged bosons contributes to the Drude-like response at
finite frequencies. Furthermore, in this regime the momen-
tum relaxation rate, ⌧�1

⇠ kBT/~ scales linearly with tem-
perature up to logarithmic corrections. In overdoped cuprates,
line-shapes of the optical conductivity as a function of fre-
quency remarkably follows such classic Drude form.8 A close
relationship between the scattering rates of the charge carriers
and linear-in-T behavior is established across several fami-
lies of overdoped cuprates.49,50 In Fig. (3a) we present the full
optical conductivity as a function of frequency ! for the fol-
lowing parameter choices, � = 1.0, Q0 = ⇡/2, µ0 = 0.05
and g̃b = 1.0. The real part of the optical conductivity shows
a sharp peak at low temperature, T = 0.07. The peak broad-
ens progressively as the temperature increases to T = 0.7 as
presented in Fig. (4b) to Fig. (4d). We obtain from Eq. (9) a
longitudinal conductivity that varies as T�1 (up to logarithmic
corrections), which participates in a Drude-like response at fi-
nite frequency. This result is unusual enough to be noticed,
since, within the holographic framework, it is currently a mat-
ter of intense discussions to decide whether a fixed point can
produce incoherent transport, which contributes to the Drude
conductivity.34–39 Our simple model provides an example of
such behavior.

D. Higher order terms in the self-energy

We now turn to the next-to-leading order correction regard-
ing the “mass-term” renormalization, namely, the rainbow di-
agram represented in Fig. (2d). In addition, the imaginary part
from this diagram renormalizes the Landau-damping constant

3

rent. Consequently, the two species contribute to the trans-
port, both terms must be included to obtain the total optical
sum rule.

When the coupling between the bosons is stronger than the
damping coefficient, our key findings are encapsulated in the
phase diagram of Fig. (1c). Above a threshold temperature
T > µ0/�, we find a linear-in-T resistivity and a vanish-
ing Hall conductance (where � is the Landau-damping coef-
ficient of the diffusive bosons to be defined shortly). Here,
µ0 is the doping-dependent bare mass of the boson as illus-
trated in Fig. (1b), which vanishes at the quantum critical
point or a critical phase. Our phenomenological study can-
not distinguish between a quantum critical point and quan-
tum critical phase as observed in Ref. 48. Furthermore, when
T > µ0/�, the incoherent bosons contribute to the Drude-
like conductivity with a scattering rate reminiscent of Planck-
ian dissipation.10,11,49,50 On the other hand, when the temper-
ature is below T < µ0/�, the traditional Fermi-liquid behav-
ior is established due to the additional presence of a coherent
fermionic pathway.31,32 The bare bosonic mass, µ0 determines
the crossover from the strange metallic to conventional metal
regime, as exhibited in Fig. (1c).

FIG. 2. Feynman diagrams corresponding to the transport proper-
ties and the interactions of the bosons among themselves and with
the fermions of the model defined in Eq. (1): (a), (b) and (d) rep-
resent contributions to the bosonic self-energy in the present the-
ory, whereas (c) stands for the diagram associated with the current-
current correlation function.

A. Boson scattering via the fermions

In the overdoped and optimally doped region of the
cuprates, the electrons are rather coherent. Hence, we con-
sider the scattering process of bosons from electrons as the
predominant one. Evaluating the diagram on Fig. (2a) (de-
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responding Fermi momentum and µ(T ) is the bosonic
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Green’s function is valid for all the frequencies below
!c ⇡ kFQ0. From Eq. (2), it becomes clear that the bosons
are diffusive near the critical point (or critical phase) where
the bare mass of the boson vanishes. Moreover, the form
factor of the electron pairs does not have a qualitative
influence on this diffusive behavior of the bosons. We have
checked numerically, e.g., that a d-wave form factor for the
electron pairs also lead to such Landau damping term, albeit
with a different coefficient. We show below that the bosonic
propagator of Eq. (2) can contribute to the incoherent part of
the resistivity that was recently reported in Ref. 13 and 15.

B. Kubo formula for the conductivity

Since the charge-two boson directly couples to the electro-
magnetic field, the main bosonic contribution to the longitudi-
nal resistivity is given within the Kubo formula by the diagram
in Fig. (2c) (see Appendix B, for detailed evaluation of this di-
agram). The leading-order contribution to the conductivity is
given by

�ij(!) =
T

!n

X

"n

Z
dx

Z
dx

0
{��ij�(x� x

0)D("n, x, x
0)

+v̂iD("n, x, x
0)v̂jD("n + !n, x

0
, x)} ,

(3)

where the analytical continuation i!n ! ! + i� needs to
be performed, the indices i, j refer to the spatial directional,
v̂x =

�
�i@x � iH@ky

�
and v̂y = (�i@y + iH@kx

) are the
velocity kernels. The longitudinal conductivity (independent
of the magnetic field H) is then given by

�
(0)
xx

(!n) =
T

!n

X

"n

1

L

X

q

⇥
Q

2
0D("n,q)D("n + !n,q)

+D("n,q)] . (4)

Note that since the bosons have a finite momentum, the ve-
locity kernels in Eq. (3) become proportional to Q0, which
result in a prefactor for the above integral. Thus, performing
the corresponding integration, we find in the first regime, i.e.,
T ⌧

p
!2/4 + µ2/�2, that the optical conductivity becomes

�xx (i! ! ! + i�) =
�
b

0⌧⇣
1� i

�!

2µ

⌘ , (5)
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FIG. 5. (Color online) Infinite ladder series corresponding re-
spectively to the gap equations (16) for diagram a) and(18)for
diagram b).

B. Charge and SC decoupling

We can now decouple the second term in Eqn. (15) in
the charge and SC channels, which leads to two types of
gap Equations

• In the charge channel, the Hubbard-Stratonovich
decoupling of Eqn. (15) leads to the effective action

S
eff
� =

ˆ
k,k0,q

(J�1
q �k,k0�k+q,k0+q

+ �k,k0

X

�

 
†
k+q,� k0+q,�

+ �k+q,k0+q

X

�

 
†
k,� k0,�),

where �k,k0 =
DP

�  
†
k,� k0,�

E
. Integrating the

fermions out of the partition function and then dif-
ferentiating with respect to � leads to the gap equa-
tion, in the charge sector. Here k0

�k = Q0, where
Q0 is the incommensurate charge modulation vec-
tor:

�k,k0 = ��k0,k+Q0 <T

X

!,q

Jq⇥ (16)

�k+q,k0+q

(i✏+ i! � ⇠k+q)(i✏0 + i! � ⇠k0+q) � �
2
k+q,k0+q

.

• Similar action is derived in the SC channel, with

S
eff
� =

ˆ
k,k0,q

(J�1
q �†

k,k0�k+q,k0�q

+ �†
k,k0

X

�

� k+q,� k0�q,��

+ �k+q,k0�q

X

�

� 
†
k,� 

†
k0,��), (17)

where �k,k0 = h
P

� � k,� k0,��i, and k0 =
�k. We get the standard SC gap equation
(�k = �k,�k) :

�k = T

X

!,q

Jq
�k+q

�2
k+q + ⇠

2
k+q + (✏+ !)2

, (18)

a)

b)

c) d)

e) f)

FIG. 6. (Color online) Solution of the gap equations from
Eqns. (16) and (18) for various modulation wave vectors with
a) the diagonal wave vector (Q0, Q0) linking two hot spots,
b) the axial wave vector (Q0, 0) and c) (0, Q0) which are ob-
served experimentally, d) the AF wave vector (⇡,⇡) and e)
the null wave vector. The solution of the SC gap equation
is given in f). The calculations are made on the band struc-
ture of Bi2212 form Ref.115 (see details in the text for the
band parameters). The calculations are made within the ap-
proximation Jq = J� (q), with J = 0.35, which restricts the
q-integration at the vector (⇡,⇡). The energy units, if not
stated otherwise, are in eV.

Throughout the paper, if not stated otherwise, the cal-
culations are made for Bi2212, with a band structure
taken from Ref.115. Specifically we take

⇠k = 2t1 + t2 (cos kx + cos ky) + 2t3 cos kx cos ky (19)
+ t4 cos 2kx + cos 2ky + t5 (cos 2kx cos ky + cos 2ky cos kx)

+ 2t6 cos 2kx cos 2ky � µ,

with (in eV) t1 = 0.196, t2 = �0.6798, t3 = 0.2368,
t4 = �0.0794, t5 = 0.0343 and t6 = 0.0011. The solu-
tion of Eqns.(16,18) is given in Fig.(6) for various charge

2

the vicinity of the Mott transition in two dimensions [18].
Here we argue that the presence of an underlying SU(2)
symmetry in the under-doped region sheds light on the
variety of observed complex phenomena and clarifies the
mysteries of the real space picture. First, we describe
the SU(2) order parameter and its components, then lay
out its derivation from a short-range antiferromagnetic
model, and finally describe the cascade of phase transi-
tions it generates.

SU(2) order parameter — The order parameter we use
to describe the pseudogap is a composite of two famil-
iar ones: the d-wave superconducting state described by
� = c†k,�c

†
�k,��, where c†k,� creates an electron of mo-

mentum k and spin �, and d-wave charge modulations of
momentum Q0, described by � = c†k�Q0/2

ck+Q0/2. The
charge modulation wave vectors are typically incommen-
surate, and taken either parallel to the crystal axes [19] or
diagonal [20, 21] (Figure 2). The SU(2) order parameter
can be cast into the form:

�̂SU2 =

✓
� �

��⇤ �⇤

◆
, (1)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
SU2 = �2

R + �2
I +�2

R +�2
I . (2)

where the indices denote the real and imaginary parts of
the operators, respectively. In this picture, �SU2 repre-
sents the energy scale below which the fluctuations be-
tween the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.

Topological consequences — At every oxygen doping x,
equation (2) describes a three dimensional hypersphere
S3 in a four-dimensional space, which can be described
by an O(4) non-linear �-model [21]

S =

ˆ
d2x

X

↵=1,4

1

2

"
⇢

T
(@µn↵)

2 +
X

↵

m↵n
2
↵

#
, (3)

where ↵ = 1, 4 are the four-component vector subject
to the constraint n2 = 1, with n1,2 = �I ,�R, n3,4 =
�I ,�R, with � = �/�SU2, � = �/�SU2 and the sign
of the masses m↵ depending on the presence or absence
of an applied amgnetic field. In the specific context of
the S3 sphere, no topological defect is generated, since a
careful examination of the corresponding homotopy class
gives ⇡2

�
S3

�
= 0 [22]. Here, we argue that the presence

of disorder in cuprates compounds, and coupling of the
order parameter ot the lattice, provides a freezing effect
on the phase of the charge modulations, which reduces
the phase to a few integer values ±i⇡/n, with n and inte-
ger and effectively reduces the fluctuations space from S3
to S2⇥Z2n at T ⇤. The order parameter given in Eqn.(1)

can be understood as a non-abelian superconductor : at
T ⇤ it aquires a non zero amplitude, but at the same time
one of its phase is frozen due to the presence of disorder
in the compound. The pseudogap phase is thus charac-
terised by �2

SU2 = �2 +�2
R +�2

I , and the effective non
linear �-model becomes O(3) with n1 = n2. The space
of the fluctuations is depicted in Fig. [rentrer la ref à
la figure]. where two fluctuating hemi-spheres have been
shown; Z2n has been reduced to Z2 for the clarity of the
representation, with phase +1 and �1 corresponding to
the upper and lower hemi-spheres, respectively. The sec-
ond homotopy class in the pseudogap phase gives now
⇡2

�
S2

�
= Z, which yields the spontaneous generation of

skyrmions [23]. Those are actually half skyrmions, also
called merons corresponding to a variation of the vector n
over one hemisphere in Fig. 1. They take two equivalent
typical forms, of a edgehog and vortice, and the prolifera-
tion pattern involves meron/anti-meron pairs. Note that,
contrarily to the magnetic skyrmions observed in mag-
netic systems (see e.g. [24]), here the topological struc-
ture acts on the pseudo-spin sector, with the three axes
of quantization (Sx, Sy, Sz) corresponding respectively to
(�R,�I ,�) (Figure 1). The choice of the quantization
axis z to be parallel to the charge modulation parameter
� is arbitrary but convenient, since the superconducting
phase then corresponds to a simple easy plane situation
(Figure 1).

Below Tc, superconducting vortices have been mea-
sured to bear a very specific structure where charge mod-
ulations are observed at the core [25]. This corresponds
to a pseudo-spin skyrmion where at the core the pseudo
spin is oriented along the z-axis, producing charge modu-
lations while the superconductivity order parameter van-
ishes (Figure 3). The energy associated to the creation
of this vortex is intrinsically of the order of the energy
splitting between the superconducting and charge mod-
ulation orders, which is precisely the typical energy scale
of the superconducting coherence �c ⇠ 1

2kBTc. Hence
pseudo-spin skyrmion vortices will proliferate around Tc

in the under-doped region of the phase diagram, acting as
a Kosterlitz-Thouless (KT) transition towards the pseu-
dogap state [26, 27].

Derivation of the order parameter — In this picture,
the starting point is that, above x ' 5% of oxygen dop-
ing, short range antiferromagnetic interactions, strongly
coupled to conduction electrons, are the main ingredient
of the physics of the cuprates. This leads to the most
simple Hamiltonian:

H =
X

i,j,�

c†i,�tijcj,� + J
X

hi,ji

Si · Sj (4)

where tij is the hopping matrix from one site to another,
Si =

P
↵,� c

†
i,↵�↵�ci� the on-site spin operator and hi, ji

denotes the summation over nearest neighbors.
Decoupling the interaction term into the charge and

superconducting channels � and � defined above, yields

+V
X

<i,j>

ninj

�ij =
1

2
< c†i�cj� > �⇤

ij =< c†i " c†j #>
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Studies of the electronic spectral function in cuprates by Angle-Resolved Photo-Emission Spectroscopy reveal
unusual features in the pseudogap phase that persist in the superconducting phase. We address here these
observations based on the recently proposed idea that the pseudogap is due to the fractionalization of modulated
particle-particle pairs (a Pair Density Wave) into uniform particle-particle and modulated particle-hole pairs.
The constraint that appears between these two types of pairs can be seen has an amplitude for the pseudogap
energy scale. This constraint directly modify the electronic spectral function in the pseudogap phase. We derive
a self-consistent equation for the pseudogap amplitude and show that it leads to the formation of Fermi arcs. The
band dispersion obtained in the anti-nodal region is in good agreement with experimental ARPES observations
in Pb0.55Bi1.5Sr1.6La0.4CuO6+� (Bi2201) and present a back-bending that goes to the Fermi level as we go
away from the antinodal region. We also discuss the temperature dependence of the ARPES spectrum in the
pseudogap and in the superconducting state.

Despite their discovery more than 30 years ago, there
is still no consensus on the nature of the pseudogap (PG)
phase of cuprate superconductors. This mysterious phase that
emerges upon doping the parent Mott insulator shows many
unusual features, the main one being a loss of density of
states1,2 as the temperature is decreased below a temperature
T

⇤. In this study, we discuss a recent proposal where the
opening of the pseudogap is attributed to the fractionalization
of a Pair Density Wave (PDW)3. Within this framework,
we discuss the complex phenomenology of Angle-Resolved
Photo-Emission spectroscopy (ARPES) in nearly optimally
doped Pb0.55Bi1.5Sr1.6La0.4CuO6+� (Bi2201). ARPES has
proven to be one of the key probes in studying cuprates.
It has notably been able to connect the loss of density of
states in the pseudogap to the Fermi surface being gapped
out in the antinodal region (ANR) for momenta close to
(0,±⇡), (±⇡, 0), while other parts of the Fermi surface
remain unchanged and form ‘Fermi arcs’ (For a review of the
pseudogap phenomenology see eg.4,5).

Most remarkably one observes, in the ANR, a back-
bending at a momentum kG larger than the normal state
Fermi momentum kF , which suggested the presence of a
modulation vector intimately linked with the opening of
the pseudogap6. Moreover, as noticed in Ref 7, the gap
continuously closes from ‘below’ when moving towards the
Fermi arcs, which is interpreted as revealing the presence of
particle-particle pairs in the PG. Lastly, one observes that the
bottom of the band at k = (0,⇡) drops when decreasing the
temperature and a new lightly dispersive ‘flat’ band is seen
in superconducting phase. Few other scenarios have been
proposed to explain this specific gaping mechanism such as
a quantum disorder PDW8, a coexistence of Charge Density
Wave (CDW) and PDW9 or a Resonant Excitonic State
(RES)10. In comparison to previous works, our study is based
on a simple intuition, and accounts for all the experimental
features with very few adjusting parameters.

This paper is organized as follow. We start with a
self-consistent equation for the pseudogap amplitude by
treating a model of itinerant electrons interacting through
antiferromagnetic exchange and residual density-density

interaction at the mean-field level. The pseudogap can be
seen as a superposition of superconductivity (SC) and CDW
orders resulting in a composite order which has a non-zero
amplitude in the ANR leading to the formation of Fermi arcs.
The electronic spectral function in the ANR shows all the
specific features mentioned previously, namely we obtain a
back-bending of the electronic dispersion, a ‘flat’ band and
the gap closing from below when going closer to the center of
the Brillouin zone. The effects of temperature on the spectral
function close to k = (⇡, 0) and on the spectral weight of
the flat band are also discussed for the first time based on
phenomenological arguments.

The fractionalization of a PDW order is written in a way
resembling the fractionalization of the electron introduced in
strong coupling theories11–13. The assumption is that, at a cer-
tain energy scale E⇤, the system wants to form a PDW, which
is depicted locally as an ⌘-mode3,14

⌘̂ = [�̂ij , �̂
†
ij ], ⌘̂

† = [�̂ij , �̂
†
ij ], (1)

where �̂ij = d̂ij
P

� �ci,�cj,�� and �̂ij =

d̂ij
P

� c
†
i,�cj,�e

iQ.(ri+rj)/2 are respectively the SC and
CDW operators, d̂ij being a structure factor which can as-
sume d-wave symmetry and Q is the modulation wave-vector
of the PDW. The ⌘-operators are invariant with the following
gauge structure

�̂ij ! e
i✓�̂ij , �̂ij ! e

i✓
�̂ij . (2)

Then, the effective field theory for the fluctuating PDW is a
rotor model15, in which the fluctuation of the U(1) gauge field
produces a constraint between the two fields:

|�̂ij |2 + |�̂ij |2 ⌘ | ij |2 = const, (3)

where  ij = (�̂ij , �̂ij)t. The energy scale associated to
Eq.(3) is typically the scale at which the fractionalization oc-
curs. In our Ansatz, it corresponds to the PG scale which we
denote | ij | = E

⇤3,15 in analogy with the pseudogap temper-
ature T

⇤.
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1
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Studies of the electronic spectral function in cuprates by Angle-Resolved Photo-Emission Spectroscopy reveal
unusual features in the pseudogap phase that persist in the superconducting phase. We address here these
observations based on the recently proposed idea that the pseudogap is due to the fractionalization of modulated
particle-particle pairs (a Pair Density Wave) into uniform particle-particle and modulated particle-hole pairs.
The constraint that appears between these two types of pairs can be seen has an amplitude for the pseudogap
energy scale. This constraint directly modify the electronic spectral function in the pseudogap phase. We derive
a self-consistent equation for the pseudogap amplitude and show that it leads to the formation of Fermi arcs. The
band dispersion obtained in the anti-nodal region is in good agreement with experimental ARPES observations
in Pb0.55Bi1.5Sr1.6La0.4CuO6+� (Bi2201) and present a back-bending that goes to the Fermi level as we go
away from the antinodal region. We also discuss the temperature dependence of the ARPES spectrum in the
pseudogap and in the superconducting state.

Despite their discovery more than 30 years ago, there
is still no consensus on the nature of the pseudogap (PG)
phase of cuprate superconductors. This mysterious phase that
emerges upon doping the parent Mott insulator shows many
unusual features, the main one being a loss of density of
states1,2 as the temperature is decreased below a temperature
T

⇤. In this study, we discuss a recent proposal where the
opening of the pseudogap is attributed to the fractionalization
of a Pair Density Wave (PDW)3. Within this framework,
we discuss the complex phenomenology of Angle-Resolved
Photo-Emission spectroscopy (ARPES) in nearly optimally
doped Pb0.55Bi1.5Sr1.6La0.4CuO6+� (Bi2201). ARPES has
proven to be one of the key probes in studying cuprates.
It has notably been able to connect the loss of density of
states in the pseudogap to the Fermi surface being gapped
out in the antinodal region (ANR) for momenta close to
(0,±⇡), (±⇡, 0), while other parts of the Fermi surface
remain unchanged and form ‘Fermi arcs’ (For a review of the
pseudogap phenomenology see eg.4,5).

Most remarkably one observes, in the ANR, a back-
bending at a momentum kG larger than the normal state
Fermi momentum kF , which suggested the presence of a
modulation vector intimately linked with the opening of
the pseudogap6. Moreover, as noticed in Ref 7, the gap
continuously closes from ‘below’ when moving towards the
Fermi arcs, which is interpreted as revealing the presence of
particle-particle pairs in the PG. Lastly, one observes that the
bottom of the band at k = (0,⇡) drops when decreasing the
temperature and a new lightly dispersive ‘flat’ band is seen
in superconducting phase. Few other scenarios have been
proposed to explain this specific gaping mechanism such as
a quantum disorder PDW8, a coexistence of Charge Density
Wave (CDW) and PDW9 or a Resonant Excitonic State
(RES)10. In comparison to previous works, our study is based
on a simple intuition, and accounts for all the experimental
features with very few adjusting parameters.

This paper is organized as follow. We start with a
self-consistent equation for the pseudogap amplitude by
treating a model of itinerant electrons interacting through
antiferromagnetic exchange and residual density-density

interaction at the mean-field level. The pseudogap can be
seen as a superposition of superconductivity (SC) and CDW
orders resulting in a composite order which has a non-zero
amplitude in the ANR leading to the formation of Fermi arcs.
The electronic spectral function in the ANR shows all the
specific features mentioned previously, namely we obtain a
back-bending of the electronic dispersion, a ‘flat’ band and
the gap closing from below when going closer to the center of
the Brillouin zone. The effects of temperature on the spectral
function close to k = (⇡, 0) and on the spectral weight of
the flat band are also discussed for the first time based on
phenomenological arguments.

The fractionalization of a PDW order is written in a way
resembling the fractionalization of the electron introduced in
strong coupling theories11–13. The assumption is that, at a cer-
tain energy scale E⇤, the system wants to form a PDW, which
is depicted locally as an ⌘-mode3,14

⌘̂ = [�̂ij , �̂
†
ij ], ⌘̂

† = [�̂ij , �̂
†
ij ], (1)

where �̂ij = d̂ij
P

� �ci,�cj,�� and �̂ij =

d̂ij
P

� c
†
i,�cj,�e

iQ.(ri+rj)/2 are respectively the SC and
CDW operators, d̂ij being a structure factor which can as-
sume d-wave symmetry and Q is the modulation wave-vector
of the PDW. The ⌘-operators are invariant with the following
gauge structure

�̂ij ! e
i✓�̂ij , �̂ij ! e

i✓
�̂ij . (2)

Then, the effective field theory for the fluctuating PDW is a
rotor model15, in which the fluctuation of the U(1) gauge field
produces a constraint between the two fields:

|�̂ij |2 + |�̂ij |2 ⌘ | ij |2 = const, (3)

where  ij = (�̂ij , �̂ij)t. The energy scale associated to
Eq.(3) is typically the scale at which the fractionalization oc-
curs. In our Ansatz, it corresponds to the PG scale which we
denote | ij | = E

⇤3,15 in analogy with the pseudogap temper-
ature T

⇤.
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terms proportional to | k|2. This gives us the effective action
Eq.(5) of the main text:

Seff =

Z
d⌧

X

Q,k,q

 k
† k+q

J̃q

� Tr ln
�
G

�1 (i!, k)
�

(S13)

We can compare the result obtained by minimizing this action
with respect to | k| to the more standard approach which con-
sists in minimizing Eq.(S12) with respect to |�k| or |�k|. We
report for this the condensation energy gained by the system
close to the Fermi level:

EPG =
1

2J̃
| k=kF |2 = 0.017 eV, (S14)

ESC =
1

2J�
|�k=kF |2 = 0.014 eV, (S15)

ECDW =
1

2J+
|�k=kF |2 = 0.011 eV. (S16)

The logic behind the result is that because of the density-
density interaction V, the CDW order is prefered over the SC
order close to the hot-spots. However this modulated order is
limited to region in the Brillouin zone where the modulation
wave-vector links different parts of the Fermi surface. The
doublet is then able to have ‘the better of both world’ as the
coupling constant J̃ is between J+ and J� but it is not as re-
stricted as the CDW order and extends in a significant part of
the anti-nodal region as shown in Fig.1 of the main text.

III. COMPARISON WITH OTHER SCENARIO BASED ON
SC OR CDW ORDER

We discuss here how the presence of a back-bending kG >

kF and the observation that the gap close from below when
going towards the centre of the Brillouin zone are signa-
tures for the presence of both particle-particle and modulated
particle-hole pairs. In the following, we look at different ori-
gins for the gap in the ANR that lead only to one of the two
features mentioned previously.

1. Case of SC order

We start by reminding what is the consequence of a super-
conducting order on the electronic spectral function. For this,
we consider a Green’s function of the form

GSC (k, i!n) =

✓
i!n � ⇠k � |�k|2

i!n + ⇠k

◆�1

. (S17)

Fig.S1(a)-(d) shows the associated spectral function for differ-
ent cut at fixed kx = ⇡ � �kx. We see that the gap is closing
from below as we go away from the edge of the Brillouin zone,
however the back-bending of the band below the Fermi level
is locked at kG = kF due to particle-hole symmetry. This
is in contrast with the experimental observation in Ref.3 and
thus the pseudogap cannot be due solely to fluctuations of a
superconducting order4–6.

FIG. S1. (a)-(d) Energy dependence of the spectral function for
cuts at fixed kx = ⇡ � �kx. This corresponds to the Green’s
function in Eqs.(S17) and shows the effect of SC orer in the ANR.
(e)-(h) Energy dependence of the spectral function for cuts at fixed
kx = ⇡ � �kx. This corresponds to the Green’s function in
Eq.(S18) and shows the effect of CDW order with a wave-vector
Q = (±0.2, 0)⇡ in the ANR. (i)-(l) Energy dependence of the
spectral function for cuts at fixed kx = ⇡ � �kx. This corre-
sponds to the Green’s function in Eq.(S19) and shows the effect of
the superposition of SC order and CDW order with a wave-vector
Q = (±0.2, 0)⇡ in the ANR. For all figures we used a gap of the

form |�k| = |�0| exp
✓
� (kx�⇡)2

2�2
x

� k2
y

2�2
y

◆
with |�0| = 30 meV ,

�x = 0.7, �y = 1. The red lines indicate the non-interacting disper-
sion.

2. Case of CDW order

It has been argued7 that a pure CDW order cannot account
for the experimental features observed in the ANR. We repro-
duce here the argument and show that a pure CDW order leads
to a back-bending shifted from the original Fermi momentum
but with a gap closing from above as we go to the centre of
the Brillouin zone. We thus take a Green function of the form

GCDW (k, i!n) =

✓
i!n � ⇠k � |�k|2

i!n � ⇠k+Q

◆�1

. (S18)

To be consistent with the experimental observations, we need
to choose a modulation wave-vector along one of the cristal
axis. As taking Q along the y axis will not lead to any gap
in the ANR close to k = (⇡, 0) we take Q = (±0.2, 0)⇡.
This effectively leads to a gap at the Fermi level as shown
in Fig.S1(e)-(h) with a back-bending of the occupied band at
kG > kF . However, we see that as we go closer to the center
of the Brillouin zone, the gap is closing because the unoccu-
pied band is going closer to the Fermi level. This result in a

Condensation energy
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FIG. 2. (a)-(d) Experimental dispersion obtained by ARPES6 for
T > T ⇤ (red dots) and T < Tc (blue and green dots) for different
cuts at fixed kx = ⇡ � �kx. The Fermi arcs end around �kx =
0.6 and the gap observed in the last panel is the standard nodal d-
wave SC. (e)-(h) Theoretical results for the energy dependence of
the spectral function A (k,!) for cuts at fixed kx = ⇡ � �kx. The
red dotted line is the non-interacting dispersion. We used the solution
of Eq.(7) for the pseudogap amplitude and Qx = (0.2, 0)⇡

bands ⇠k, the normal state dispersion, �⇠k coming from the
superconducting order and ⇠k+Q coming from the modulating
order. At the zone boundary (kx = ⇡), this results in two
bands below the Fermi level shown in Fig.1(d) with one
of them presenting a back-bending (blue line) indicated by
black arrows while the other one (yellow line) present little
dispersion around ky = 0. In our mean-field description, this
back-bending appears as a result of the hybridization between
the hole band �⇠k (green doted) and the shifted ⇠k+Q (blue
doted) band in Fig.1(d). As such this back-bending will occur
at ky = kG > kF as long as ⇠k+Q < ⇠k which is satisfied
for all kx > khot�spot. This means that this anomalous
back-bending will persist below Tc in the ANR but we will
recover a standard back-bending at ky = kF in the nodal
region as the above condition is not satisfied.

The spectral weight A(k,!) for each band is obtained for
different fixed values of kx = ⇡ � �kx and compared to the
experimental dispersion of Ref.6 (Fig.2(a)-(d)). As we get
closer to the centre of the Brillouin zone we can see that
the energy of the maximum of the band gets closer to the
Fermi level leading to the pseudogap closing ‘from below’
(Fig.2(e)-(h)) as observed experimentally. Note that we obtain
here a gap closing ‘from below’ contrary to what was argued
previously for a pure CDW scenario with a modulation along
the y direction7. This is because we consider a modulation
wave-vector along the x direction. This same orientation for
the modulation wave-vector has been used recently to explain
ARPES results in Bi2201 through the idea of a quantum
disorder PDW8 and other theoretical approaches such as a
superposition of CDW and PDW order9 or a RES10.

Our previous description of the band structure in the
pseudogap also shows a second band located at the bottom
of the non-interacting band. We connect here this band
to the flat band observed experimentally below Tc (green

dots in Fig.2(a)-(c)) and argue that finite lifetimes for the
single-particle and pair excitations lead to this band not being
observed above Tc. For this, we add three phenomenological
damping rates �0, �1 and �2 in our mean-field Green’s
function :

G
�1 (i!, k) = i! � ⇠k � i�0 �

X

Q=±Qx,±Qy

| k|2

2
G̃ (i!, k) ,

G̃ (i!, k) = (i! � ⇠k+Q + i�1)
�1 + (i! + ⇠k + i�2)

�1
.

(8)

The two factors �1 and �2 represent the lifetime of particle-
hole and particle-particle pairs respectively17–19. These life-
times capture the fluctuations in the pseudogap phase and are
used in other approaches such as preformed pairs20–23 or effect
of gaussian fluctuations24. They are expected to be non-zero
above Tc but to vanish at the transition temperature when fluc-
tuations are quenched. The first �0 term is a single-particle
lifetime which is always non-zero. The effect of each of these
additional terms is depicted in Fig.3(a)-(d). Allowing a non-
zero �0 will broaden the two bands below the Fermi level in
similar ways (Fig.3(b)), in contrast to the pair lifetimes which
have a very different effect on specific parts of the dispersion.
Indeed, Fig.3(c) shows that a non-zero �1 will strongly sup-
press the ‘flat’ band close to the Fermi level and also dampen
the main band close to ky = 0. Turning on the �2 term will
have the opposite effect as the band far from ky = 0 gets
dampened while the bottom of the flat and main bands remain
well defined. The experimental observation of the flat band
only close or below Tc can then be attributed to the presence
of a particle-hole pair lifetime in the pseudogap. Note also that
due to disorder effect, which couple directly to charge order25,
this lifetime could remain non-zero below Tc and thus leads to
this band remaining broad even in the superconducting state
as observed experimentally. Moreover, this description pro-
vides a good agreement with the experimental observation that
the dispersion in the ANR does not change across the super-
conducting transition. In our case, the position of the main
band does not change with temperature and only the spectral
weights of the two bands get modified as the different life-
times decrease.

Another feature of the temperature dependence measured
experimentally for T

⇤
> T > Tc in the ANR is a signifi-

cant decrease of the energy of bottom of the band when the
temperature is decreased while the maximum energy and the
back-bending wave-vector change only slightly as shown in
Fig.4(a). We describe here this change in the band structure
by adding a finite amplitude for the particle-hole order param-
eter |�k|. We then have three different regions such that at
T > T

⇤ we have free electrons. At T . T
⇤ where the pseu-

dogap has a finite amplitude but the particle-hole gap is still 0
and at T & Tc where the particle-hole gap is finite. We then
obtain the band dispersions shown in Fig.4(b). Because the
bottom of the band is directly related to the hybridization with
the band coming from the charge modulation, it is directly af-
fected by the non-zero value of |�k|. On the other hand, the
back-bending momentum is determined mainly by the value
of the modulation wave-vector Q and the energy of the max-
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The goal of this paper is to test the validity of this unusual
proposal by studying the fine structure of the spectral weight
against the observations made by ARPES in Bi2201. For this
we start with electrons hopping on a square lattice interacting
via an effective antiferromagnetic coupling Jij , which comes
for example from the Anderson super-exchange mechanism,
and a small off-site residual Coulomb interaction term Vij :

H =
X

i,j,�

tij

⇣
c
†
i�cj� + h.c

⌘
+ Jij Si · Sj + Vij ninj , (4)

where c
†
i� is the creation operator for an electron with spin

� on a site i, Si = c
†
i↵ �↵� ci� is the spin operator with �

the vector of Pauli matrices and tij describe hopping between
different sites and are taken from a fit to ARPES data6,10,15.
Both interactions are restricted to nearest-neighbours and we
take V to be smaller than J which will be our main energy
scale.

We treat this model in momentum space and start by de-
coupling the interaction with the individual fields forming the
doublet. Here these fields are a pairing field�k and four den-
sity modulation fields �k with uniaxial modulation vectors
Q = ±Qx;±Qy = (±Q0, 0) ; (0,±Q0) shown in Fig.1(a).
The effective action for the doublet  k

† = (�⇤
k, �k

⇤) repre-
senting our pseudogap is then given by15

Seff =

Z
d⌧

X

Q,k,q

 k
† k+q

J̃ (q)
� Tr ln

�
G

�1 (i!, k)
�
, (5)

G
�1 (i!, k) = i! � ⇠k �

X

Q=±Qx,±Qy

| k|2

2
G̃ (i!, k) , (6)

where ⇠k is the non-interacting electronic dispersion,
G̃ (i!, k) = (i! � ⇠k+Q)

�1 + (i! + ⇠k)
�1 and 1/J̃ =

3J/
�
9J2 � V

2
�
. The electronic Green function in Eq.(6) will

thus be modified if | k| acquires a non zero value even if both
the composing fields are fluctuating and have a vanishing ex-
pectation value.

Minimizing Seff in Eq.(5) with respect to the doublet
 k gives the mean-field gap equation for the doublet ampli-
tude. We will consider the different modulation wave-vectors
to be decoupled and use the fact that J̃q is peaked around
q = (⇡,⇡) to restrict the momentum summation to a range
qAF around the antiferromagnetic wave-vector. The param-
eter qAF is physically associated with the short-range nature
of the antiferromagnetic fluctuations16 mediating the interac-
tion. Assuming that | k| is constant over a range qAF , the
self-consistent equation is of the BCS form :

| k| = �
T

N

X

i!n,q̃

J̃

✓
i!n +

�⇠k+q̃

2

◆

⇥
| k+⇡ |⇣

(i!n)
2 � ⇠2k+q̃

⌘ �
i!n � ⇠k+Q+q̃

�
�

⇣
i!n +

�⇠k+q̃

2

⌘
| k+⇡ |2

(7)

where q̃ range between ⇡ � qAF /2 and ⇡ + qAF /2 and
�⇠k+q = ⇠k+q � ⇠k+Q+q . Ignoring frequency dependence of
| k| we can perform the Matsubara summation analytically.
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FIG. 1. (a) Schematic representation of the Brillouin zone for
cuprates with the modulation wave-vector used in this work. (b)
Solution of the gap equation for the pseudogap amplitude Eq.(7).
Colored regions show non-zero solutions for | k|. We used an ax-
ial modulation wave-vector Qx relating hot-spots shown in panel (a)
and J = 300 meV , V = J/10 and qAF = 0.15 r.l.u. The white
line indicate the non-interacting Fermi surface. (c) Electronic spec-
tral function A (k,! = 0) obtained from Eq.(6) for | k| given by
Eq.(7). We see the formation of Fermi arcs as the ANR gets gaped
out. We used a broadening factor ⌘ = 5 meV for numerical pur-
poses. (d) Band structure obtain by the Green’s function in Eq.(6) for
kx = ⇡ and a constant | k| = 30 meV . The dotted lines indicate
the non-interacting dispersion ⇠k (red), the hole band �⇠k (green)
and the band from the modulating order ⇠k+Qx (blue). The black
arrows point to the back-bending mentioned in the main text.

This leads to two coupled equation between | k| and | k+⇡|
which we can solve self-consistently.

Results of this self-consistent equation are shown in
Fig.1(b) for a modulation wave-vector linking hot-spots along
the x axis. Hot-spots are points of the Fermi surface linked
by (⇡,⇡) and are thus expected to be important due to the
form of our interaction. Due to the finite wave-vector of
the pseudogap amplitude, the gap equation Eq.(7) admits
non-zero solution only in the ANR, when this modulation
vector links two parts of the Fermi surface. The region close
to the Brillouin zone diagonal will thus remain unperturbed
by the transition at T

⇤. The electronic spectral function
A (!, k) = � 1

⇡ Im (G (! + i⌘, k)) for ! = 0 and ⌘ ! 0+

shows that the ANR is gapped while the nodal region forms
Fermi arcs (Fig.1(c)). These arcs terminate close to the
hot-spots. We now look at the reconstructed band structure
obtained from the zeros of G

�1(k,!) in the ANR. From
the form of G̃ (k,!), we can understand the dispersion
as coming from an equal superposition of SC and CDW
order in the ANR. We can thus construct the resulting band
structure in the pseudogap as the hybridization of the three
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FIG. 1. (a) Schematic representation of the Brillouin zone for
cuprates with the modulation wave-vector used in this work. (b)
Solution of the gap equation for the pseudogap amplitude Eq.(7).
Colored regions show non-zero solutions for | k|. We used an ax-
ial modulation wave-vector Qx relating hot-spots shown in panel (a)
and J = 300 meV , V = J/10 and qAF = 0.15 r.l.u. The white
line indicate the non-interacting Fermi surface. (c) Electronic spec-
tral function A (k,! = 0) obtained from Eq.(6) for | k| given by
Eq.(7). We see the formation of Fermi arcs as the ANR gets gaped
out. We used a broadening factor ⌘ = 5 meV for numerical pur-
poses. (d) Band structure obtain by the Green’s function in Eq.(6) for
kx = ⇡ and a constant | k| = 30 meV . The dotted lines indicate
the non-interacting dispersion ⇠k (red), the hole band �⇠k (green)
and the band from the modulating order ⇠k+Qx (blue). The black
arrows point to the back-bending mentioned in the main text.

This leads to two coupled equation between | k| and | k+⇡|
which we can solve self-consistently.

Results of this self-consistent equation are shown in
Fig.1(b) for a modulation wave-vector linking hot-spots along
the x axis. Hot-spots are points of the Fermi surface linked
by (⇡,⇡) and are thus expected to be important due to the
form of our interaction. Due to the finite wave-vector of
the pseudogap amplitude, the gap equation Eq.(7) admits
non-zero solution only in the ANR, when this modulation
vector links two parts of the Fermi surface. The region close
to the Brillouin zone diagonal will thus remain unperturbed
by the transition at T

⇤. The electronic spectral function
A (!, k) = � 1

⇡ Im (G (! + i⌘, k)) for ! = 0 and ⌘ ! 0+

shows that the ANR is gapped while the nodal region forms
Fermi arcs (Fig.1(c)). These arcs terminate close to the
hot-spots. We now look at the reconstructed band structure
obtained from the zeros of G

�1(k,!) in the ANR. From
the form of G̃ (k,!), we can understand the dispersion
as coming from an equal superposition of SC and CDW
order in the ANR. We can thus construct the resulting band
structure in the pseudogap as the hybridization of the three

4

FIG. 3. Energy dependence of the spectral function at kx = ⇡ for
different ky between �⇡/4 and ⇡/4, successive lines are shifted for
clarity. (a) without any lifetime �0 = �1 = �2 = 0. We used a
broadening ⌘ = 0.002 eV for numerical purposes. (b) Turning on
a single-particle lifetime �0 = 0.02 eV leads to both bands being
broadened in a similar way. (c) In contrast, when we consider only
a finite particle-hole lifetime �1 = 0.02 eV we see that the disper-
sion close to ky = 0 is more strongly affected than the dispersion at
higher momenta. The flat band is also more strongly dampened than
the main band. (d) The situation is reversed if we consider only a
particle-particle lifetime �2 = 0.02 eV . The parts of the bands close
to ky = 0 are less affected and still well defined. The flat band is
more broadened but remains visible.

imum comes from the hybridization between the supercon-
ducting band �⇠k and the shifted band ⇠k+Q, thus related to
the value of | k|. In contrast, a finite amplitude for the SC
order parameter |�k| would produce the opposite effect and
change substantially the position of the maximum leaving the
bottom of the band unchanged15. The fact that |�k| acquire a
quasi long-range component before the |�k| is representative
of the fact that CDW is observed experimentally at a temper-
ature higher than the temperature for SC fluctuations T 0

c. This
long-range component of the CDW order has also been ob-
served by Raman spectroscopy26, X-ray27–32 and NMR33–36

measurements above Tc.

In conclusion, we showed here how the recently proposed
idea of fractionalized PDW3 can be used to construct a
mean-field description of the pseudogap phase of cuprates.
The main idea is that even if none of CDW or SC orders
develop a long range-component, the constraint introduced by
the fractionalization affects the electronic Green’s function.

Using a microscopic model we derived a self-consistent
equation for the pseudogap amplitude and showed that it has
non-zero solutions in the antinodal region, which gives a gap
in the ANR in the PG phase and leads to the formation of
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FIG. 4. Temperature evolution of the band at the zone edge in the
pseudogap regime. (a) Experimental measurement for a range of
temperature going from above T ⇤ ⇠ 132 K to T & Tc ⇠ 38 K6 .
(b) The red line indicates the non-interacting band above T ⇤. The or-
ange line is the band after the opening of the pseudogap presenting a
back-bending shifted from the original Fermi momentum kF . When
going down in temperature we add a finite mean-field amplitude for
the CDW order and obtain the band dispersion represented in blue.
The back-bending wave-vector and the gap with respect to the Fermi
level are mainly unchanged while the bottom of the band is strongly
affected.

Fermi arcs. The band dispersion obtained in the antinodal
region is in good agreement with the experimental ARPES
measurement made on Bi2201. Especially, we recover all the
features observed in the pseudogap state. The superposition
of particle-particle and particle-hole orders leads to an
anomalous back-bending of the main band below the Fermi
level, a gap closing ‘from below’ and a ‘flat band’ close to the
bottom of the original electronic dispersion. We argue that
this band is seen experimentally only below Tc because it is
strongly affected by the finite pair lifetime in the pseudogap
phase. Lastly, we discussed the change of the dispersion as
the temperature is lowered from T

⇤ to Tc by showing that a
finite quasi long-range component of the particle-hole order
leads to the minimum of the band going down in energy while
the energy and momentum of the maximum stay unchanged.

The competition between different orders is present
in many other materials such as transition metal
dichalcogenides37 for example. We showed here that
considering an entanglement between these competing orders
has unique consequences beyond the standard competing
scenarios. This idea could also be used to study other
materials that exhibit pseudogap physics such as CeRhIn5

38

and NbSe239,40.
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FIG. 3. a Normal self-energy in the hidden-fermion model of Ref.1.
The asymmetry in the anti-nodal region is well reproduced. As there
is only one hidden-fermion coupled to electrons it is not possible to
recover the splitting in the nodal region. The weight of the positive
energy pole is also maximum for k = (⇡/2,⇡/2) in contrast to the
numerical results shown in Fig.2. (b) Normal self-energy obtained
while considering hidden-fermions due to CDW order with a wave-
vector along the x axis. Due to the symmetry between ✏k+Q = ✏k�Q

at k = (0,⇡) we only have two visible poles with an asymmetry con-
sistent with the CDMFT results. This symmetry is lost when going to
the nodal region and we observe a splitting of the poles. The change
of sign of ✏k�Q close to k = (⇡/2,⇡/2) explains the significant
weight for the pole at negative energy. We choose here Q0 = 0.27⇡,
z = 0.22, �0 = 0.55, V0 = 0.7 and a numerical broadening factor
i⌘ = 0.03i.

gives the same form for the electronic Green’s function, in
the superconducting phase, to the hidden-fermion model with
f
↵†
k,�

= c
†
k+Q,�

and f
�†
k,�

= c
†
k�Q,�

. Our results for the two
hidden fermions coming from the charge order are shown in
Fig.3(b). At k = (⇡,⇡) we can only see a pair of symmetric
peaks due to the fact that ✏k+Q = ✏k�Q. Moreover, the
charge order wave-vector being larger than the anti-nodal
Fermi momentum means that we have ✏k±Q > 0. Using the
result of Eq.(4), this leads to the same weight asymmetry
observed in the CDMFT study with the pole at +!

↵ having
a higher weight than the pole at �!

↵. When going towards
the nodal region the previous symmetry between ✏k+Q and
✏k�Q is lost and we observe a splitting of the poles at ! > 0
analogous to the numerical results. It is important to point
out that the behaviours of the spectral weight for the two
peaks are different. In fact, the pole due to the coupling to
c
†
k+Q,�

will have a higher weight at �!
↵ in the nodal region.

This is because ✏k�Q will change sign and become negative.
Because the pairing gap for the hidden-fermion is taken as
�f,↵

k
= �k±Q, there is no cancellation of the weight at

k = (⇡/2,⇡/2) which result in a non-vanishing weight in the
nodal region for the pole at ! < 0. Note that we took here
a coupling between the electrons and the hidden-fermions to
be independent of momentum, i.e V

f,↵

k
= V0. This does not

impact the position of the poles as shown by Eq.(3) but only
the weight at each pole (see Eq.(4)). Furthermore, results
from CDMFT away from the antinodal point k = (0,⇡) are
extrapolated from the available momentum points. Thus, the
discrepancy between the spectral weight in the nodal region
can be due to multiple factors.

B. Pseudogap phase

We showed that both the antiferromagnetic hidden-fermion
and the fractionalized PDW models give similar results in the
superconducting phase. The two models differ strongly in the
pseudogap phase where the hidden-fermion model restores
the charge conservation symmetry but keeps the coupling be-
tween electrons and the hidden fermions unchanged. In con-
trast, the fractionalization of a Pair Density Wave leads to the
superposition of SC and CDW fluctuations that have a strong
impact on the electronic spectral functions.

1. Pseudogap in the hidden-fermion model

In the hidden-fermion model, the pseudogap phase is ob-
tained by setting the superconducting order parameters �k

and �f,↵

k
to zero. The remaining part of the self-energy is

due to the hybridization to the hidden-fermions through V
↵.

The self-energy thus take the form:

⌃N (k,!) =
X

↵

V
↵

k

2

! � ✏f,↵k

⌃AN (k,!) = 0 (6)

The structure of the self-energy is then reduced to peaks
located at the energy of the hidden-fermions as shown in
Fig.4(a) (red dotted line). In our case, the self-energy in the
anti-nodal region will display a single peak at ! > 0 because
✏⇡+Q = ✏⇡�Q > 0. This leads to the electronic spectral
function having two poles with a vanishing spectral weight at
! = 0 for k = (0,⇡) (red line in Fig.4(a)). Note that a non-
zero value of hybridization between c

k,�
and c

k+Q,�
should

be interpreted as a long-range CDW at the mean-field level.
As such, we should observe a Fermi surface reconstruction
with gapless states in the pseudogap phase. This long-range
order has only been observed by applicatying strong magnetic
fields19,20,25 in the superconducting phase. Furthermore, the
short-range charge order above Tc is only observed below a
transition temperature TCO which is lower than the pseudo-
gap temperature T

⇤. The band structure observed by ARPES
does not however show significant change for temperatures in
the pseudogap region. It is thus inconsistent to consider that
the pseudogap phase is solely due to the charge order.

2. Fractionalized Pair Density Wave

We start by giving details on the Pair Density Wave frac-
tionalization as described in Ref.[26 and 27]. The fraction-
alization of the PDW operator is based on the relation be-
tween the ⌘-mode, which is a modulated particle-particle
pair and the SC (�̂ij = Jd̂ij

P
�
�ci,�cj,��) and the CDW

2

FIG. 1. (a) Normal self-energy (red line) and electronic spectral
function (green dotted lines) obtained by CDMFT for momenta on
the line k = (0,⇡) � (⇡/2,⇡/2). The self-energy shows two iso-
lated poles in the anti-nodal region at ! = ±!0 but with a clear
asymmetry in weight. In the nodal region the peak at positive energy
splits. The pole at negative energy is damped is difficult to follow.(b)
Anomalous self-energy obtained by CDMFT for the same momenta.
It shows pairs of poles at the same position as in the normal part
but with an anti-symmetric weight. The same splitting occurs when
going from the anti-nodal to the nodal region. The weight close to
k = (⇡/2,⇡/2) is close to zero, indicating that the coupling to the
hidden-fermion is specific to the anti-nodal region.

state.

The energy dependence of the normal self-energy (red
lines) and of the electronic spectral function (green dot-
ted line) for momenta on a line from k = (0,⇡) to
k = (⇡/2,⇡/2) is shown in Fig.1(a) in the superconducting
phase.The distinctive feature of the self-energies in the anti-
nodal region (at k = (0,⇡)) is the two symmetric peaks at low
energy. The two poles of ⌃N have a marked weight asymme-
try with the pole at ! > 0 having a larger spectral weight than
the one at negative energies. The spectral function plotted at
the same momentum (green dotted line in Fig.1(a)) presents
3 poles, one at negative energy which is well defined and 2
at positive energies which are broader. In contrast, the two
poles of ⌃AN shown in Fig.1(b) for the same momenta have
the same position as the poles of ⌃N but opposite weight.
When going toward the nodal region we observe that the pole
at positive energy split into two poles of approximately equal
weight. This is also the case for the pole at negative energy
even though the vanishing weight close to k = (⇡/2,⇡/2)
makes it harder to pinpoint the position of the two peaks.
Another crucial information given by CDMFT is the cancella-
tion that occurs between the poles of ⌃N and W . Indeed it has
been observed that, besides having poles at the same energy,
the residue of both the normal and the anomalous the self-
energy at these poles is such that they cancel in the expression
of the single-particle Green’s function. This has consequences
for the electronic spectral function as the poles of the self-
energy should correspond to zeros of the spectral function,
effectively leading to the splitting of the non-interacting band.
These results were interpreted in terms of ”hidden-fermions”
which couple to the original electronic degree of freedom and
are themself susceptible to pairing1,10,11. It is then possible to

write a mean-field Hamiltonian for this model and extracts an-
alytical expression for the normal and anomalous self-energy.
As we will show in the next section, this construction guaran-
tees the cancellation between ⌃N and W mentioned earlier.
It also displays a structure for both parts of the self-energy in
agreement with the numerical results with proper choice for
the hidden-fermion. We will present the model and its main
features in the next section and then show how to incorporate
charge order in the hidden-fermion formalism and compare
the results to CDMFT in both the superconducting and the
pseudogap state.

III. HIDDEN-FERMION MODEL

We start with the same hidden-fermion model from Ref.1.
This model describe electrons (c†

k,�
) on a square lattice cou-

pled to other fermionic excitation (f↵†
k,�

) :

H =
X

k,�

✏kc
†
k,�

c
k,�

+
X

k,�

⇣
��kc

†
k,�

c
†
�k,��

+ h.c

⌘

+
X

↵,k,�

✏
f,↵

k
f
↵†
k,�

f
↵

k,�
+

X

↵,k,�

⇣
��f,↵

k
f
↵†
k,�

f
↵†
�k,��

+ h.c

⌘

+
X

↵,k,�

⇣
V

↵

k
c
†
k,�

f
↵

k,�
+ h.c

⌘
(2)

The electronic spectral function can then be obtain and the
coupling to the different f↵

k,�
excitation leads to a normal and

anomalous self-energy given by :

⌃N (k,!) =
X

↵

V
↵

k

2
⇣
! + ✏

f,↵

k

⌘

!2 � ✏
f,↵

k

2
��f,↵

k

2

⌃AN (k,!) = �k +
X

↵

�V
↵

k

2�f,↵

k

!2 � ✏
f,↵

k

2
��f,↵

k

2 (3)

As can be seen from Eq.(3) the normal and anomalous part of
the self-energy share a similar pole structure which is primar-
ily governed by the choice of �↵

k
and ✏

↵

k
. The value of the

coupling between the c
†
k,�

and the f
↵†
k,�

fermions only enters
in the spectral weight at the different poles as can be seen by
computing the residue of the self-energy :

Res (⌃N ,±!
↵) =

V
↵

k

2

2

0

@1±
✏
f,↵

kq
✏
f,↵

k

2
+�f,↵

k

2

1

A

Res (⌃AN ,±!
↵) = ⌥V

↵

k

2�↵

k

2!↵
(4)

We can see that the self-energies have poles due to the hidden-

fermions at the energies !
↵ = ±

q
✏
f,↵

k

2
+�f,↵

k

2
. There is

however an important distinction between the normal part and
the anomalous part of the self-energy in the weight associated
with each of these poles. In fact, the anomalous self-energy
has equal and opposite weight at each pole while it depends on
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FIG. 2. (Color online). (a) Temperature dependence of the B2g (nodal) Raman responses of HgBa2Ca2Cu3O8+� compound
above Tc = 117 K. (b) The same responses, after subtracting the one at 280 K to highlight the CDW gap structure (dip and
hump). In the inset, we show the CDW hump area as function of temperature. Temperature dependence of the B2g Raman
response of (c) HgBa2CuO4+� (Hg-1201) with Tc =72 K and of (d) YBa2Cu307�� (Y-123) with Tc = 54 K. In the insets, we
display the di↵erence between the Raman responses measured at Tc and the the ones at TCDW.

FIG. 3. (Color online). Theoretical spectral density without
(a) and with (b) CDW order along the (0,⇡) ! (⇡, 0) path
in the first quadrant of the Brillouin Zone. (c) Di↵erence
between the theoretical B2g Raman responses with and with-
out the CDW potential which highlights the dip-hump CDW
feature.

responses calculated with and without the CDW poten-
tial ��

00
B2g

(!) ⌘ �
00
B2g

(!, VCDW)� �
00
B2g

(!, 0). We note
the the dip-hump feature in ��

00
B2g

(!), where the posi-
tion of the hump is ! = 2�CDW ' 1.4t ' !" / 2VCDW,
in qualitative agreement with Fig. 2(b).

Our next goal is to map out the doping dependence of
TCDW(p) and the energy scale �CDW(p). The left panel
of Fig. 4 displays the temperature dependence of the
B2g responses of various Hg-1223 samples, from an under-
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FIG. 4. (Color online). Left panels: Temperature dependence
of the B2g Raman responses of several under-doped Hg-1223.
Tc = 105 K (p = 0.11), Tc = 117 K (p = 0.12), Tc = 127 K
(p = 0.14), and Tc = 133 K (p = 0.16). The doping levels
were estimated from the empirical Presland-Tallon’s law [29].
Right panels: Di↵erence between the SC Raman response at
the lowest temperature and the Raman response at TCDW.
The shaded red form is a guide for the eyes to follow the
doping dependence of the CDW energy gap 2�CDW.

doped (p = 0.11) to an optimally doped (p = 0.16) one.

Raman Scattering       B2g, T < Tco
 Loret et al. Nat. Physics (2019)
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● SC and CDW mean-field :

● Precursor gap in the charge channel :

4

As in Fig. 2, for each compound, TCDW(p) is extracted
from the disappearance of the hump. Similar analysis
was performed on Raman spectra of the Hg-1201 and
Y-123 (shown in Fig. 2 and in the SI, Fig. 8). Our
extracted TCDW(p) matches very well with that obtained
with other techniques, as reported in Fig. 6 of the SI.
This is additional confirmation that the hump feature
highlighted in Fig. 2 is indeed related to the CDW.

Next we focus on the energy scale �CDW(p). Since
an order is fully developed only at zero temperature,
ideally �CDW should be determined from the spectra
at the lowest available temperature. However, in the
cuprates, the situation is complicated by the appearance
of superconductivity. Nevertheless, while the intensity
of the hump has strong T dependence, its position
changes little with temperature, therefore we can still
keep track the CDW hump in the superconducting
phase. Consequently, we can estimate �CDW from
the lowest T superconducting spectra without having
to weaken superconductivity, e.g. with high magnetic
field. Notice that superconductivity gives rise to a
2�N peak in the B2g spectra, which has been widely
studied in previous works [21, 30, 31]. We shall not
consider it here, but rather focus on the CDW hump,
which is better indicated by the shaded red region on
�
00
B2g

(!, T ' 10K)��
00
B2g

(!, TCDW), as displayed in the
right side of Fig. 4. The most striking feature is that,
with increasing p, the 2�CDW energy scale decreases. In
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FIG. 5. (Color online). (a) Doping dependence of �CDW

(filled symbols) and TCDW (open symbols) for Hg-1223 (tri-
angles) and Y-123 (squares) cuprates, showing the unconven-
tional character of the CDW phase. Data for Hg-1223 and
Y-123 cuprates are extracted from Fig. 4 and Fig. 2 and
from the SI (Fig.8). The continuous and doted lines are guide
for the eyes; (b) �CDW, �SC and �PG display the same dop-
ing dependency, in particular �SC and �CDW are close in
energy.

fact, we immediately note that �CDW(p) is monotonic
and does not follow the dome-like shape of TCDW(p)
(see Fig. 5(a)). We also report a similar analysis for the
Y-123 compound (see Fig. 2 and Fig. fig:S3 of SI). In
other words, the transition temperature and the energy
scale associated with the CDW are not proportional
to each other. This is reminiscent of the dichotomy
between the dome-like behavior of the superconducting
Tc (p) and the anti-nodal superconducting gap �SC(p),
which is a hallmark of an unconventional order, i.e. an
instability that cannot be understood within scenarios
of weakly interacting electrons. In Fig. 5(b) we finally
compare the doping dependency of the energy scales
2�CDW(p) with the pseudogap 2�PG(p) and the su-
perconducting 2�SC(p). This latter is measured from
the antinodal B1g response and gives direct access to
the pairing energy scale, contrary to the nodal Raman
2�N, which is strongly dependent on the length of the
Fermi arcs around the nodes [21]. For the Hg-1223
compound 2�SC(p) and 2�PG(p) are extracted from the
B1g Raman response reported in Fig. 7 (a) and (b) of the
SI and elsewhere [32, 33]. One remarkable point is that
2�CDW(p), 2�SC(p) and 2�PG(p) have the same doping
dependency which suggests that all these three energy
scales are governed by the same electronic interaction.
Equally remarkable is the fact that �CDW(p) ⇡ �SC(p)
over a significant doping range. Such near equality of
energy scales is an essential perquisite to relate CDW
and superconductivity by an emergent approximate
symmetry, as it has been proposed in several recent
theories [1, 4–9]. Consequently, our finding will provide
important impetus to theories that propose an intimate
link between high temperature superconductivity and
CDW in the under-doped cuprates.
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FIG. 4. (a) Gap in the particle-particle pairing channel (�) and the
particle-hole pairing channel (�) in the first quadrant of the Brillouin
zone calculated using the Hamiltonian in Eq. (28) for p = 0.12.
The particle-hole pairing is considered for an axial wave vector con-
necting the hot spots (also see text) in the first Brillouin zone. The
black line indicates the non-interacting Fermi surface and the red dot-
ted line indicate the nodal regions probed in B2g Raman response.
While the particle-particle pairs gap out the AN region, the particle-
hole pairs prevail the nodal region of the Fermi surface. (b) The
doping dependence of the particle-particle gap averaged in the AN
region (�an) and the particle-hole gap averaged in the nodal region
(�n). They both behave similarly as a function of doping in the range
0.08 > p > 0.16 with �an ⇡ �n. This result fits the experimental
trends53 obtained in Raman spectroscopy very well. Parameters used
for this plot are J = 350 meV , V = J/20 and AF = 0.1r.l.u.
The dashed lines schematically indicate the doping region where an-
tiferromagnetic order and the superconducting dome lies.

parameter and the spin-spin interaction with

t (p) = gt (p) t =
2p

1 + p
t, (29)

J (p) = gJ (p) J =
4

(1 + p)2
J, (30)

where p is the hole doping and the density-density interaction
does not get renormalized. We also assume that the antifer-
romagnetic correlations are dynamic, strongly renormalized,
and short-ranged, as given by the phenomenology of neutron
scattering studies for cuprates119and Vij is a residual Coulomb
interaction term. The equivalence of this model in Eq. (28) to
the action of Eq. (2) is given in Appendix. E. In the following
part of this section, we will work in momentum space.

2. Mean-field gap equations

Performing a Fourier transform and a Hubbard-
Stratonovich decoupling of the interaction in Eq. (28)
in both the particle-hole and particle-particle chan-
nels, we obtain an effective fermionic action which
takes the form Seff =

P
k,�  

†
k,�G

�1(k) k,�, where

 k,� = (ck,�, c
†
�k,�̄, ck+Q,�, c

†
�k+Q,�̄) and

G�1(k,!) =

0

BB@

! � ⇠k �k �k 0
�⇤

k ! + ⇠k 0 ��⇤
k

�⇤
k 0 ! � ⇠k+Q �k+Q

0 ��k �⇤
k+Q ! + ⇠k+Q

1

CCA .

(31)
Q is the modulation wave vector for the d-BDW order param-
eter. In this section, we consider an axial wave-vector Q relat-
ing two hot spots in the first Brillouin zone, unless otherwise
stated. Integrating the fermionic fields and minimizing the
resulting action with respect to either� (precursor gap corre-
sponding to the p-p pairing or d-SC order) or � (precursor gap
corresponding to the p-h pairing or d-BDW order) leads to the
mean-field self-consistent gap equations. They initially form
a set of coupled equations but for simplicity we will consider
the decoupled equations given by:

�k,! = � 1

�

X

q,⌦

J� (q,⌦)�k+q

(! + ⌦)2 � ⇠2k+q ��2
k+q

, (32)

�k,! = � 1

�

X

q,⌦

J+ (q,⌦)�k+q

(! + ⌦� ⇠k+q) (! + ⌦� ⇠k+Q+q)� �2
k+q

,

(33)

with J± (q,⌦) being related to the original model parameter
as J± (q,⌦) ⇠ 3J(p)± V and � is the inverse temperature.

It is however also possible to write the action as a func-
tion of the field corresponding to the PG phase, Ek, which
is defined by the relation in Eq. (27). Then we minimize the
resulting action with respect to Ek giving the self-consistent
gap equation,

Ek = �
1

�

X

q,!

J⇤
⇣
! +

�⇠k+q

2

⌘
Ek+q

⇣
!2 � ⇠2k+q

⌘ �
! � ⇠k+q+Q

�
�

⇣
! +

�⇠k+q

2

⌘
E2

k+q

,

(34)

where J⇤ = 2J+J�
J++J�

and �⇠k+q = ⇠k+q � ⇠k+q+Q. Mini-
mizing with respect to Ek is equivalent to condensing the field
n+
s defined in Eq. (12). While expressing the action in terms

of the field Ek, we consider that there is no condensation of
n�
s (defined in Eq. (13)) and ignore its contribution.
In order to obtain an estimate of the energy scale associated

with Ek, we solve the gap equations Eqs.(32)-(34) by taking
�, �, � and J± to be momentum and frequency independent.
This leads to only one energy scale corresponding to all the
three gaps �, � and � with J+ ⇡ J� ⇡ J⇤. This can also
be understood if we additionally consider ⇠k+Q ⇡ �⇠k which
gives three identical gap equations. The approximate equality
⇠k+Q ⇡ �⇠k is valid in the AN region for an axial Q vector
connecting two hot spots in the first Brillouin zone. Hence
this alternative way of decoupling does not introduce a new
energy scale.

The real space constraint is realized by fragmenting the
Fermi surface allowing the possibility of�k and �k to exist at
different places in momentum space. To get an insight into the
fragmentation of the two precursor gaps in momentum space,
we solve Eqs.(32)-(33) by making a series of approximations
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FIG. 4. (a) Gap in the particle-particle pairing channel (�) and the
particle-hole pairing channel (�) in the first quadrant of the Brillouin
zone calculated using the Hamiltonian in Eq. (28) for p = 0.12.
The particle-hole pairing is considered for an axial wave vector con-
necting the hot spots (also see text) in the first Brillouin zone. The
black line indicates the non-interacting Fermi surface and the red dot-
ted line indicate the nodal regions probed in B2g Raman response.
While the particle-particle pairs gap out the AN region, the particle-
hole pairs prevail the nodal region of the Fermi surface. (b) The
doping dependence of the particle-particle gap averaged in the AN
region (�an) and the particle-hole gap averaged in the nodal region
(�n). They both behave similarly as a function of doping in the range
0.08 > p > 0.16 with �an ⇡ �n. This result fits the experimental
trends53 obtained in Raman spectroscopy very well. Parameters used
for this plot are J = 350 meV , V = J/20 and AF = 0.1r.l.u.
The dashed lines schematically indicate the doping region where an-
tiferromagnetic order and the superconducting dome lies.

parameter and the spin-spin interaction with

t (p) = gt (p) t =
2p

1 + p
t, (29)

J (p) = gJ (p) J =
4

(1 + p)2
J, (30)

where p is the hole doping and the density-density interaction
does not get renormalized. We also assume that the antifer-
romagnetic correlations are dynamic, strongly renormalized,
and short-ranged, as given by the phenomenology of neutron
scattering studies for cuprates119and Vij is a residual Coulomb
interaction term. The equivalence of this model in Eq. (28) to
the action of Eq. (2) is given in Appendix. E. In the following
part of this section, we will work in momentum space.

2. Mean-field gap equations

Performing a Fourier transform and a Hubbard-
Stratonovich decoupling of the interaction in Eq. (28)
in both the particle-hole and particle-particle chan-
nels, we obtain an effective fermionic action which
takes the form Seff =

P
k,�  

†
k,�G

�1(k) k,�, where
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(31)
Q is the modulation wave vector for the d-BDW order param-
eter. In this section, we consider an axial wave-vector Q relat-
ing two hot spots in the first Brillouin zone, unless otherwise
stated. Integrating the fermionic fields and minimizing the
resulting action with respect to either� (precursor gap corre-
sponding to the p-p pairing or d-SC order) or � (precursor gap
corresponding to the p-h pairing or d-BDW order) leads to the
mean-field self-consistent gap equations. They initially form
a set of coupled equations but for simplicity we will consider
the decoupled equations given by:

�k,! = � 1

�

X

q,⌦

J� (q,⌦)�k+q

(! + ⌦)2 � ⇠2k+q ��2
k+q

, (32)
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k+q

,

(33)

with J± (q,⌦) being related to the original model parameter
as J± (q,⌦) ⇠ 3J(p)± V and � is the inverse temperature.

It is however also possible to write the action as a func-
tion of the field corresponding to the PG phase, Ek, which
is defined by the relation in Eq. (27). Then we minimize the
resulting action with respect to Ek giving the self-consistent
gap equation,
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(34)

where J⇤ = 2J+J�
J++J�

and �⇠k+q = ⇠k+q � ⇠k+q+Q. Mini-
mizing with respect to Ek is equivalent to condensing the field
n+
s defined in Eq. (12). While expressing the action in terms

of the field Ek, we consider that there is no condensation of
n�
s (defined in Eq. (13)) and ignore its contribution.
In order to obtain an estimate of the energy scale associated

with Ek, we solve the gap equations Eqs.(32)-(34) by taking
�, �, � and J± to be momentum and frequency independent.
This leads to only one energy scale corresponding to all the
three gaps �, � and � with J+ ⇡ J� ⇡ J⇤. This can also
be understood if we additionally consider ⇠k+Q ⇡ �⇠k which
gives three identical gap equations. The approximate equality
⇠k+Q ⇡ �⇠k is valid in the AN region for an axial Q vector
connecting two hot spots in the first Brillouin zone. Hence
this alternative way of decoupling does not introduce a new
energy scale.

The real space constraint is realized by fragmenting the
Fermi surface allowing the possibility of�k and �k to exist at
different places in momentum space. To get an insight into the
fragmentation of the two precursor gaps in momentum space,
we solve Eqs.(32)-(33) by making a series of approximations

11

fluctuations or amplitude fluctuations are not considered in the
mean-field formalism of this section.

As a minimal model describing quasi-degenerate particle-
particle and particle-hole orders, we consider the following
Hamiltonian in real space with both short-range antiferromag-
netic (AF) and off-site Coulomb interactions:

H =
X

i,j,�

(tij + µ �ij) (c†i,�cj,� + h.c)

+
X

ij

(Jij Si · Sj + Vij ninj) , (28)

where c†i,� (ci,�) is a creation (annihilation) operator for an
electron at site i with spin �, ni =

P
� c

†
i,�ci,� is the number

operator and Si = c†i,↵�↵,�ci,� is the spin operator at site i (�
is the vector of Pauli matrices). Jij is an effective AF coupling
which comes for example from the Anderson super-exchange
mechanism. The constraint of no double occupancy typical of
the strong Coulomb onsite interaction is implemented through
the Gutzwiller approximation123 by renormalizing the hoping
parameter and the spin-spin interaction with

t (p) = gt (p) t =
2p

1 + p
t, (29)

J (p) = gJ (p) J =
4

(1 + p)2
J, (30)

where p is the hole doping and the density-density interaction
does not get renormalized. We also assume that the antifer-
romagnetic correlations are dynamic, strongly renormalized,
and short-ranged, as given by the phenomenology of neutron
scattering studies for cuprates124and Vij is a residual Coulomb
interaction term. The equivalence of this model in Eq. (28) to
the action of Eq. (2) is given in Appendix. E. In the following
part of this section, we will work in momentum space.

2. Mean-field gap equations

Performing a Fourier transform and a Hubbard-
Stratonovich decoupling of the interaction in Eq. (28)
in both the particle-hole and particle-particle chan-
nels, we obtain an effective fermionic action which
takes the form Seff =

P
k,�  

†
k,�G

�1(k) k,�, where
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†
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(31)
Q is the modulation wave vector for the d-BDW order param-
eter. Motivated by experiments, in this section, we consider an
axial wave-vector Q relating two hot spots in the first Brillouin
zone, unless otherwise stated. The issue of the leading charge
instabilities in microscopic models is discussed at length in
the literature. The charge order with axial wave-vector can
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FIG. 4. (a) Gap in the particle-particle pairing channel (�) and the
particle-hole pairing channel (�) in the first quadrant of the Brillouin
zone calculated using the Hamiltonian in Eq. (28) for p = 0.12.
The particle-hole pairing is considered for an axial wave vector con-
necting the hot spots (also see text) in the first Brillouin zone. The
black line indicates the non-interacting Fermi surface and the red dot-
ted line indicate the nodal regions probed in B2g Raman response.
While the particle-particle pairs gap out the AN region, the particle-
hole pairs prevail the nodal region of the Fermi surface. (b) The
doping dependence of the particle-particle gap averaged in the AN
region (�an) and the particle-hole gap averaged in the nodal region
(�n). They both behave similarly as a function of doping in the range
0.08 > p > 0.16 with �an ⇡ �n. This result fits the experimental
trends54 obtained in Raman spectroscopy very well. Parameters used
for this plot are J = 350 meV , V = J/20 and AF = 0.1r.l.u.
The dashed lines schematically indicate the doping region where an-
tiferromagnetic order and the superconducting dome lies.

be enhanced either by incorporating fluctuations70,125,126 or
considering dynamic exchange interactions127 or an off-site
Coulomb interactions128 as in our model in Eq. (28). Integrat-
ing the fermionic fields and minimizing the resulting action
with respect to either� (precursor gap corresponding to the p-
p pairing or d-SC order) or � (precursor gap corresponding to
the p-h pairing or d-BDW order) leads to the mean-field self-
consistent gap equations. They initially form a set of coupled
equations but for simplicity we will consider the decoupled
equations given by:

�k,! = � 1

�

X

q,⌦

J� (q,⌦)�k+q

(! + ⌦)2 � ⇠2k+q ��2
k+q

, (32)
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J+ (q,⌦)�k+q

(! + ⌦� ⇠k+q) (! + ⌦� ⇠k+Q+q)� �2
k+q

,

(33)

with J± (q,⌦) being related to the original model parameter
as J± (q,⌦) ⇠ 3J(p)± V and � is the inverse temperature.

It is however also possible to write the action as a func-
tion of the field corresponding to the PG phase, Ck, which
is defined by the relation in Eq. (27). Then we minimize the
resulting action with respect to Ck giving the self-consistent
gap equation,
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FIG. 4. (a) Gap in the particle-particle pairing channel (�) and the
particle-hole pairing channel (�) in the first quadrant of the Brillouin
zone calculated using the Hamiltonian in Eq. (28) for p = 0.12.
The particle-hole pairing is considered for an axial wave vector con-
necting the hot spots (also see text) in the first Brillouin zone. The
black line indicates the non-interacting Fermi surface and the red dot-
ted line indicate the nodal regions probed in B2g Raman response.
While the particle-particle pairs gap out the AN region, the particle-
hole pairs prevail the nodal region of the Fermi surface. (b) The
doping dependence of the particle-particle gap averaged in the AN
region (�an) and the particle-hole gap averaged in the nodal region
(�n). They both behave similarly as a function of doping in the range
0.08 > p > 0.16 with �an ⇡ �n. This result fits the experimental
trends53 obtained in Raman spectroscopy very well. Parameters used
for this plot are J = 350 meV , V = J/20 and AF = 0.1r.l.u.
The dashed lines schematically indicate the doping region where an-
tiferromagnetic order and the superconducting dome lies.

parameter and the spin-spin interaction with

t (p) = gt (p) t =
2p

1 + p
t, (29)

J (p) = gJ (p) J =
4

(1 + p)2
J, (30)

where p is the hole doping and the density-density interaction
does not get renormalized. We also assume that the antifer-
romagnetic correlations are dynamic, strongly renormalized,
and short-ranged, as given by the phenomenology of neutron
scattering studies for cuprates119and Vij is a residual Coulomb
interaction term. The equivalence of this model in Eq. (28) to
the action of Eq. (2) is given in Appendix. E. In the following
part of this section, we will work in momentum space.

2. Mean-field gap equations

Performing a Fourier transform and a Hubbard-
Stratonovich decoupling of the interaction in Eq. (28)
in both the particle-hole and particle-particle chan-
nels, we obtain an effective fermionic action which
takes the form Seff =

P
k,�  

†
k,�G

�1(k) k,�, where
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(31)
Q is the modulation wave vector for the d-BDW order param-
eter. In this section, we consider an axial wave-vector Q relat-
ing two hot spots in the first Brillouin zone, unless otherwise
stated. Integrating the fermionic fields and minimizing the
resulting action with respect to either� (precursor gap corre-
sponding to the p-p pairing or d-SC order) or � (precursor gap
corresponding to the p-h pairing or d-BDW order) leads to the
mean-field self-consistent gap equations. They initially form
a set of coupled equations but for simplicity we will consider
the decoupled equations given by:

�k,! = � 1

�

X

q,⌦

J� (q,⌦)�k+q

(! + ⌦)2 � ⇠2k+q ��2
k+q

, (32)

�k,! = � 1

�

X

q,⌦

J+ (q,⌦)�k+q

(! + ⌦� ⇠k+q) (! + ⌦� ⇠k+Q+q)� �2
k+q

,

(33)

with J± (q,⌦) being related to the original model parameter
as J± (q,⌦) ⇠ 3J(p)± V and � is the inverse temperature.

It is however also possible to write the action as a func-
tion of the field corresponding to the PG phase, Ek, which
is defined by the relation in Eq. (27). Then we minimize the
resulting action with respect to Ek giving the self-consistent
gap equation,
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(34)

where J⇤ = 2J+J�
J++J�

and �⇠k+q = ⇠k+q � ⇠k+q+Q. Mini-
mizing with respect to Ek is equivalent to condensing the field
n+
s defined in Eq. (12). While expressing the action in terms

of the field Ek, we consider that there is no condensation of
n�
s (defined in Eq. (13)) and ignore its contribution.
In order to obtain an estimate of the energy scale associated

with Ek, we solve the gap equations Eqs.(32)-(34) by taking
�, �, � and J± to be momentum and frequency independent.
This leads to only one energy scale corresponding to all the
three gaps �, � and � with J+ ⇡ J� ⇡ J⇤. This can also
be understood if we additionally consider ⇠k+Q ⇡ �⇠k which
gives three identical gap equations. The approximate equality
⇠k+Q ⇡ �⇠k is valid in the AN region for an axial Q vector
connecting two hot spots in the first Brillouin zone. Hence
this alternative way of decoupling does not introduce a new
energy scale.

The real space constraint is realized by fragmenting the
Fermi surface allowing the possibility of�k and �k to exist at
different places in momentum space. To get an insight into the
fragmentation of the two precursor gaps in momentum space,
we solve Eqs.(32)-(33) by making a series of approximations
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Anomalous softening of phonons
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FIG. 1. (a) The expected behavior of the phonon spectrum at TCDW

for a one-dimensional metal, where qCDW = 2kF ; this behavior is also
seen in systems with higher dimensionality, e.g., the two-dimensional
CDW in NbSe2.16 (b) The behavior observed in YBa2Cu3O6.54 (this
work). The phonon mode does not soften, but there is an increase in
damping denoted by the hatched area.

to the frozen-in state is not expected. However, strong Kohn
anomalies (with ωph → 0) have also been observed in higher-
dimensional systems, such as the 2D system 2H -NbSe2.16 In
cases such as these, an additional wave-vector dependence
must exist, either in the electronic response function χq or in
the electron-phonon interaction, and this is sufficient to freeze
in the relevant phonon, giving rise to the (static) CDW.

There are also several examples of CDWs developing in
systems where ωph ! 0, e.g., NbSe3

21 and (TaSe4)2I.22 In
these materials, there may be some phonon softening, i.e.,
a shallow anomaly in the dispersion, and an increase in the
phonon linewidth is observed. In this case, the simple picture
of the phonon freezing to give the CDW is not valid. We note
that in all the systems described above, phonon anomalies
are strongest near the onset temperature of the CDW, TCDW. In
view of the variety of CDW behavior it is important to establish
which class of system YBCO belongs to.

III. EXPERIMENTAL DETAILS

We carried out (23.724 keV) x-ray scattering experiments at
the XOR 30-ID HERIX beam line23,24 at the Advanced Photon
Source, Argonne National Laboratory. HERIX allows the
x-ray cross section to be measured as a function of momentum
Q = ki − kf and energy transfer E = Ei − Ef of the photon.
The scattered beam was analyzed by a set of spherically curved
silicon (12 12 12) analyzers. The full-width-at-half-maximum
(FWHM) energy resolution was 1.5 meV. The sample was
mounted in a closed-cycle cryostat on a 4-circle goniometer.
The experiment was performed in transmission geometry.
Inelastic measurements were made in constant wave-vector
mode. We measured the elastic line during each scan to correct
for any drifts in energy calibration.

The sample used was a ∼99% detwinned YBa2Cu3O6.54
single crystal of dimensions 1.5 × 3 × 0.16 mm (the same
sample used in Ref. 4). YBa2Cu3O6+x differs from, e.g.,
La2−x(Ba,Sr)xCuO4, in that it contains bilayers of CuO2
planes, separated by layers containing a certain fraction

(depending on x) of Cu-O chains. The oxygen-filled chains,
which run along the orthorhombic crystal b-direction tend
to order and are labeled ortho-N , depending on the repeat
length (Na) of the ordering of the chains along a.25–27 This
sample was of the type ortho-II, with alternate Cu-O chains
occupied. The lattice parameters are a ≈ 3.82, b ≈ 3.87,
and c ≈ 11.7 Å (ignoring the chain-ordering superlattice),
TCDW = 155 ± 10 K and TSC = 58 K (as measured on a
Quantum Design MPMS magnetometer). Following previous
practice,2,4 we label reciprocal space using reciprocal lattice
units (2π/a,2π/b,2π/c), ignoring the additional periodicity
introduced by the chain ordering.

The CDW produces incommensurate satellite Bragg peaks
at positions Q = τ ± qCDW, where τ is a reciprocal lattice
point of the original (undistorted) lattice and qCDW is the wave
vector of the CDW. The CDW in ortho-II YBCO has two fun-
damental wave vectors, q1 = (δ1,0,0.5) and q2 = (0,δ2,0.5),
where δ1 = 0.320(2) and δ2 = 0.328(2) (Ref. 4). Previous
hard x-ray measurements have indicated that the intensity of
the CDW satellite Bragg peaks is strongly dependent on τ ,
with Q = (0,2 − δ2,6.5) ≈ (0,1.672,6.5) being a particularly
strong peak. We therefore concentrated on measuring near this
position.

IV. RESULTS

A. Charge ordering

Figure 2 shows contour plots based on a series of constant
wave-vector scans made in the region of Q = (0,2 − δ2,6.5).
The data were collected at T = 55 ± 2 K ≈ TSC and T =
148 ± 2 K ≈ TCDW. A temperature near TSC was chosen
because the previous measurements show that the satellite
intensity is maximal at TSC.1–5 The T = 148 K data (right
panel) show a ridge of elastic scattering centered on E =
0 meV. This background increases towards the (0, 2, 6.5)
position and is due to disorder in the sample, frozen in
above room temperature. On cooling to T = 55 K, a peak

FIG. 2. (Color online) Raw intensity plots as a function of k and
energy near the (0,2 − δ2,6.5) position at 55 K (≈TSC) and 148 K
(≈TCDW), showing the formation of the CDW Bragg peak. The ridge
of scattering near zero energy is due to disorder in the sample. The
data have not been corrected for the Bose factor.
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FIG. 5. (Color online) [(a)–(h)] IXS E scans of the low-energy phonons for wave vectors along the (0,k,6.5) line. Solid lines are fits to a
sum of Gaussian functions. Data have been multiplied by 1 − exp[−E/(kBT )] to correct for the Bose factor. The horizontal bar in panel (a) is
the instrumental resolution. [(i) and (j)] Phonon dispersion curves along the (0,k,6.5) line for T = 55 and 155 K. The solid circles represent
the phonon peak positions determined from fitting data such as that in (a)–(h); the dashed lines are guides to the eye for the different branches.
The resolution-deconvolved phonons widths are represented by vertical bars. The vertical dotted line is the CDW ordering wave vector.

In most cases, the widths are less than the point size. However,
the big increase in width near q2 at low temperature is obvious.

Figure 6 shows fits of the data in Figs. 5(b) and 5(f) to a
damped harmonic oscillator response (for each phonon mode),

χ ′′ ∝ ωγ
(
ω2 − ω2

0

)2 + (ωγ )2

∝ 1
2ω1

[
γ /2

(ω − ω1)2 + (γ /2)2
− γ /2

(ω + ω1)2 + (γ /2)2

]
,

(1)

where ω2
1 = ω2

0 − (γ /2)2. For T = 155 K, we find the intrinsic
phonon widths are zero within the experimental resolution (i.e.,
γ = 0) and the phonon frequencies, h̄ω0,i , are h̄ω0,1 = 8.7 ±
0.1 and h̄ω0,2 = 10.6 ± 0.3 meV. Setting the damping factor γ
for the two modes to be equal, the response at T = 55 K can be
explained (see Fig. 6) with γ = 4.2 ± 0.8 meV and unchanged

4 6 8 10 12 14 16
0

10

20

30

40

Q=(0,1.672,6.5)

E (meV)In
te

n
si

ty
/(

n
(ω

)+
1
) 

(c
o
u
n
ts

/3
0
s)

 

 

155 K
55 K

FIG. 6. (Color online) IXS E scan of the low-energy phonons at
Q = (0,1.672,6.5) for T = 55 and 155 K. Phonons are fitted to a
damped harmonic oscillator (DHO) response function (solid lines).
Fits are convolved with the instrumental resolution.

values for h̄ω0,1 and h̄ω0,2. Within this phenomenology, the
damping introduces a small shift in the peak of the response
[Eq. (1)], $ω ≈ −γ 2/(8ω) ≈ 0.3 meV which is not directly
discernible within the resolution of with experiment.

V. DISCUSSION

A. Charge ordering

Charge-density waves have rather unique dynamical prop-
erties. It is well known15 that CDWs can be easily unpinned
from the crystal lattice by the application of an electric field
leading to so-called sliding charge-density waves (SCDW).15

In the case of ortho-II YBCO, the “charge-ordering” anomalies
seen in NMR8,9 and ultrasound10 occur at lower temperatures
and higher magnetic fields (Table I) than observed with
100-keV x-ray diffraction.

TABLE I. Charge-ordering (CO) temperatures in ortho-II YBCO
observed by various probes and the energy scale on which the charge
correlations are probed (Eprobe). In the case of NMR and ultrasound
Eprobe is taken as the energy at which the charge response is probed.
For the diffraction measurements, it is the energy range of integration,
i.e., the energy resolution of the instrument.

Probe Eprobe TCO (K) B(T )

NMR8 1.5 µeV 50 28.5
NMR9 0.5 µeV 60 10.4
Ultrasound10 0.6 µeV 44.8 26.4
0.931-keV resonant x-ray 130 meV 150 0

diffraction1,28

100-keV x-ray diffraction2 1 keV 155(10) 0
IXS (this work) 1.5 meV 150(40) 0
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Figure 4 | Temperature dependence of the phonon dispersion. a, Dispersion of the two low-energy phonons in the Z–T direction at T = 295, 150, 45 and
5 K. b,c, Temperature dependence of the acoustical phonon energy and FWHM, respectively, at Q= (0 0.25 6.5) (red dots) and Q= (0 0.31 6.5) (black
dots). In both panels, error bars represent the fit uncertainty. d, Momentum dependence of the intrinsic FWHM of the transverse acoustic phonon at T = Tc.

The momentum and temperature dependence of the elastic
intensity in the IXS spectra of YBa2Cu3O6.6 is reminiscent of
the behaviour of other materials undergoing structural phase
transitions, including insulating SrTiO3 (ref. 20), superconducting
Nb3Sn (ref. 21) and metallic ZrTe3 (ref. 23). In these compounds,
an elastic ‘central peak’ appears in the fluctuation regime above
the critical temperature, where it is understood as defect-induced
nucleation of finite-size domains of the low-temperature phase.
The nature of the lattice defects responsible for the central peak
in these materials has remained undetermined, although oxygen
vacancies were shown to play some role in SrTiO3 (ref. 20). In
YBa2Cu3O6+x, both local lattice distortions generated by oxygen
defects in the CuO chains and extended defects such as dislocations
may act as pinning centres for CDW nanodomains. The extremely
large phonon linewidths in the normal state (Fig. 4c,d) can then be
attributed to inhomogeneous broadening.

As doping-induced lattice defects are present in all supercon-
ducting cuprates, the gradual onset of a spatially inhomogeneous
CDW domain state with decreasing temperature may be a generic
feature of the ‘pseudogap’ regime in the cuprate phase diagram,
although the temperature and doping dependence of the corre-
sponding volume fractionsmay depend on the specific realization of
lattice disorder in different materials. Whereas CDW nanodomains
will surely contribute to the anomalous normal-state properties ob-

served in this regime, their gradual nucleation explains the absence
of thermodynamic singularities associated with CDWorder, at least
in the absence of a magnetic field40. The persistence of this domain
state over a much wider temperature range than corresponding
phenomena in classical materials20,21 probably reflects the strong
competition between CDW correlations and superconductivity. In
the presence of superconducting long-range order, the inhomo-
geneity is strongly reduced (Figs 4 and 5). Conversely, thermody-
namic singularities40 and NMR signals41,42 due to CDW long-range
order have been reported in external magnetic fields strong enough
to weaken or obliterate superconductivity. The fragility of the
CDW nanodomain state in zero field and its competition with
superconductivity explain the isotope effect on the superconducting
penetration depth observed in the YBa2Cu3O6+x system43. We also
note the close analogy of our observations to the ‘charge glass’
state previously identified by STS at low doping levels32, and to
the nucleation of antiferromagnetic domains by spinless impurities
studied byNMR (ref. 44) and neutron scattering45.

We end our discussion with some remarks about the impli-
cations of our results for the mechanism of high-temperature
superconductivity. As it involves low-energy phonons, the large
superconductivity-induced renormalization revealed by our IXS
study probably accounts for a large part of the total electron–
phonon coupling. It seems strong enough to be amajor contributor
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The momentum and temperature dependence of the elastic
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the behaviour of other materials undergoing structural phase
transitions, including insulating SrTiO3 (ref. 20), superconducting
Nb3Sn (ref. 21) and metallic ZrTe3 (ref. 23). In these compounds,
an elastic ‘central peak’ appears in the fluctuation regime above
the critical temperature, where it is understood as defect-induced
nucleation of finite-size domains of the low-temperature phase.
The nature of the lattice defects responsible for the central peak
in these materials has remained undetermined, although oxygen
vacancies were shown to play some role in SrTiO3 (ref. 20). In
YBa2Cu3O6+x, both local lattice distortions generated by oxygen
defects in the CuO chains and extended defects such as dislocations
may act as pinning centres for CDW nanodomains. The extremely
large phonon linewidths in the normal state (Fig. 4c,d) can then be
attributed to inhomogeneous broadening.

As doping-induced lattice defects are present in all supercon-
ducting cuprates, the gradual onset of a spatially inhomogeneous
CDW domain state with decreasing temperature may be a generic
feature of the ‘pseudogap’ regime in the cuprate phase diagram,
although the temperature and doping dependence of the corre-
sponding volume fractionsmay depend on the specific realization of
lattice disorder in different materials. Whereas CDW nanodomains
will surely contribute to the anomalous normal-state properties ob-

served in this regime, their gradual nucleation explains the absence
of thermodynamic singularities associated with CDWorder, at least
in the absence of a magnetic field40. The persistence of this domain
state over a much wider temperature range than corresponding
phenomena in classical materials20,21 probably reflects the strong
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geneity is strongly reduced (Figs 4 and 5). Conversely, thermody-
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order have been reported in external magnetic fields strong enough
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CDW nanodomain state in zero field and its competition with
superconductivity explain the isotope effect on the superconducting
penetration depth observed in the YBa2Cu3O6+x system43. We also
note the close analogy of our observations to the ‘charge glass’
state previously identified by STS at low doping levels32, and to
the nucleation of antiferromagnetic domains by spinless impurities
studied byNMR (ref. 44) and neutron scattering45.

We end our discussion with some remarks about the impli-
cations of our results for the mechanism of high-temperature
superconductivity. As it involves low-energy phonons, the large
superconductivity-induced renormalization revealed by our IXS
study probably accounts for a large part of the total electron–
phonon coupling. It seems strong enough to be amajor contributor

56 NATURE PHYSICS | VOL 10 | JANUARY 2014 | www.nature.com/naturephysics

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS2805

0

En
er

gy
 (

m
eV

)

20

15

10

5

K in (0 K 6.5)

7

8

9

0

2

4

5 K

295 K

150 K

45 K

0 50 100 150 200 250

Temperature (K)

0 50 100 150 200 250
Temperature (K)

T = Tc

Q = (0 0.31 6.5)

Q = (0 0.25 6.5)

En
er

gy
 (

m
eV

)
FW

H
M

 (
m

eV
)

 

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 0.1 0.2 0.3 0.4 0.5

FW
H

M
 (m

eV
)

7.00

6.75

6.50

6.25

6.00

L 
(r

.l.
u.

)

K (r.l.u.)

a b

c

d

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4 | Temperature dependence of the phonon dispersion. a, Dispersion of the two low-energy phonons in the Z–T direction at T = 295, 150, 45 and
5 K. b,c, Temperature dependence of the acoustical phonon energy and FWHM, respectively, at Q= (0 0.25 6.5) (red dots) and Q= (0 0.31 6.5) (black
dots). In both panels, error bars represent the fit uncertainty. d, Momentum dependence of the intrinsic FWHM of the transverse acoustic phonon at T = Tc.

The momentum and temperature dependence of the elastic
intensity in the IXS spectra of YBa2Cu3O6.6 is reminiscent of
the behaviour of other materials undergoing structural phase
transitions, including insulating SrTiO3 (ref. 20), superconducting
Nb3Sn (ref. 21) and metallic ZrTe3 (ref. 23). In these compounds,
an elastic ‘central peak’ appears in the fluctuation regime above
the critical temperature, where it is understood as defect-induced
nucleation of finite-size domains of the low-temperature phase.
The nature of the lattice defects responsible for the central peak
in these materials has remained undetermined, although oxygen
vacancies were shown to play some role in SrTiO3 (ref. 20). In
YBa2Cu3O6+x, both local lattice distortions generated by oxygen
defects in the CuO chains and extended defects such as dislocations
may act as pinning centres for CDW nanodomains. The extremely
large phonon linewidths in the normal state (Fig. 4c,d) can then be
attributed to inhomogeneous broadening.

As doping-induced lattice defects are present in all supercon-
ducting cuprates, the gradual onset of a spatially inhomogeneous
CDW domain state with decreasing temperature may be a generic
feature of the ‘pseudogap’ regime in the cuprate phase diagram,
although the temperature and doping dependence of the corre-
sponding volume fractionsmay depend on the specific realization of
lattice disorder in different materials. Whereas CDW nanodomains
will surely contribute to the anomalous normal-state properties ob-

served in this regime, their gradual nucleation explains the absence
of thermodynamic singularities associated with CDWorder, at least
in the absence of a magnetic field40. The persistence of this domain
state over a much wider temperature range than corresponding
phenomena in classical materials20,21 probably reflects the strong
competition between CDW correlations and superconductivity. In
the presence of superconducting long-range order, the inhomo-
geneity is strongly reduced (Figs 4 and 5). Conversely, thermody-
namic singularities40 and NMR signals41,42 due to CDW long-range
order have been reported in external magnetic fields strong enough
to weaken or obliterate superconductivity. The fragility of the
CDW nanodomain state in zero field and its competition with
superconductivity explain the isotope effect on the superconducting
penetration depth observed in the YBa2Cu3O6+x system43. We also
note the close analogy of our observations to the ‘charge glass’
state previously identified by STS at low doping levels32, and to
the nucleation of antiferromagnetic domains by spinless impurities
studied byNMR (ref. 44) and neutron scattering45.

We end our discussion with some remarks about the impli-
cations of our results for the mechanism of high-temperature
superconductivity. As it involves low-energy phonons, the large
superconductivity-induced renormalization revealed by our IXS
study probably accounts for a large part of the total electron–
phonon coupling. It seems strong enough to be amajor contributor
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Anomalous softening of phonon-dispersion in cuprate superconductors

Saheli Sarkar,1 Maxence Grandadam,1 and Catherine Pépin1

1Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France.

A softening of phonon-dispersion has been observed experimentally in under-doped cuprate su-
perconductors at the charge-density wave (CDW) ordering wave vector. Interestingly, the softening
occurs below the superconducting (SC) transition temperature Tc, in contrast to the metallic sys-
tems, where the softening occurs usually below the CDW onset temperature TCDW. An understand-
ing of the ‘anomalous’ nature of the phonon-softening and its connection to the pseudo-gap phase
in under-doped cuprates remain open questions. Within a perturbative approach, we show that a
complex interplay among the ubiquitous CDW, SC orders and life-time of quasi-particles associated
to thermal fluctuations, can explain the anomalous phonon-softening below Tc. Furthermore, our
formalism captures di↵erent characteristics of the low temperature phonon-softening depending on
material specificity.

The ‘pseudo-gap’ phase [1–8] of the under-doped
high-temperature copper-oxide based superconductors
(cuprates) remains incomprehensible even after decades
of research, by and large due to a complex interplay
of several symmetry broken orders [9, 10]. A univer-
sally present translational symmetry broken order in the
cuprates is a charge-density wave (CDW) order [11–23].
Since its discovery, the CDW order has become funda-
mentally important due to growing evidences of its close
relation to the pseudo-gap phase, although a full knowl-
edge about the CDW order and its relation to the pseudo-
gap phase remains incomplete. One leading approach to
unravel the relation, is to study the phonon-spectrum
which couples to electronic degrees of freedom, thus leav-
ing fingerprints associated to the electronic-structure.

The phonon-spectrum has been largely studied in
metallic systems, where the the charge-correlations soften
the phonon-spectrum giving rise to the ‘Kohn-anomaly’
[24]. In one dimensional metals [25–27] and in some tran-
sitional metal dichalcogenides [28], this softening grows
towards zero [Fig. 1] and a full phonon-softening occurs
at the CDW wave-vector (Q) below CDW ordering tem-
perature TCDW, reflecting the origin of CDW order in
them. With a similar outlook, the phonon-spectrum has
been measured even in cuprates using di↵erent experi-
mental techniques, like inelastic x-ray scattering and in-
elastic neutron scattering [17, 29–38]. All of these exper-
iments have observed a partial phonon-softening [Fig. 1]
associated to Q in several cuprates, only below the su-
perconducting transition temperature Tc, in stark con-
trast to the metallic systems [27, 28, 39, 40]. The occur-
rence of phonon-softening below Tc is hence referred to
as ‘anomalous’ phonon-softening.

The anomalous phonon-softening indicates a close con-
nection between the CDW and superconductivity in
under-doped cuprates. Such a connection between CDW
and superconductivity have been widely discussed in var-
ious theoretical studies [41–44]. Supporting evidences of
this connection can also be found in several experiments
[11, 13, 45, 46]. Notably, a recent proposal [47], based on
the fractionalization of a pair-density wave (PDW) or-

FIG. 1. Schematic representation of a full softening in metals
and a partial softening in under-doped cuprates below Tc.

der [48, 49], advocates that for temperatures above Tc,
a growing amount of fluctuations in CDW and supercon-
ductivity arising from a connection between them, can
provide potential explanation to the pseudo-gap phase.
While earlier studies [43, 50–52] discussed the role of

CDW, superconductivity and associated fluctuations on
the electronic-spectrum, their e↵ect on the bosonic exci-
tations, especially phonons, remain an outstanding ques-
tion and perhaps can give a more complete understand-
ing of the CDW orders in cuprates. In this letter, we
incorporate simultaneous e↵ects of CDW, superconduc-
tivity and thermal fluctuations on the phonon-spectrum.
In our model, we mimic the fluctuations by introduc-
ing an inverse life-time of quasi-particles [52, 53] and
take its temperature dependence phenomenologically [53]
based on earlier studies, which can capture various cru-
cial aspects of the electronic spectrum in the pseudo-gap
phase. We find that a strong phonon-softening occurs
only below Tc, thus explaining the anomalous nature of
the phonon-softening seen in experiments. Additionally,
we also show that at low temperatures, di↵erent temper-
ature dependence of the superconducting (SC) gap and
inverse life-time of quasi-particle give contrasting e↵ects
on the strength of the phonon-softening.
We start with a total Hamiltonian Htot [54], given by
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FIG. 5. (a) Di↵erent sets of T-dependence for inverse life-
time of quasiparticles denoted by �1, �2, �3 and �4. The
T-dependence of the SC gap is denoted by �max(T). In all
cases, �max = �max. (b) The T-dependence of ⇧(q̃ = 0)
for di↵erent parameter sets in (a). A large negative value of
⇧(q̃ = 0) in the regime T . Tc implies a strong enhancement
of phonon-softening, while ⇧(q̃ = 0) ! 0 implies a strong
suppression in phonon-softening in the regime T > Tc. (c)
The variation of ⇧(q̃) with q̃ at four di↵erent temperatures for
parameter set �4 and �max(T) shown in (a). (d) Schematic
representation of the experimental results of phonon-softening
at CDW wave-vector for YBCO and BSCCO, adopted from
Refs. [29, 31].

changing �max has almost no e↵ect. These results high-
light two crucial points. First, both superconductivity
and � suppress the phonon-softening. Second, the role of
�max is prominent at low �, while negligible for large �.

We have seen that the introduction of superconductiv-
ity suppresses the phonon-softening, while experiments
observe a seemingly opposite characteristic of enhance-
ment of phonon-softening below Tc. At this point,
we should also notice that � suppresses the phonon-
softening, as shown in Fig. 4(a). Moreover, � is expected
to increase with temperature due to increase in fluctua-
tions, whereas�max is expected to decrease with temper-
ature, for example in a simple BCS type scenario. Thus,
they behave in opposite manner with temperature.

We consider temperature (T) dependence phenomeno-
logically in �max and �, similar to the T dependence
used in explaining spectral function in ARPES experi-
ments [53]. The T-dependence of �max and � are shown
in Fig. 5(a). Below Tc, �max decreases with T, whereas
remains approximately constant above Tc. Moreover fol-
lowing indications from Raman spectroscopy [45], �max

is taken to be equal to �max. To illustrate how dif-
ferent T-dependence of � and �max can give di↵erent

features in phonon-softening, we use four di↵erent types
of T-dependence for �, denoted by �1,�2,�3 and �4 in
Fig. 5(a). Note that, they di↵er in magnitudes compared
to �max. In all these cases, � reduces significantly be-
low Tc, with the strongest fall in �4 and the weakest fall
in �1, but still remains finite even in the limit T! 0
[65]. Moreover, we considered in all the cases, a linear
T-dependence for � for T > Tc, as suggested in some
earlier works [66, 67].
In Fig. 5(b), we plot ⇧(q̃ = 0) for the parameters in

Fig. 5(a). We start by closely inspecting the �4 case in
Fig. 5(b). We observe that the values of ⇧(q̃ = 0) are
close to zero for high temperatures (T � Tc), implying
that the phonon-softening is strongly suppressed. Re-
markably, we observe that for temperatures T . Tc, the
values of ⇧(q̃ = 0) reduce sharply towards more negative
values, which suggest that the phonon-softening enhances
strongly. But surprisingly, towards further lower tem-
peratures below Tc, ⇧(q̃ = 0) enhances, which implies a
suppression in phonon-softening. However, the phonon-
softening below Tc always remains stronger as compared
to T > Tc. Very similar features have been observed in
YBa2Cu3O6+y (YBCO) [29], as shown schematically in
Fig. 5(d). In Fig. 5(c), we present the the full q̃ depen-
dence of ⇧ at four di↵erent temperatures for the case
�4. We observe that away from q̃ = 0, phonon-softening
is less sensitive to the variation of temperature. Similar
feature has been found in experiments [29, 31].
Next, we closely investigate the �1 case in Fig. 5(b)

for T . Tc. Very interestingly, the features for T .
Tc possess marked di↵erences from �4 case. We notice
a smoother enhancement in phonon-softening just below
Tc (T ⇠ Tc), while the enhancement is more rapid and
sharper for �4 case. In particular, towards lower tem-
peratures (T ! 0), a further enhancement in phonon-
softening can be noticed in contrast to the suppression
observed for �4. Analogous features in phonon-softening
have been also observed in Bi2Sr2CaCu2O8+y (BSCCO)
[31], schematically presented in Fig. 5(d). To demon-
strate the di↵erent features in phonon-softening resulting
from an intricate interplay between SC gap and � below
Tc, we plot results for two more cases �2 and �3, shown
in Fig. 5(b). Below Tc, for �2, phonon-softening sharply
enhances than for �3 as T ! 0.

In summary, within a mean-field description of super-
conductivity and charge-density wave (CDW), describ-
ing under-doped cuprates, we obtained a softening of the
phonon-dispersion associated to the CDW wave-vector
(Q). The crucial finding of our work is that reduced
amount of fluctuations in both CDW and superconduct-
ing (SC) orders below Tc, can successfully describe the
‘anomalous’ phonon-softening. A reduction in the fluctu-
ations below Tc can be motivated from a recent proposal
based on fractionalization of a PDW order [47]. More-
over, we also found that the features of phonon-softening
at low temperatures depend on an intricate interplay be-

• Phases lock at Tc

• Fluct. Quench at Tc
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FIG. 2. Schematic temperature (T)- hole doping (p) phase diagram
for a cuprate superconductor. The vertical dotted black line demon-
strates an adiabatic decrease in temperature from a representative
high temperature (T > T ⇤) point in the phase diagram. As explained
in the text, the system hits the first Higgs mechanism freezing the
global phase of the p-p and p-h preformed pairs entangling them at
T ⇤. This induces a constraint between the amplitudes of the two or-
der parameters. The fluctuations of the relative phase and the two
amplitudes can be described by an O(3) non linear �-model. Lower
temperature crossover lines Tco and T 0

c correspond to the mean field
lines where the amplitudes of the two preformed pairs get condensed
giving a uniform component to each. A second Higgs mechanism
occurs at Tc, where the relative phase also gets quenched. We also
note that the theory described in this paper is strictly valid for dop-
ings p > 6%. Especially, we do not intend to explain the Neel tem-
perature (TN ) demarcating the anti-ferromagnetic phase. For lower
dopings (p < 6%), there are other effects like competing magnetic
orders or modifications in the effective action owing to the strong
electronic correlations.73 We neglect these effects in the current pic-
ture.

4. Phase diagram

With this prelude, we describe the phase diagram of the un-
derdoped cuprates. A first Higgs mechanism at T ⇤ freezes
the global phase of the two preformed pairs. The PG state
below T ⇤ is thus a state with entangled p-p and p-h pairs
with no long-range order. The concept of two kinds of pre-
formed pairs makes the amplitude and the phase fluctuations
of the d-SC and d-BDW orders distinct. As a result, this opens
up possibilities of different temperature lines existing in the
rich phase diagram of underdoped cuprates, as depicted in
Fig. 2. Lower temperature crossover lines Tco and T 0

c corre-
spond to the mean field lines of the p-h and p-p pairs respec-
tively, where the amplitudes of the d-BDW and d-SC orders
condense to give uniform components in the same spirit as
that of Bose condensation of preformed pairs (for details see
Sec. II D). At Tco, the short-range d-CDW can be observed in
X-ray, STM or NMR measurements due to the pinning of the
phase of the d-BDW order. An NMR perspective on pinning

of the charge order in YBCO and its similarity with pinning
in layered metals is given in Ref. 34. Since Tco and T 0

c are
mean-field lines, their relative position in the phase diagram
depends crucially on the details of the microscopic models.
Here, we consider Tco > T 0

c. A possible justification comes
from the microscopic model (Eq. (42)) chosen in this study.
A large off-site density-density interaction in this model can
lead to an enhanced Tco. The mean-field precursor gaps of
both the d-SC and d-BDW orders become well defined below
T 0
c. But the relative phase still fluctuates and thus there is no

phase coherence in d-SC or d-BDW orders. T 0
c marks the on-

set of the pairing fluctuations as observed in Nernst effect,18

transport studies16 and Josephson SQUID experiments.17 The
relative phase of the two orders gets frozen at a lower tem-
perature Tc, where the phase coherence sets in for both the
d-SC and d-BDW orders with a formation of a ‘super-solid’
like phase. Some signatures of a ‘super-solid’ like phase can
be seen by the observation of the charge order in X-ray,28,74

STM75,76 and NMR34 measurements even in the supercon-
ducting state at zero magnetic field for temperatures below
Tc down to T = 0. The correlation length of the charge order
is not expected to increase for T < Tc due to a strong compe-
tition with d-SC.77,78 Instead, the correlation length features
a maximum at Tc

79 showing an intimate connection between
the d-SC and d-BDW orders. We remark that if the pinning
of the d-BDW order is too strong, no superconductivity can
emerge below Tc. Our formalism thus implies that the pin-
ning is present but weaker than the Higgs mechanism giving
rise to a bulk superconductor at Tc. Lastly, as already noted,
since the d-BDW is a complex field, preemptive orders break-
ing discrete symmetries like parity, time reversal or lattice ro-
tation, usually discussed in the context of Q = 0 orders such
as electronic nematicity or loop current state, at higher tem-
perature have to be present, in the same line of thought as in
previous studies.54,80,81

The phase diagram can also viewed from the perspective
of fractionalization of the PDW field. As mentioned earlier,
the entanglement of p-p and p-h pairs at T ⇤ is equivalent to
fractionalizing a PDW �PDW = �ij�⇤

ij into elementary p-p
and p-h pairs. The PDW reconfines locally when either of the
two elementary constituents condenses. Similar confinement
transition occurs in the theories of electron’s fractionalization
where electron reconfines when either of the elementary con-
stituents ‘spinons’ and ‘holons’ condense. At T = Tco, the
PDW field reconfines locally due to the condensation of the
d-BDW field amplitude. The system will show a short-range
PDW state. For T < Tco, the theory allows for two possible
PDW fields: �̃PDW = �ij�ij involving the global phase of
the p-p and p-h pairs and �PDW involving the relative phase.
While �̃PDW acquires global phase coherence at T 0

c, �PDW
obtains global phase coherence only at Tc.

A true long-range charge order, PDW or ‘super-solid’ is
never established in the absence of magnetic field due to
the omnipresence of disorder in cuprates. Disorder acts on
the charge order as a ‘random-field’.82 Following Imry-Ma
criterion,83 any strength of ‘random-field’ disorder disrupts
the long-range coherence in charge order in dimensions d  4.
This is not the case for the superconducting order as disorder

Incoherent bosons

Condensation ?



  Conclusions

• Charge orders are a key players in cuprate physics: natural 
competitor of superconductivity

• Exp. predictions with mesoscopic noise, 
Josephson effects

• Explains recent Raman, phonon softening

• Fractionalizing a PDW or a more complex boson 

• ARPES : back-bending, poles in self-energy (cf. DMFT 
studies)

• Entangling particle-hole and particle-particle pairs at T*

• Can a charge-2 boson explain the mystery of strange 
metal  and Hall resistivity ?

• Numerical check in strong coupling approaches
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Fig. 1. Doping dependence of the electronic structure at 250 K in Bi2212.
(A to F) ARPES spectra (top) and their second energy derivatives (bottom)
at six doping levels, taken along the Brillouin zone (BZ) boundary as indicated
by the red line in (K); a0 is the unit cell dimension. The corresponding
sample (doping p) is marked at the top of each panel. Samples are named
by their transition temperatures (Tc, in kelvin) rounded to the nearest integer
with the prefix OD for overdoped and OP for optimally doped. The critical
doping pc is between OD86 and OD81. All data are divided by the resolution-
convolved Fermi function. (G and H) ARPES spectra near the node (N) along

the gray line in (K) from OD86 and OD81, respectively. (I and J) Energy
distribution curves (EDCs) at the antinode [AN, red dot in (K)], and momentum
distribution curves (MDCs) along the BZ boundary at the chemical potential
m, respectively. A momentum-independent background is subtracted (8).
Curves are normalized by the area under them in the plotted horizontal axis
range for better comparison. Data from OD81 are fitted to a marginal Fermi
liquid model (8–10), and the results are plotted in gray. (K) Schematics of the
Fermi surfaces formed by the antibonding band (AB) and bonding band (BB)
in the first BZ.

Fig. 2. Temperature dependence of the electronic
structure immediately below and above pc.
(A) Temperature evolution of antinodal EDCs in
OD86 (p ~ 0.186). The curves are offset for clarity.
The red arrow indicates the development of the
pseudogap (PG). The blue stripe highlights the
intensity shoulder and its evolution into the sharp
Bogoliubov quasiparticle (BQP) peak. All data are
divided by the Fermi function. (B) Difference
between the ARPES spectra taken at 150 K and
250 K along the BZ boundary in OD86. The original
spectra at each temperature are normalized such
that the average intensity between –0.6 and –0.5 eV
equals 1. The black arrow indicates the spectral
weight transfer due to the PG. (C) Same as (B) but
between spectra taken at 90 K and 150 K. The
black arrow highlights the emergence of the BQP.
(D and E) Same as (A) and (B) but taken for OD81
(p ~ 0.196). The open diamonds and circles in (D)
are guides to the eye and denote the BQP peaks
above and below the chemical potential, respec-
tively. (F) ARPES spectra taken at 90 K along the BZ
boundary in OD81. The orange curves in (E) and (F)
are guides to the eye and highlight the normal
quasiparticle and BQP dispersions, respectively.
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temperature evolution above pc. With decreas-
ing temperature, the quasiparticle peaks first
sharpen with no sign of the pseudogap (Fig. 2,
D and E, and Fig. 3A). Then at around 130 K, a
gap opens with the rise of one additional peak.

The peak can be attributed to the back-bending
AB above the chemical potential (Fig. 2, D and
F), consistent with the formation of BQP dis-
persions when a superconducting gap opens.
With further decreasing temperature, the gap

and low-energy peaks become more promi-
nent. Yet as superconductivity develops, no
other major changes are observed in the elec-
tronic structure. These observations imply
that both the gaps above and below Tc here
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Fig. 4. Phase diagram of
Bi2212. (A) The color plot
(outlined in white) shows the
spectral intensity at the
BZ-boundary BB kF and m
(same data as in Fig. 3A)
plotted as a function of both
temperature and doping.
For p < pc, this intensity
reduces with decreasing tem-
perature and doping, reflect-
ing the development of the
pseudogap. Also plotted
are the transition temperatures
of various broken symmetries
in Bi2212 and YBa2Cu3O6+d
(YBCO): magnetic order (TMag)
(24–26), charge order (TCDW)
(27–29), nematicity (TNem)
(30), time-reversal symmetry
breaking (TTR) (31), and
inversion-symmetry breaking
(TInv) (32). The black curve
marks Tc; the vertical dashed line marks pc. (B) TFluc in Bi2212 observed by various probes: ARPES in the antinodal (AN) region (this work), laser ARPES in the near-nodal
(NN) region (7), torque magnetometry (11), Nernst effect (11), specific heat (12), and high-frequency conductivity (13). Error bars indicate uncertainties in estimating
these temperatures. Gray, pink, and blue background shadings are guides to the eye and indicate the existence of the pseudogap, normal quasiparticles, and BQPs,
respectively. Insets are schematics of the antinodal ARPES spectra; the horizontal dashed lines mark the chemical potential, the hatched area indicates incoherent spectra,
and the black and blue curves indicate the normal quasiparticle and BQP dispersions, respectively.

Fig. 3. Marked changes of spectral properties
across pc. (A) Temperature dependence of spectral
intensity at the BZ-boundary BB Fermi momentum
(kF) and m (red dot in inset). The error bars
reflect the noise level in the ARPES data and
uncertainties in determining kF and m. (B) Doping
evolution of EDCs at the BZ-boundary BB kF
and 60 K. All data in (A) and (B) are background-
subtracted (8), divided by the Fermi function,
and normalized such that the average EDC
intensity between –0.6 and –0.5 eV equals 1. The
inset shows examples of intensity normalization
using OD86 data. (C) Doping dependence of
2D/kBTFluc, where D is the antinodal superconduct-
ing gap size, kB is the Boltzmann constant,
and TFluc is the temperature scale of super-
conducting fluctuations. The horizontal error
bars are caused by uncertainties in Tc measure-
ments; the vertical error bars reflect uncertainties
in determining D and TFluc.
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FIG. 5. Temperature dependence of the difference between the
SC B1g Raman response and the one just above Tc, denoted T0

for (a) an overdoped OD62 Bi-2212 compound (T0 = 70 K), (b) an
overdoped OD58 Bi-2212 compound (T0 = 60 K). (c) and (d) Closer
views of the dip energy range above the pair breaking peak.

just above Tc, and is 70 K and 60 K, respectively. While
the OD62 compound still displays a dip between 600 and
1200 cm−1 for T < Tc, shown as a negative contribution in
the closeup of Fig. 5(c), the OD58 compound displays no dip
over an equivalent temperature range, as shown by the positive
contribution in the closeup of Fig. 5(d).

This proves that the PG in Bi-2212 ends on a vertical line
inside the SC dome of the T -p phase diagram, which can
be drawn between p = 0.222 and 0.226 (see Fig. 6). Our
result does not show any reentrant behavior of the pseudogap
inside the superconducting dome, in contrast to that proposed
in Refs. [10,14], but rather a straight line, at least down to 12 K
(well below that of Ref. [14]). Note, our conclusions are
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FIG. 6. Temperature-doping phase diagram of Bi-2212, showing
the PG in the normal and SC phases. The normal state PG which
develops between T ∗ and Tc is obtained from the B1g spectral loss
observed in Ref. [13]. The T ∗ values are extracted from Ref. [13].
The dip is the PG-related feature in the SC state. The PG collapses
abruptly (vertical line) between p = 0.222 and p = 0.226 in the SC
state.

based entirely on antinodal studies, unlike that of Ref. [10].
Concerning the PG endpoint in the normal state, our earlier
results [13] are in good agreement with antinodal ARPES
analysis [10,14]. In this last case ARPES and Raman probe
both antinodal quasiparticles.

Our results strongly suggest that the superconducting
PG, as in the normal state, is sensitive to the topology of
the underlying Fermi surface since close to pc a Lifshitz
transition takes place from a holelike to an electronlike Fermi
surface. This behavior must be contrasted with the one of the
superconducting order parameter, which appears unaltered by
the Lifshitz transition. On the overdoped side pseudogap and
superconductivity evolve then independently of each other.
Furthermore, if the PG disappearance were a phase transition,
it would be a first order one. This is expected for a Lifshitz
transition of electrons coupled to a lattice [59,60].

On the theory side, the relation between the pseudogap
and the Lifshitz transition is not a well settled issue. The
slowing down of the CDMFT solution approaching the van
Hove doping level in concomitant with a strong decreasing of
the dip depth is compatible with the experimental scenario,
though future CDMFT improvements are needed to settle
this issue. Interestingly, recent CDMFT calculations find
that the pseudogap only exists when the Fermi surface is
holelike [61,62].

VI. CONCLUSION

In conclusion, we have shown that the peak-dip structure
in the Raman B1g spectra, which is the hallmark of the PG in
the SC phase, is a universal feature of the hole-doped cuprates.
Following the PP-dip evolution with doping and temperature in
the case of Bi-2212, we show that the pseudogap persists on the
overdoped side before disappearing abruptly and its end draws
a vertical line in the T -p phase diagram just in between p =
0.222 and p = 0.226. This corresponds to the same doping
range where the normal-state pseudogap collapses, following
up a Lifshitz transition of the Bi-2212 antibonding band, where
the Fermi surface changes from holelike to electronlike.
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APPENDIX A: DETAILS OF THE RAMAN EXPERIMENTS

Raman experiments have been carried out using a JY-
T64000 spectrometer in single grating configuration us-
ing a 600 grooves/mm grating and a Thorlabs NF533-
17 notch filter to block the stray light. The spectrom-
eter is equipped with a nitrogen cooled back illumi-
nated 2048 × 512 CCD detector. Two laser excitation
lines were used: 532 nm and 647.1 nm from, respec-
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If κ0 > 0, only the SC phase is stable. In this phase, we
study the fluctuations around the corresponding mean field so-
lution of u. In the absence of external magnetic field, the gap
in the excitations of the pseudo-spin corresponds to the differ-
ence of the masses of the SC and CO fields. So, Eg = 2κ0.
The transition temperature from the SC phase to the pseudo-
gap phase i.e., the temperature where the effective coupling
constant t diverges is given by:

Tc =
2πρ0s

ln
(

Λ2

2κ0

) (30)

At this temperature, the anisotropy κ also goes to zero. The
pseudogap temperature (T ∗) is controlled by ρ0s and thus can
be significantly higher than Tc.

In the presence of an external magnetic field, the gap in the
excitation spectrum Eg or the energy required to break the
long-range SC coherence is replaced by:

Esc
g = 2κ0 − ζB (31)

where ζ is a constant. In the presence of magnetic field, the
SC order parameter becomes inhomogeneous below a length
scale which is given by the coherence length (ξ) of the su-
perconductor. Hence, the minimum length of this effective
homogeneous RG analysis is constrained by ξ and thus the
upper momentum cutoff is given by Λ = ξ−1. In a cuprate
superconductor, ξ is quite small compared to the penetration
depth. The transition magnetic field (Bsc) where t diverges is
given by:

Bsc = B0

{
1−

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(32)

where the SC phase is stabilized for B < B0 and B0 =
(2κ0)/ζ. If the ground state is the CO phase, we have to con-
sider the fluctuations of the nonlinear sigma model around the
mean field solution u = I. RG equations and solutions are
equivalent to the case when the ground state is the SC phase,
but Eg is now replaced by:

Eco
g = −2κ0 + ζB (33)

The transition magnetic field (Bco) is thus given by:

Bco = B0

{
1 +

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(34)

where the CO phase is stabilized for B > B0.
It is important to note that Bco(T = 0) = Bsc(T = 0) =

B0. B0 is the zero temperature upper critical field for the su-
perconductor in the presence of strong competition with the
CO phase. At T = 0, the ground state of the system is the
SC phase for B < B0 and the ground state is the CO phase
for B > B0. Thus, there is no coexisting phase in the B-
T phase diagram if only the quadratic symmetry is broken
(κ0 "= 0, z0 = 0). In terms of the composite order parameter,
the pseudo-spin flops from a direction aligned in the SC easy
plane to a direction aligned in the CO easy plane at B = B0.

FIG. 6. The B-T phase diagram obtained within a renormaliza-
tion group treatment of the classical nonlinear sigma model. (a):
Anisotropy (κ0) between the masses of the SC and CO fields induces
a quadratic symmetry breaking at T = 0 and B = 0. Increasing the
magnetic field destroys the SC order giving rise to the CO marked by
a pseudo-spin flop transition at B = B0 for T < Tmin. Bco remain
flat at low T due to suppressed thermal fluctuations and rises steeply
for T > Tmin. The thermal fluctuations drive the anisotropy to zero
on the Bco and Bsc lines. As a result, the system hesitates between
the CO phase and the SC phase with no visible long-range order
marking the pseudogap phase with SU(2) fluctuations for T < T ∗.
(b): If the coupling strength (γ) between the SC and CO is not exactly
equal to the coefficient (β) of each biquadratic terms, the biquadratic
SU(2) symmetry is also broken (z0 != 0). B0

sc and B0
co (the transition

fields at T = 0) are different with a region of coexistence in between
for T < Tcs for γ < β. The renormalized effective anisotropy be-
tween the CO and the SC fields become zero at T = Tcs and the
SU(2) fluctuations are observable for Tcs < T < T ∗. If γ > β, the
strong repulsion between the fields destabilizes any coexisting phase
with a pseudo-spin flop transition at B = B0 and the B-T phase
diagram is exactly same as in (a). We sketch the phenomenological
temperature dependence of the vortex melting transition field Bm to
distinguish the upper critical field Bsc from the melting transition,
see text for details.

The thermal fluctuations are absent at T = 0. Thus, we expect
the mean field solutions for the transition fields should give
the same result as the solutions obtained in Eqs. (32) and (34)

8

4. Heisenberg-Heisenberg FP: β∗
ψ != 0, β∗

φ != 0, γ∗ = 0

5. First order FP: β∗
ψ = β∗

φ = γ∗, α∗
ψ = α∗

φ

6. Second order FP: β∗
ψ != β∗

φ != γ∗, α∗
ψ != α∗

φ

The first four FP give γ∗ = 0 where the SC order and the
CO are decoupled. They represent the transition from the SC
phase to the normal state and the transition from the CO phase
to the normal state. The fifth FP corresponds to the situation
of the enhanced symmetry of O(N1+N2) where the effective
free energy landscape looks similar to Fig. 2(e) and (i). This
FP describes the first order transition from the SC phase to the
CO phase. The sixth FP satisfies the mean field criterion for
coexistence (γ∗2 < β∗

ψβ
∗
φ) and represent the free energy land-

scape similar to Fig. 2(c) and (g). The bare parameters depend
on the applied magnetic field (B) and temperature (T ). The
transition lines in the B-T phase diagram can be determined by
studying the stability of the FP. The stability of the FP depends
crucially on the values of N1, N2, N1 + N2 and the dimen-
sion of the system. There are several analytical and numerical
studies of the stability of these FP in three dimensions.82–85

But the stability of the FP in the case of two dimensions86–89

is more complex and is still an open question. So, it is diffi-
cult to pinpoint whether the B-T phase diagram obtained in a
competing order formalism can include a coexisting phase or
not.

Moreover, in 2D, the amplitude fluctuations play no role
in deciding the critical behavior. Instead, the thermal phase
fluctuations, captured by the renormalizations of the gradi-
ent terms, are important in deciding the phase boundaries.90,91

The RG approach discussed in the preceding paragraph treats
only the amplitude renormalizations and does not take care of
the renormalizations of the gradient terms. Hence, the temper-
ature dependence in the B-T phase diagrams found from the
analysis of Eq. (1) is not expected to give the correct trends in
two spatial dimensions.

In this section, we described the GL theory of the compet-
ing superconducting and charge orders in the presence of a
magnetic field. We constructed the B-T phase diagram for
different strengths of the competition and discussed the possi-
bility of explaining the experimentally observed features. As
evident from Fig. 3, strengthening the competition between
the SC and the CO fields disfavors any coexisting phase in
the phase diagram. Bsc→sc+co for γ2 < βψβφ and Bsc→co

for γ2 ≥ βψβφ are flat only if the temperature dependences
of αψ and αφ are extremely fine tuned (Fig. 5). Further, the
similarity of the Tc at zero field and Tco at high field cannot
be established in this picture (see Eqs. (20) and (21)). These
features make us believe that the B-T phase diagram of un-
derdoped cuprates is hard to explain within a GL theory of
competing orders.

In Sec. II A, we could identify a parameter regime where the
free energy shows an enlarged O(N1 + N2) symmetry. The
enlarged symmetry puts a constraint (Eq. 9) on the SC and the
CO fields if the two orders are energetically degenerate. We
now turn our discussion to an emergent SU(2) theory where
the strongly competing SC order and the CO are nearly de-

generate in energy. In the next section, we will first introduce
this SU(2) theory and then construct the B-T phase diagram
using a renormalization group treatment.

III. SU(2) SYMMETRY BETWEEN CO AND SC: NON
LINEAR SIGMA MODEL

Underdoped cuprates69,92 are often described by a two di-
mensional spin-fermion model.93,94 This model features the
pseudogap phase69 characterizing an emergent SU(2) sym-
metry connecting a d-wave superconductor and a quadrupole
density wave. This quadrupole density wave corresponds to
charge density modulations65,95–97 in the 2D CuO2 plane. The

wave vector ( $Q) of this CO is typically incommensurate and

is taken to be momentum dependent.96 $Q can therefore cor-
respond to both a unidirectional stripe-like charge order and
a bidirectional checkerboard charge order.96,97 In this section,
we focus on the SU(2) symmetry between the SC and the 2D
CO, without going into the details of the directionality of the
CO. This theory though has broader applicability in describ-
ing the symmetry of the CO. We expect that the presence of an
interlayer coupling between the 2D CuO2 planes will magnify

the intensity of a specific component of $Q in X-ray scattering
experiments.77

Within this formalism, we can define a composite SU(2)
order parameter, uSU(2) = u∆SU(2),

69 where u is:

u =

(
φ ψ

−ψ∗ φ∗

)
(22)

The matrix u is parametrized by two complex order parame-
ters: the d-wave SC order parameter (ψ) and the d-wave CO
order parameter (φ). u is a unitary matrix imposing a strong
constraint on each of its components:

φ2 + ψ2 = 1 (23)

Thus, u2
SU(2) = ∆2

SU(2). The composite order parameter can

be thought of as a pseudo-spin in four dimensions with two
SC components and two CO components. ∆2

SU(2) sets the

length of this pseudo-spin. The length of this pseudo-spin can
be described by a Ginzburg-Landau mean field theory. It goes
to zero at a high mean field temperature, which we character-
ize as the pseudogap temperature (T ∗).69 T ∗ controls the high
energy physics of the problem. Below T ∗, Eq. 23 describes a
three dimensional hypersphere S3 in a four dimensional space.
The transverse fluctuations of the composite order parameter
on this hypersphere are described by an O(4) non linear sigma
model (NLSM):69

F

T
=

1

t0

∫
tr[∇u†∇u+ κ0τ3u

†τ3u]dR (24)

where κ0 = (α′
φ − α′

ψ)/2 is the difference of the zero tem-

perature masses of the SC and CO fields, t0 = 2T/ρ0s is the
scaled temperature, ρ0s being the stiffness associated with spa-
tial variation of the composite order parameter u, τ3 is the
third Pauli spin matrix in the space of the matrix u, tr is the

O(3) Non linear Sigma Model 
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trace over the space of u and the integration is over the two di-
mensional real space coordinates. ρ0s is proportional to T ∗.69

The free energy functional in Eq. (24) has two primary contri-
butions:

• The first term tr[∇u†∇u] can be written in terms of the
fields as 2(|∇ψ|2 + |∇φ|2). This term describes the
spatial fluctuations of ψ and φ. If the mass of the SC
field (α′

ψ) is same as the mass of the CO field (α′
φ), i.e.,

κ0 = 0, the SC and CO ground states are energetically
degenerate resulting in an exact SU(2) symmetry. There
is then no energy cost associated with the rotation of the
pseudo-spin in the four dimensional space of the com-
posite order parameter u. With κ0 = 0, the two dimen-
sional NLSM in Eq. (24) at finite t produces divergent
fluctuations69,80 destroying any long-range order in ψ or
φ.

• The second term tr[κ0τ3u†τ3u] can be written in terms
of the fields as 2κ0(|φ|2 − |ψ|2). This term breaks the
degeneracy between the SC and CO ground states. If
κ0 > 0, the pseudo-spin prefers the easy plane in the
SC space characterized by a gapless Goldstone mode.
If κ0 < 0, the pseudo-spin prefers the easy plane in
the CO space characterized by another gapless Gold-
stone mode. κ0 introduces an anisotropy between the
SC and CO easy planes. Thus, κ0 defines the energy
cost to rotate the pseudo-spin from one easy plane to
the other and introduces a gap in the excitations of the
pseudo-spin. This gap is small compared to the pseudo-
gap energy scale (T ∗) and the fluctuations governed by
the first term in Eq. (24) are still important indicating
an approximate SU(2) symmetry. Since this anisotropy
term in Eq. (24) is quadratic in fields, we refer to its
effect as quadratic symmetry breaking.

The energy difference between the two ground states can be
further enhanced if the exact SU(2) symmetry is broken by the
biquadratic terms in the free energy of the composite order
parameter. The contribution from the biquadratic symmetry
breaking in the free energy is given by:

Fbq

T
=

1

t0

∫
z0
{(

tr[τ3u
†τ3u]

)2 − 1
}
dR (25)

where z0 = (β − γ)/4 with γ being the coupling strength
between the two orders and β being the strength of the self
interaction of both the fields. Expressing u in terms of ψ and
φ, Eq. (25) is given as −4z0|ψ|2|φ|2. If γ = β, Fbq = 0
and the biquadratic terms do not contribute to the free energy.
For γ < β, the gap in the excitations of the pseudo-spin is
modified by the strength of the biquadratic symmetry breaking
(z0). In the parameter regime −z0 < κ0 < z0, the total free
energy (F +Fbq) accommodates a coexisting phase with both
the SC and the CO being stable. The pseudo-spin prefers an
intermediate direction making a finite angle with both the SC
easy plane and the CO easy plane. On the other hand, if γ >
β, the repulsion between the fields is large and there exists no
coexistence and the situation is similar to the case when Fbq =
0. We will assume that z0 is small such that the approximate
SU(2) symmetry is still valid for T < T ∗.

A. Renormalization group treatment of the classical NLSM

As discussed Sec. II C, the thermal fluctuations play a sig-
nificant role in deciding the critical phenomenon in two spa-
tial dimensions. We perform a renormalization group calcu-
lation to take care of these critical fluctuations described by
the NLSM. In this section, we will not consider any time-
dependent fluctuations nor the fluctuations in the modulus of
the order parameters. Although, we will discuss the effects
of time-dependent fluctuations in Sec. III B. Here, we will
look at two cases of weak SU(2) symmetry breaking: a) only
quadratic symmetry breaking (κ0 #= 0 and z0 = 0), where the
free energy will be given by Eq. (24) b) both quadratic and
biquadratic symmetry breaking (κ0 #= 0 and z0 #= 0), where
the total free energy is given by F + Fbq (F obtained from
Eq. (24) and Fbq obtained from Eq. (25)).

First, we consider the case with only quadratic symmetry
breaking (z0 = 0). We treat the fluctuations around the mean
field phase of the classical NLSM in Eq. (24) using the renor-
malization group approach. We integrate out the fast varying
components of the free energy in Eq. (24) and write an effec-
tive slow varying counterpart with effective coupling constant
t and anisotropy parameter κ. Within one loop approxima-
tion, the RG flow equations (for details see appendix B) for
the effective parameters are given by:

dt

dl
=

t2

2π
(26)

d
(
ln
(
κ
t

))

dl
= −

t

π
+ 2 (27)

where l is the running logarithm variable of the RG. The so-
lutions of Eqs. (26) and (27) determine the flow of the renor-
malized parameters of the free energy. At l = 0, t = t0 and
κ = κ0, where t0 and κ0 are the bare values of the parame-
ters. There is an ultraviolet momentum cutoff, Λ which cor-
responds to the inverse of the minimum length of the theory.

Additionally, there is an infrared cutoff E1/2
g where Eg corre-

sponds to the gap in the excitation spectrum. The RG flow of

Eqs. (26) and (27) stops at l = ln(Λ/E1/2
g ). The solutions of

the effective parameters are:

t = t0

(
1−

t0
2π

ln

(
Λ

E1/2
g

))−1

(28)

κ = κ0

(
Λ

E1/2
g

)2(
1−

t0
2π

ln

(
Λ

E1/2
g

))
(29)

The divergence of the effective coupling constant t in Eq. (28)
can be seen as an evidence of a transition from an ordered
phase to a disordered phase. Along with the divergence of t,
the effective anisotropy κ also goes to zero. The system, thus
goes to a mixture of fluctuating SC and CO with no long-range
order, which is characterized as the pseudogap phase.
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If κ0 > 0, only the SC phase is stable. In this phase, we
study the fluctuations around the corresponding mean field so-
lution of u. In the absence of external magnetic field, the gap
in the excitations of the pseudo-spin corresponds to the differ-
ence of the masses of the SC and CO fields. So, Eg = 2κ0.
The transition temperature from the SC phase to the pseudo-
gap phase i.e., the temperature where the effective coupling
constant t diverges is given by:

Tc =
2πρ0s

ln
(

Λ2

2κ0

) (30)

At this temperature, the anisotropy κ also goes to zero. The
pseudogap temperature (T ∗) is controlled by ρ0s and thus can
be significantly higher than Tc.

In the presence of an external magnetic field, the gap in the
excitation spectrum Eg or the energy required to break the
long-range SC coherence is replaced by:

Esc
g = 2κ0 − ζB (31)

where ζ is a constant. In the presence of magnetic field, the
SC order parameter becomes inhomogeneous below a length
scale which is given by the coherence length (ξ) of the su-
perconductor. Hence, the minimum length of this effective
homogeneous RG analysis is constrained by ξ and thus the
upper momentum cutoff is given by Λ = ξ−1. In a cuprate
superconductor, ξ is quite small compared to the penetration
depth. The transition magnetic field (Bsc) where t diverges is
given by:

Bsc = B0

{
1−

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(32)

where the SC phase is stabilized for B < B0 and B0 =
(2κ0)/ζ. If the ground state is the CO phase, we have to con-
sider the fluctuations of the nonlinear sigma model around the
mean field solution u = I. RG equations and solutions are
equivalent to the case when the ground state is the SC phase,
but Eg is now replaced by:

Eco
g = −2κ0 + ζB (33)

The transition magnetic field (Bco) is thus given by:

Bco = B0

{
1 +

1

2ξ2κ0
exp

(
−
2πρ0s
T

)}
(34)

where the CO phase is stabilized for B > B0.
It is important to note that Bco(T = 0) = Bsc(T = 0) =

B0. B0 is the zero temperature upper critical field for the su-
perconductor in the presence of strong competition with the
CO phase. At T = 0, the ground state of the system is the
SC phase for B < B0 and the ground state is the CO phase
for B > B0. Thus, there is no coexisting phase in the B-
T phase diagram if only the quadratic symmetry is broken
(κ0 "= 0, z0 = 0). In terms of the composite order parameter,
the pseudo-spin flops from a direction aligned in the SC easy
plane to a direction aligned in the CO easy plane at B = B0.

FIG. 6. The B-T phase diagram obtained within a renormaliza-
tion group treatment of the classical nonlinear sigma model. (a):
Anisotropy (κ0) between the masses of the SC and CO fields induces
a quadratic symmetry breaking at T = 0 and B = 0. Increasing the
magnetic field destroys the SC order giving rise to the CO marked by
a pseudo-spin flop transition at B = B0 for T < Tmin. Bco remain
flat at low T due to suppressed thermal fluctuations and rises steeply
for T > Tmin. The thermal fluctuations drive the anisotropy to zero
on the Bco and Bsc lines. As a result, the system hesitates between
the CO phase and the SC phase with no visible long-range order
marking the pseudogap phase with SU(2) fluctuations for T < T ∗.
(b): If the coupling strength (γ) between the SC and CO is not exactly
equal to the coefficient (β) of each biquadratic terms, the biquadratic
SU(2) symmetry is also broken (z0 != 0). B0

sc and B0
co (the transition

fields at T = 0) are different with a region of coexistence in between
for T < Tcs for γ < β. The renormalized effective anisotropy be-
tween the CO and the SC fields become zero at T = Tcs and the
SU(2) fluctuations are observable for Tcs < T < T ∗. If γ > β, the
strong repulsion between the fields destabilizes any coexisting phase
with a pseudo-spin flop transition at B = B0 and the B-T phase
diagram is exactly same as in (a). We sketch the phenomenological
temperature dependence of the vortex melting transition field Bm to
distinguish the upper critical field Bsc from the melting transition,
see text for details.

The thermal fluctuations are absent at T = 0. Thus, we expect
the mean field solutions for the transition fields should give
the same result as the solutions obtained in Eqs. (32) and (34)

D. Chakraborty  et al. PRB (2018)



The context of strong coupling : doping a Mott insulator 

with tpd and Ep−Ed! can be understood in terms of an
effective one-band model, and we shall follow this route.
The essential insight is that the doped hole resonates on
the four oxygen sites surrounding a Cu and the spin of
the doped hole combines with the spin on the Cu to
form a spin singlet. This is known as the Zhang-Rice
singlet "Zhang and Rice, 1988!. This state is split off by
an energy of order tpd

2 / "Ep−Ed! because the singlet gains
energy by virtual hopping. On the other hand, the
Zhang-Rice singlet can hop from site to site. Since the
hopping is a two-step process, the effective hopping in-
tegral t is also of order tpd

2 / "Ep−Ed!. Since t is the same
parametrically as the binding energy of the singlet, the
justification of this point of view relies on a large nu-
merical factor for the binding energy, which is obtained
by studying small clusters.

By focusing on the low-lying singlet, the hole-doped
three-band model simplifies to a one-band tight-binding
model on the square lattice, with an effective nearest-
neighbor hopping integral t given earlier and with Ep
−Ed playing a role analogous to U. In the large Ep−Ed
limit this maps onto the t-J model,

H = P#− $
%ij&,!

tijci!
† ci! + J$

%ij&
"Si · Sj − 1

4ninj!'P . "2!

Here the ci!
† is the usual fermion creation operator on

site i, ni="!ci!
† c! is the number operator, and P is a

projection operator restricting the Hilbert space to ex-
clude double occupancy of any site. J is given by 4t2 /U
and we can see that it is the same functional form as that
of the three-band model described earlier. It is also pos-
sible to dope with electrons rather than holes. The typi-
cal electron-doped system is Nd2−xCexCuO4+# "NCCO!.
The added electron corresponds to the removal of a hole
from the copper site in the hole picture "Fig. 2!, i.e., the
Cu ion is in the d10 configuration. This vacancy can hop
with a teff and the mapping to the one-band model is
more direct than the hole-doped case. Note that in the
full three-band model, the object which is hopping is the
Zhang-Rice singlet for hole doping and the Cu d10 con-
figuration for electron doping. These have rather differ-
ent spatial structure and are physically quite distinct. For
example, the strength of their coupling to lattice distor-
tions may be quite different. When mapped to the one-
band model, the nearest-neighbor hopping t has the
same parametric dependence but could have a different
numerical constant. As we shall see, the value of t de-
rived from cluster calculations turns out to be surpris-
ingly similar for electron and hole doping. For a bipar-
tite lattice, the t-J model with nearest-neighbor t has
particle-hole symmetry because the sign of t can be ab-
sorbed by changing the sign of the orbital on one sub-
lattice. Experimentally the phase diagram exhibits
strong particle-hole asymmetry. On the electron-doped
side, the antiferromagnetic insulator survives up to a
much higher doping concentration "up to x(0.2! and
the superconducting transition temperature is quite low
"about 30 K!. Many of the properties of the supercon-
ductor resemble that of the overdoped region of the

hole-doped side and pseudogap phenomenon, which is
prominent in the underdoped region, is not observed
with electron doping. It is as though the greater stability
of the antiferromagnet has covered up any anomalous
regime that might exist otherwise. Precisely why is not
clear at the moment. One possibility is that polaron ef-
fects may be stronger on the electron-doped side, lead-
ing to carrier localization over a broader range of dop-
ing. There has been some success in modeling the
contrast in the single-hole spectrum by introducing
further-neighbor coupling into the one-band model,
which breaks the particle-hole symmetry "Shih et al.,
2004!. This will be discussed further below.

We conclude that the electron correlation is strong
enough to produce a Mott insulator at half-filling. Fur-
thermore, the one-band t-J model captures the essence
of the low-energy electronic excitations of the cuprates.
Particle-hole asymmetry may be accounted for by in-
cluding further-neighbor hopping t!. This point of view
has been tested extensively by Hybertson et al. "1990!
who used ab initio local-density-functional theory to
generate input parameters for the three-band Hubbard
model and then solved the spectra exactly on finite clus-
ters. The results were compared with the low-energy
spectra of the one-band Hubbard model and the t-t!-J
model. They found an excellent overlap of the low-lying
wave functions for both the one-band Hubbard and the
t-t!-J model and were able to extract effective param-
eters. They found J to be 128±5 meV, in excellent
agreement with experimental values. Furthermore, they
found t(0.41 and 0.44 eV for electron and hole doping,
respectively. The near particle-hole symmetry in t is sur-
prising because the underlying electronic states are very
different in the two cases, as already discussed. Based on
their results, the commonly used parameter J / t for the
t-J model is 1 /3. They also found a significant next-
nearest-neighbor t! term, again almost the same for elec-
tron and hole doping.

More recently, Andersen et al. "1996! pointed out that
in addition to the three-band model an additional Cu 4s
orbital has a strong influence on further-neighbor hop-
ping t! and t", where t! is the hopping across the diagonal
and t" is hopping to the next-nearest neighbor along a
straight line. Recently Pavarini et al. "2001! emphasized
the importance of the apical oxygen in modulating the
energy of the Cu 4s orbital and found a sensitive depen-
dence of t! / t on the apical oxygen distance. They also
pointed out an empirical correlation between optimal Tc
and t! / t. As we shall discuss in Secs. VI.D and VII, t!
may play an important role in determining Tc and in
explaining the difference between electron and hole
doping. However, in view of the fact that on-site repul-
sion is the largest energy scale in the problem, it would
make sense to begin our modeling of the cuprates with
the t-J model and ask to what extent the phase diagram
can be accounted for. As we shall see, even this is not a
simple task and will constitute the major thrust of this
review.
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P: projection on no double occupancy

work by C. P. Slichter and early transport measurements
by N. P. Ong among others. Discussions of stripe physics
were recently given by Carlson et al. !2003" and Kivelson
et al. !2003". A discussion of spin-liquid states is given by
Sachdev !2003", with an emphasis on dimer order and by
Wen !2004", with an emphasis on quantum order. For an
account of experiments and early RVB theory, see the
book by Anderson !1997".

II. BASIC ELECTRONIC STRUCTURE OF THE CUPRATES

It is generally agreed that the physics of high-Tc su-
perconductivity is that of the copper-oxygen layer, as
shown in Fig. 2. In the parent compound such as
La2CuO4, the formal valence of Cu is 2+, which means
that its electronic state is in the d9 configuration. The
copper is surrounded by six oxygens in an octahedral
environment !the apical oxygen lying above and below
Cu are not shown in Fig. 2". The distortion from a per-
fect octahedron due to the shift of the apical oxygens
splits the eg orbitals so that the highest partially occu-
pied d orbital is x2−y2. The lobes of this orbital point
directly to the p orbital of the neighboring oxygen, form-
ing a strong covalent bond with a large hopping integral
tpd. As we shall see, the strength of this covalent bonding
is responsible for the unusually high energy scale for the
exchange interaction. Thus the electronic state of the
cuprates can be described by the so-called three-band
model, where in each unit cell we have the Cu dx2−y2

orbital and two oxygen p orbitals !Emery, 1987; Varma
et al., 1987". The Cu orbital is singly occupied while the p
orbitals are doubly occupied, but these are admixed by

tpd. In addition, admixtures between the oxygen orbitals
may be included. These tight-binding parameters may
be obtained by fits to band-structure calculations !Mat-
theiss, 1987; Yu et al., 1987". However, the largest energy
in the problem is the correlation energy for doubly oc-
cupying the copper orbital. To describe these correlation
energies, it is more convenient to refer to the hole pic-
ture. The Cu d9 configuration is represented by energy
level Ed occupied by a single hole with S= 1

2 . The oxygen
p orbital is empty of holes and lies at energy Ep, which is
higher than Ed. The energy to doubly occupy Ed !lead-
ing to a d8 configuration" is Ud, which is very large and
can be considered infinity. The lowest-energy excitation
is the charge-transfer excitation in which the hole hops
from d to p with amplitude −tpd. If Ep−Ed is sufficiently
large compared with tpd, the hole will form a local mo-
ment on Cu. This is referred to as a charge-transfer in-
sulator in the scheme of Zaanen et al. !1985". Essentially,
Ep−Ed plays the role of the Hubbard U in the one-band
model of the Mott insulator. Experimentally an energy
gap of 2.0 eV is observed and interpreted as the charge-
transfer excitation !see Kastner et al., 1998".

Just as in the one-band Mott-Hubbard insulator in
which virtual hopping to doubly occupied states leads to
an exchange interaction JS1 ·S2, where J=4t2 /U, in the
charge-transfer insulator the local moments on nearest-
neighbor Cu prefer antiferromagnetic alignment be-
cause both spins can virtually hop to the Ep orbital. Ig-
noring the Up for doubly occupying the p orbital with
holes, the exchange integral is given by

J =
tpd
4

!Ep − Ed"3 . !1"

The relatively small size of the charge-transfer gap
means that we are not deep in the insulating phase and
the exchange term is expected to be large. Indeed ex-
perimentally the insulator is found to be in an antiferro-
magnetic ground state. By fitting Raman scattering to
two magnon excitations !Sulewsky et al., 1990", the ex-
change energy is found to be J=0.13 eV. This is one of
the largest exchange energies known. !It is even larger in
the ladder compounds which involve the same Cu-O
bonding." This value of J is confirmed by fitting the spin-
wave energy to theory, in which an additional ring ex-
change term is found !Coldea et al., 2001".

By substituting divalent Sr for trivalent La, the elec-
tron count on the Cu-O layer can be changed in a pro-
cess called doping. For example, in La2−xSrxCuO4, x
holes per Cu are added to the layer. As seen in Fig. 2,
due to the large Ud the hole will reside on the oxygen p
orbital. The hole can hop via tpd, and due to transla-
tional symmetry the holes are mobile and form a metal,
unless localization due to disorder or some other phase
transition intervenes. The full description of hole hop-
ping in the three-band model is complicated, and a num-
ber of theories consider this essential to the understand-
ing of high-Tc superconductivity !Emery, 1987; Varma et
al., 1987". On the other hand, there is strong evidence
that the low-energy physics !on a scale small compared

FIG. 2. !Color online" Electronic structure of the cuprates. !a"
Two-dimensional copper-oxygen layer !left" simplified to the
one-band model !right". !b" The copper d and oxygen p orbit-
als in the hole picture. A single hole with S=1/2 occupies the
copper d orbital in the insulator.
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Figure 3. Phase diagram of the cuprates (x is the hole doping). AF is the antiferromagnetic
insulator. The dotted line is a crossover line between the normal metal phase and the pseudogap
phase.

takes up a small sliver (figure 3) of the phase diagram (in the electron doped case, though, the
magnetism exists over a much larger doping range). So, in that sense, Anderson’s intuition
was quite good.

For dopings beyond a few per cent, the system either enters a messy disordered phase
exhibiting spin glass behaviour (as in LSCO) before superconducting order sets in, or
immediately goes to the superconducting phase (as in YBCO). The superconducting transition
monotonically rises with doping, reaching a maximum at about 16% doping, after which Tc

declines to zero. The net effect is to form a superconducting ‘dome’ that extends from about
5% to 25% doping.

At first sight, the superconducting phase is not so different from that of classical
superconductors. We know that it exhibits a zero resistance state with a Meissner effect.
Experiments show that the superconducting objects have charge 2e, and thus pairs are formed.
What is unusual, though, is the small coherence length. For typical superconductors, the
coherence length is quite large, usually several hundred Å or more. This is in contrast
to magnets, which have coherence lengths that are quite small. Therefore, for most
superconductors we know, mean field theory works extremely well, as opposed to magnets
where it almost always fails. But cuprates exhibit small coherence lengths, of the order
of 20 Å in the plane, and a paltry 2 Å between planes. The latter is so small that the
cuprates are essentially composed of Josephson coupled planes, as has been experimentally
verified by a number of groups [35]. Such coupling is necessary, of course, since long range
superconducting order cannot occur in two dimensions (except in the Kosterlitz–Thouless
phase, whose existence in the cuprates is still debated [36]).

Another unusual finding is the symmetry of the order parameter (figure 4). For many years,
it was felt that the order parameter probably had s-wave symmetry. There was no evidence
from thermodynamic measurements for nodes in the gap as in heavy fermion superconductors,
except for an early report of a non-exponential temperature dependence of the Knight shift
[37]. Also, the cuprates were viewed as quite disordered (doping being achieved by chemical

Anderson, Lee, Nagaosa, Rice etc…

Resonating Valence Bond (RVB)



The extend of the Cooper pairs phase fluctuations regime

 Nernst effect (Ong, Behnia), transport (Rullier-Albenque, 
Sebastian), Squid spectroscopy (Lesueur)…

The presence of a partner to SC pairing inhibits the 
visibility of phase fluctuations  in transport and Nernst 

effect  ( Orgard, 2017)

Hsu et al , (2017)

Figure 1: Magnetic field resilience of zero resistivity superconductivity, coexistence of
quantum oscillations with superconductivity, phase diagram of YBa2Cu3O6+x. a-b Finite
in-plane electrical resistivity onset magnetic field µ0Hr as a function of applied static
magnetic field at different fixed temperatures and currents I indicated by circles (here,
a current of I = 1 mA corresponds to a current density of j ⇡ 1 A·cm�2), obtained
from Fig. 2. Dashed line represents Hr obtained from pulsed magnetic fields reported
in ref.3 c. Quantum oscillations in hysteretic magnetic torque from vortex pinning coin-
cident with zero electrical resistivity regime up to µ0Hirr ⇡ µ0Hr > 45 T at T = 0.04 K,
and below µ0Hirr ⇡ µ0Hr ⇡ 30 T at T = 1.0 K; similarly sized quantum oscillations
(inset) span finite resistive regime above 30 T at T = 1.0 K. d. Phase diagram as a
function of hole doping from Figs. 3, 4. Pairing correlations (To) at 0 T (open diamonds)
and 45 T (filled diamonds), Tc at 0 T and 45 T (filled circles), long range charge order
(TCDW) at 45 T (downward triangles) from Fig. 3. ‘SR CDW’ region denotes short-
range charge density wave correlations from x-ray diffraction experiments.50 Shaded
red denotes pseudogap T

⇤ temperature. T
⇤ points (diamonds) correspond to broken

symmetry detected in resonant ultrasound symmetry55 and optical anisotropy mea-
surements.56 Open circles show quantum critical points identified in quantum oscilla-
tion measurements5,57

.
4

Hsu et al , (2017)
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FIG. 2. (Color online) Nernst coe�cient ⌫ of YBCO at a
hole doping of p=0.12, plotted as ⌫ /T versus temperature T
for di↵erent magnetic fields (H =1T to 15T), as indicated.
The thermal gradient is applied in the b direction of the
orthorhombic crystal structure. Data are reproduced from
Ref. [20]. (a) The vertical line marks the superconducting
transition temperature at H =0, Tc =66.0K. (b) Zoom near
Tc, to show how Tmin is defined: it is the temperature at
which the Nernst signal at H =1T goes through a minimum,
at the foot of the large positive peak due to superconductiv-
ity. (c) Zoom at high temperature, where only quasiparticles
contribute to the Nernst signal. T⌫ (arrow) is defined as the
temperature below which ⌫(T ) /T starts to deviate down-
wards from its high-temperature linear behaviour.

positive Hall coe�cient.

At low temperature, the magnitude of the quasiparticle
Nernst signal is given approximately by [22–24]:

|⌫|
T

⇡ ⇡
2

3

k
2
B

e

µ

✏F
, (2)

where ⌫⌘N /H is the Nernst coe�cient, H is the mag-
netic field, T is the temperature, kB is Boltzmann’s con-
stant, e is the electron charge, µ is the carrier mobil-
ity, and ✏F is the Fermi energy. Eq. 2 works remarkably
well as a universal expression for the Nernst coe�cient
of metals at T ! 0, accurate within a factor two or so in
a wide range of materials [22]. It explains why a phase
transition that reconstructs a large Fermi surface into
small pockets (with small ✏F) can cause a major enhance-
ment of ⌫. The heavy-fermion metal URu2Si2 provides
a good example of this. As the temperature drops be-
low its transition to a metallic state with reconstructed
Fermi surface at 17K, the carrier density n (or ✏F) falls
and the mobility rises, both by roughly a factor 10, and
⌫ /T increases by a factor 100 or so [33]. Note that the
electrical resistivity ⇢(T ) is a↵ected only weakly by these
dramatic changes [34], since mobility and carrier den-
sity are modified in ways that compensate in the con-
ductivity �=1/ ⇢=neµ. This is why the Nernst e↵ect
can be a more sensitive probe of electronic transforma-
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FIG. 3. (Color online) Temperature-doping phase diagram
of YBCO, showing three characteristic temperatures. The
transition temperature Tc (open black circles) marks the on-
set of superconductivity in zero magnetic field, below which
the electrical resistivity is zero. The solid black line is a
guide to the eye through the Tc data points. The dotted
black line is a smooth extension of this line assuming that
the superconducting phase ends at a critical doping pc =0.27.
Blue diamonds mark Tmin (defined in Fig. 2(b)), the tem-
perature below which superconducting fluctuations become
significant (from a-axis data in Ref. [20]). The open diamond
shows Tmin for a previously measured sample with p=0.1 [30].
The solid blue line is a guide to the eye. Red circles mark
T⇢, the temperature below which the resistivity ⇢(T ) devi-
ates from its high-temperature linear dependence (from data
in Ref. [12]), a standard definition of the pseudogap tem-
perature T

? in YBCO [31] (see Fig. 5(a)). The open red
circle shows T⇢ for a sample with p=0.18 in which a high
level of disorder scattering was introduced by electron irradi-
ation [32]. In this case, T⇢ marks the onset of an upturn in
⇢(T ) (see text). Red squares mark T⌫ (defined in Fig. 2(c)),
the temperature below which the quasiparticle Nernst signal
departs from its high-temperature behaviour (from present
work and Ref. [20]). One can see that within error bars,
T⌫ 'T⇢, both measures of T ?. The red dashed line is a lin-
ear fit through the T

? data points. Beyond p=0.18, it is a
guide to the eye extending smoothly to reach p= p

? at T =0
(red diamond). p

? is the critical doping where the pseudo-
gap phase ends at T =0 in the absence of superconductivity.
In YBCO, p? =0.195± 0.005 [6]. The grey band marks the
range of T

? values measured in Bi-2212 from spectroscopic
probes (ARPES, STS and SIS) [15], detected up to p' 0.22.

tions, such as density-wave transitions, than the resis-
tivity. Here we use it to study the pseudogap phase of
cuprate superconductors. In Fig. 1, we illustrate how the
two contributions to the Nernst coe�cient, from quasi-
particles (red) and superconducting fluctuations (blue),
respectively, evolve with temperature, for YBCO (left)
and LSCO (right).

Cyr-Choignière et al , (2017)



27/09/2019Maxence Grandadam7

Induced long-range phase correlation
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2

Model and method of calculations

In this Article, we revisit the issue of quantum
antiferromagnet-normal metal transitions in 2D models
of itinerant electrons from the perspective of a novel gen-
eral theory that shall lead us to the conclusion that the
physics of the transition is considerably richer and more
interesting than it has been thought so far. We demon-
strate that within a slightly modified version of the SF
model of Refs.9,10, the coupling of the bosonic spin mode
to the electronic spins generates at the QCP a pseudogap
in the spectrum that corresponds to an order completely
different from the original spin-density wave (SDW). This
new state may be understood as a superposition of d-
wave superconductivity and an electronic quadrupole-
density wave and its emergence around the QCP consti-
tutes an unexpected outcome of our theory. Interestingly,
our formalism shows a certain analogy with the theory of
Anderson localisation by disorder16. The structure of the
both theories relies on a summation of ladder diagrams
of crossing and non-crossing subtypes, that characterise
the emerging effective collective modes and their inter-
action. In both cases, the low energy physics is finally
captured in terms of a non-linear σ-model. Below, we
present a sketch of the derivation and refer the reader to
the supplementary material for details.
Within the SF model, the physics of electrons inter-

acting via critical bosonic modes is described9,10 by the
Lagrangian L = Lψ + Lφ with

Lψ = ψ∗ [∂τ + ε (−i∇) + λφσ]ψ, (1)

Lφ =
1

2
φD−1φ+

g

2

(
φ2
)2

. (2)

Herein, Lψ is the Lagrangian of fermions that propagate
in the fluctuating field φ representing the bosonic spin
excitations modeled by the Lagrangian Lφ. The elec-
tronic spectrum ε(p) in Lψ is assumed to lead to a Fermi
surface like the one depicted in Fig. 1. The Lagrangian
Lφ is a quantum version of the Landau expansion in the
vicinity of a phase transition.
We define the spin-wave boson mode D−1 entering

Eq. (2) around the QCP through its Fourier transform

D−1 (ω,q) = ω2/v2s + (q−Q)2 + a (3)

where vs is the spin-wave velocity, a is a “mass” charac-
terising the distance to the QCP [At QCP a = 0, while
a > 0 on the metallic side.], and Q is the ordering wave
vector in the SDW phase. Keeping in mind possible ap-
plications of the model to high-Tc cuprates, we choose
Q = (π,π). The points on the Fermi surface connected
by the vector Q are the hot spots in the model and, close
to criticality, the most interesting physics is formed in
their vicinity. Figure 1 illustrates that there are eight
hot spots on the Fermi surface. It is implied that the
coupling constant λ is small in the sense of λ2 # vp0,
where v is the Fermi velocity and p0 the radius of curva-
ture at the hot spots (see Supplementary Information for

FIG. 1: Brillouin zone and Fermi surface for the spin-
fermion model. Electrons at hot spots connected by the
vector Q interact via a critical bosonic mode. The vec-
tors Q1,2 modulate the amplitudes of particle-hole pairings.
Inset: Definition of the angle δ that controls the theoretical
approach.

the details). Also, the quartic φ4-term in Lφ is usually
neglected for a ≥ 0.

Following Refs.9,10,14, we might assume that the
fermionic field ψ had 2N components, where 2 arises due
to spin and N is the number of artificial fermion flavours.
However, in accord with the conclusion of Ref.14, the
large-N limit does not help to justify approximations and
control the theory and, therefore, we shall take here the
physically relevant value N = 1. Instead, we keep the
theory under control assuming that the Fermi surface
has such a shape that the Fermi velocities v1,2 of two
hot spots connected by vector Q are close to being par-
allel to each other,

δ # 1, (4)

with the angle δ defined in the inset of Fig. 1. Even
though the constraint (4) itself is in principle not unre-
alistic, indicating the tendency to a nesting of the type
represented in Fig. 1, we believe that the results of the
present analysis can be applicable for an arbitrary shape
of the Fermi surface at least qualitatively.

The Landau damping modifies8 the form of D−1(ω,q),
Eq. (3), adding to the latter the term γ|ω| with γ =
(2λ)2/(πv2 sin δ) and v = |v1,2|. In the limit (4), the
Landau damping is strong, leading to a “weak coupling”
limit of our theory, and dominates over the ω2-term in
the bare propagator D−1.

In the spirit of the approach of Ref.16, we first integrate
the partition function Z =

∫
exp{−

∫
L}DφDψ over the

field φ neglecting the quartic term in Lφ. As a result, we
obtain a model of electrons with an interaction described
by the function D (ω,q) including the Landau damping
term. Next, we single out those slow pairs that corre-
spond to the mean field order parameters and derive the
mean field equations. The order parameter found from
these equations is strongly degenerate against SU(2) ro-
tations, which gives rise to gapless excitations that finally
are effectively described in terms of a non-linear σ-model.

2

strate that within a slightly modified version of the SF
model of Refs.9,10, the coupling of the bosonic spin mode
to the electronic spins generates at the QCP a pseudogap
in the spectrum that corresponds to an order completely
different from the original spin-density wave (SDW). This
new state may be understood as a superposition of d-
wave superconductivity and a quadrupole-density wave
(QDW), and its emergence around the QCP constitutes
an unexpected outcome of our theory derived from the SF
model. From the high-Tc cuprate perspective, the reader
should remember that the SF model corresponds to the
Cu sites in the CuO2 lattice only, while the oxygen sites
have been “integrated out”. Actually, the quadrupole
order should be pictured as induced by a corresponding
modulated charge order of the four O atoms surrounding
a Cu atom [Fig. 1(a)] that, in turn, leads to an energy
modulation on Cu atoms. Altogether, the modulation
forms a chequerboard structure.
Interestingly, our formalism shows a certain analogy

with the theory of Anderson localisation by disorder16.
The structure of both theories relies on a summation of
ladder diagrams of crossing and non-crossing subtypes,
that characterise the emerging effective collective modes
and their interaction. In both cases, the low-energy
physics is finally captured in terms of a non-linear σ-
model. Below, we present a sketch of the derivation and
refer the reader to the Supplementary Material for de-
tails.
Within the SF model, the physics of electrons inter-

acting via critical bosonic modes is described9,10 by the
Lagrangian L = Lψ + Lφ with

Lψ = ψ∗ [∂τ + ε (−i∇) + λφσ]ψ, (1)

Lφ =
1

2
φD−1φ+

g

2

(
φ2
)2

. (2)

Herein, Lψ is the Lagrangian of electrons with spec-
trum ε(p) that propagate in the fluctuating field φ rep-
resenting the bosonic spin excitations modeled by the
Lagrangian Lφ. The Lagrangian Lφ is a quantum ver-
sion of the Landau expansion in the vicinity of a phase
transition.
We define the spin-wave boson mode D−1 entering

Eq. (2) around the QCP through its Fourier transform

D−1 (ω,q) = ω2/v2s + (q−Q)2 + a (3)

where vs is the spin-wave velocity, a is a “mass” charac-
terising the distance to the QCP [At QCP, a = 0, while
a > 0 on the metallic side.], and Q is the ordering wave
vector in the SDW phase. Pursuing the application of
the SF model to cuprates, it is usually assumed that
the spectrum ε(p) in Eq. (1) leads to a Fermi surface of
the shape represented in Fig. 1(b). In order to facilitate
a controlled theoretical analysis (see below), we instead
consider in the following a slightly deformed Fermi sur-
face as in Fig. 1(c). The points on the Fermi surface
connected by the vector Q are the hot spots in the model
and, close to criticality, the most interesting physics is

FIG. 1: Real-space CuO2 plane, Brillouin zone, and
Fermi surface for the spin-fermion model. (a) Structure
of Cu(3dx2

−y2) and O(2px/2py) orbitals in the CuO2 plane. It
is illustrated how partial charges at the O atoms can induce an
effective elementary quadrupole at a site in the Cu lattice. (b)
Brillouin zone for the square Cu lattice after “integrating out”
the O atoms. (c) Brillouin zone in our weak-coupling model
allowing for a controlled theoretical analysis assuming a small
angle δ. In both (b) and (c), electrons at hot spots connected
by the vector Q interact via a critical bosonic mode. The
vectors Q1/2 and the given linear combinations Q± modulate
the amplitudes of particle-hole pairings.

formed in their vicinity. Figures 1(b) and (c) illustrate
that there are eight hot spots on the Fermi surface. It is
implied that the coupling constant λ is small, λ2 # vp0,
where v is the Fermi velocity and p0 the radius of cur-
vature at the hot spots.17 The quartic φ4-term in Lφ is
usually neglected for a ≥ 0.
We keep the theory under control assuming that the

Fermi surface has such a shape that the Fermi veloci-
ties v1,2 of two hot spots connected by vector Q are close
to being parallel to each other,

δ # 1, (4)

with the angle δ defined in the inset of Fig. 1(c). The
limit (4) favours the Fermi surface of Fig. 1(c) over the
one from Fig. 1(b) and shall allow us to have all nec-
essary approximations in our analysis under control. In
the more realistic situation of Fig. 1(b), we expect qual-
itatively similar results but, due to the lack of a small
parameter, the theory developed here would formally not
be justified.
The Landau damping modifies8 the form ofD−1(ω,q),

Eq. (3), adding to the latter the term γ|ω| with γ =
(2λ)2/(πv2 sin δ) and v = |v1,2|. In the limit (4), the
Landau damping is strong, leading to a “weak coupling”
limit of our theory, and dominates over the ω2-term in
the bare propagator D−1.

4

FIG. 7: Particle-particle and particle-hole non-crossing ladder diagrams.

FIG. 8: Renormalisation of the spin-wave propagator by particle-hole bubbles.

includes as interaction potential the original bare bosonic propagator

D (X −X ′) = T
∑

ω

∫
exp (−iω (τ − τ ′) + iq(r− r′))D (ω,q)

dq

(2π)2
(2.5)

with D−1 (ω,q) = N
(
ω2/v2s + q2 + a

)
. (2.6)

ω = 2πTm, m = 0,±1,±2, . . ., are Matsubara bosonic frequencies. Note that in SI we measure the electron momenta
from the hot spots. As a result, the propagator D (ω,q) in Eq. (2.6) has formally been shifted by the vector Q with
respect to the one in Eq. (3) of the Article.

In principle, one can study the model defined by Eqs. (2.2-2.6) using an expansion in Sint. The bare Green
function G0 for the Hamiltonian H0 used in this type of perturbation theory is written in Fourier space as

G−1
0 (ε,p) = iε− V̂p (2.7)

with ε = π (2n+ 1)T , n = 0,±1,±2, . . ., denoting a fermionic Matsubara frequency.
This approach has been used in the previous publications9,10,14. It has been found in Ref.14 that anomalous (in

terms of the expansion in 1/N) contributions come from particle-particle and particle-hole ladder diagrams of the
type represented in Fig. 7

These diagrams describe superconducting and some kind of insulating fluctuations demonstrating a tendency to a
corresponding particle-particle and particle-hole pairing. Formally, these diagrams resemble “cooperons” and “diffu-
sons” appearing in the localisation theory16. More complicated diagrams correspond to an interaction between these
effective modes.

A very efficient way to sum the contributions of all these diagrams is to derive a non-linear σ-model16 and study
fluctuations of an “order parameter” using this effective field theory.

Below, we follow a similar route. We investigate the model by first writing self-consistent mean field equations, then
solving them, and finally studying fluctuations. Of course, one can describe the fluctuations within a perturbation
scheme again. However, now the expansion will be performed near another minimum. This is a standard situation in
models where a symmetry of the original Hamiltonian is broken in a certain region of parameters.

The first step consists of replacing the Ψ4-interaction by a quadratic term with coefficients to be determined
in a self-consistent way: The effective action for the fermion-fermion interaction shall contain a bosonic propaga-
tor Deff (X −X ′) — physically the spin susceptibility — that is renormalised by particle-hole bubbles, see Fig. 8,
that in turn are composed by renormalised fermions. In order words, we develop a self-consistency scheme for both
fermions and bosons.

The renormalised propagator Deff (ω,q) can be written as

D−1
eff (ω,q) = D−1 (ω,q)−Π (ω,q) , (2.8)
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FIG. 8: Renormalisation of the spin-wave propagator by particle-hole bubbles.
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ω = 2πTm, m = 0,±1,±2, . . ., are Matsubara bosonic frequencies. Note that in SI we measure the electron momenta
from the hot spots. As a result, the propagator D (ω,q) in Eq. (2.6) has formally been shifted by the vector Q with
respect to the one in Eq. (3) of the Article.
In principle, one can study the model defined by Eqs. (2.2-2.6) using an expansion in Sint. The bare Green

function G0 for the Hamiltonian H0 used in this type of perturbation theory is written in Fourier space as
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0 (ε,p) = iε− V̂p (2.7)

with ε = π (2n+ 1)T , n = 0,±1,±2, . . ., denoting a fermionic Matsubara frequency.
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sons” appearing in the localisation theory16. More complicated diagrams correspond to an interaction between these
effective modes.
A very efficient way to sum the contributions of all these diagrams is to derive a non-linear σ-model16 and study

fluctuations of an “order parameter” using this effective field theory.
Below, we follow a similar route. We investigate the model by first writing self-consistent mean field equations, then

solving them, and finally studying fluctuations. Of course, one can describe the fluctuations within a perturbation
scheme again. However, now the expansion will be performed near another minimum. This is a standard situation in
models where a symmetry of the original Hamiltonian is broken in a certain region of parameters.
The first step consists of replacing the Ψ4-interaction by a quadratic term with coefficients to be determined

in a self-consistent way: The effective action for the fermion-fermion interaction shall contain a bosonic propaga-
tor Deff (X −X ′) — physically the spin susceptibility — that is renormalised by particle-hole bubbles, see Fig. 8,
that in turn are composed by renormalised fermions. In order words, we develop a self-consistency scheme for both
fermions and bosons.
The renormalised propagator Deff (ω,q) can be written as

D−1
eff (ω,q) = D−1 (ω,q)−Π (ω,q) , (2.8)

«Cooperons»

«Diffusons»

3

FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-
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FIG. 2: Gap function. (a) The mean field solution b(ε, T )
at the hot spots as a function of the Matsubara frequency ε
and temperature T . All energies are measured in units of Γ.
(b) In our weak-coupling model, the gap b(0,p) is essentially
non-zero only in the vicinity of hot spots. The order param-
eter has opposite signs at the hot spots located on the same
arcs within the Brillouin zone of the Fermi surface, corre-
sponding to a d-wave-like symmetry. (c) The gap function for
the SF model on the square lattice appropriate to the cuprates
[cf. Fig. 1(b)] as obtained numerically in Ref.21. Note that
the gaps of two hot-spots adjacent to the same antinode are
smeared. Beyond the weak-coupling limit λ2 ! vp0, we may
expect them to merge into one single gap situated at the antin-
ode.

homogeneities and, as a result, lead to a d-wave-like de-
pendence on the position on the Fermi surface. We refer
to the state that emerges from the non-trivial solution of
Eqs. (6) as a pseudogap state.
The SU(2) matrix u reflects the degeneracy of the order

parameter O(ε) = b(ε)u and may be parametrised as

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
with |∆+|2 + |∆−|2 = 1 . (7)

The complex numbers ∆+ and ∆− should be inter-
preted as order parameters for the superconducting and
particle-hole order, respectively. In contrast to the con-
ventional superconductivity where electron-electron pairs
are formed, we have here quartets consisting of two par-
ticles and two holes, see Fig. 3 (a) and (b). Depending on
the relation between the horizontal and vertical coupling,
one of the pairings is more favourable but one should deal
with the entire quartet when considering fluctuations.

The nature of the particle-hole pairing in our theory
is different from those conjectured in SU(2) theories on
the basis of symmetries of t − J models1. Studying the
symmetries of this order, we find that the d-wave struc-
ture does not lead to local charge or current modulations.
However, as a consequence of the electron-hole pairing,
the rotational symmetry of the electron gas is broken,

FIG. 3: Pseudogap orders and phase diagram. Pair-
ing types of electrons and holes at opposite hot spots for (a)
quadrupole-density wave (QDW) order and (b) d-wave super-
conductivity. (c) In the phase diagram for the spin-fermion
model, AF denotes the antiferromagnetic (SDW) state, SC is
the phase of the d-wave superconductivity, and PG the pseu-
dogap state. The dashed line represents the solution of the
equation a(T ) = 0. The question mark “?” indicates that the
present consideration is not sufficient to identify the phase in
the region between AF and SC.

FIG. 4: Chequerboard structure. The quadrupole den-
sity amplitude (normalized to values between ±1) is repre-
sented in real space. It is incommensurate with the square
Cu lattice of the compound. The marked vectors are R± =
2πQ±/|Q±|2, cf. Fig. 1(b).

giving rise to finite modulated quadrupole density17

Dxy(r) ∝
∣∣∆−

∣∣ sin
(
Q+r− ϕ+

)
cos
(
Q−r− ϕ−

)
(8)

with ϕ+ and ϕ− denoting phases. This formula de-
scribes a spatial oscillation of the off-diagonal elements
of the quadrupole moment with the wave vectors Q+ =
(Q1 +Q2)/2 and Q− = (Q1 −Q2)/2, where Q1 and Q2

denote the vectors connecting two hot spots at ±p, cf.
Fig. 1(b) and (c). Note that the vectorsQ± are consider-
ably smaller than the SDW wave vector Q and that the
resulting chequerboard structure is incommensurate with
the original lattice. This new type of the particle-hole or-
der discovered within the SF model shall in the following
be referred to as a quadrupole density wave (QDW).

The appearance of a quadrupole structure becomes es-

SU(2) symmetry and fluctuations

Composite order parameter
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We report NMR shift hK and TI data of Y taken from 77 to 300 K in YBa2Cu366+ for
0.35 & x & 1, from the insulating to the metallic state. A Korringa law and therefore a Fermi-liquid pic-
ture is found to apply for the spin part K, of AIC. The spin contribution g, (x,T) to g is singled out, as
the T variation of BED scales linearly with the macroscopic susceptibility g . This implies that Cu(3d)
and G(2p) holes do not have independent degrees of freedom. Their hybridization, which has a o char-
acter, hardly varies with doping. These results put severe constraints on theoretical models of high-T,
cuprates.

PACS numbers: 74.70.Vy, 75.20.En, 76.60.Cq, 76.60.Es

The interplay between the magnetic properties of
Cu(3d) holes and the charge transport mediated by the
G(2p) holes is still a highly controversial question in
high-T; materials. While T~ nuclear-spin-lattice relaxa-
tion data on Y and Cu at the supcrconducting transi-
tion ' indicate that both hole systems are involved in the
superconducting pairing, some authors suggest that the
~rsistence of 20 antiferromagnetjtc spin Auctuations
above T, indicates that the Cu(3d) spins could somehow
be decoupled from thc charge transport mediated by the
G(2p) holes. This could result for instance from weak
Cu(3d)-G(2p) x bonding at the Fermi level. Such
ideas have recently led Johnston to attempt a partition
of the macroscopic susceptibility g in high-T, materials
into a T-dependent part attributed to the lattice of Cu
spins and a Pauli term associated with charge carriers.
In order to gain local insight on these properties, NMR
measurements are highly desirable. Y nuclei are direct
probes of the susceptibility of the Cu02 planes. We
report here. an extensive experimental study of both the
NMR shift Kg and the nuclear r'elaxation rate Ti of

Y, which allows for the erst time a direct comparison
of the static and dynamic susceptibilities in these materi-
als from thc metallic to the semiconducting state. These
results provide evidence that both K, and (T|T) ' are T
dependent in thc metallic state as soon as x departs from
unity. A Korringa relation between T~ T and K, is estab-
lished and indicates that a Fermi-liquid picture holds.
Our data suggest that this behavior might extend as well
into the semiconducting state. Further, K„which probes
the T dependence of g on the oxygen sites, ' is found to
scale with g, which is dominated by g on the copper
sites. ' Therefore the T variation of g should in no
case be attributed solely to the Cu + spins and Cu(3d)
and O(2p) holes do not have independent degrees of
freedom.

NMR data have taken on the same powdered ceramic
samples as in Ref. 7, which had been deoxygenated at
low T (—500'C) and immediately sealed in Pyrex vials
in a He atmosphere. Our initial x 1 sample (now la-
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FIG. 1. The shift hE of the Y line, referenced to YC13
plotted vs T, from 77 to 300 K. The lines are guides to the eye.

beled x- I —e) had been left about two weeks in air be-
fore being sealed and has probably lost some oxygen.
Samples kept now for more than one year in such vials
did not show any change in their properties. The posi-
tions ~ of the NMR line relative to a YC13 reference,
determined as in Ref. 7, are summarized in Fig. 1 for
samples with x &0.35 which arc not antifcrromagnetic
above 100 K. It can bc seen that AE is nearly T in-
dependent above T; only for x 1, in good agreement
with Cu NMR data, ' while a large-T variation of hE
is detected already for x 1 —e. Except for x =1, earlier
data reported above 150 K" agree with thc present re-
sults.

Let us recall here that the shift tensor AK(x) =a(x)
+K, (x) involves a chemical-shift contribution o(x) due
to ftBed electronic shells and a spin contribution K, (x)
due to the susceptibility on the G(2p) holes. Data on
oriented powders, to be reported elsewhere, ' confirm
that e is T independent, as might be expected from the
negligible T variation of the lattice parameters, and that
K, (x) is purely isotropic, as obtained indirectly from
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ideas have recently led Johnston to attempt a partition
of the macroscopic susceptibility g in high-T, materials
into a T-dependent part attributed to the lattice of Cu
spins and a Pauli term associated with charge carriers.
In order to gain local insight on these properties, NMR
measurements are highly desirable. Y nuclei are direct
probes of the susceptibility of the Cu02 planes. We
report here. an extensive experimental study of both the
NMR shift Kg and the nuclear r'elaxation rate Ti of

Y, which allows for the erst time a direct comparison
of the static and dynamic susceptibilities in these materi-
als from thc metallic to the semiconducting state. These
results provide evidence that both K, and (T|T) ' are T
dependent in thc metallic state as soon as x departs from
unity. A Korringa relation between T~ T and K, is estab-
lished and indicates that a Fermi-liquid picture holds.
Our data suggest that this behavior might extend as well
into the semiconducting state. Further, K„which probes
the T dependence of g on the oxygen sites, ' is found to
scale with g, which is dominated by g on the copper
sites. ' Therefore the T variation of g should in no
case be attributed solely to the Cu + spins and Cu(3d)
and O(2p) holes do not have independent degrees of
freedom.

NMR data have taken on the same powdered ceramic
samples as in Ref. 7, which had been deoxygenated at
low T (—500'C) and immediately sealed in Pyrex vials
in a He atmosphere. Our initial x 1 sample (now la-
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FIG. 1. The shift hE of the Y line, referenced to YC13
plotted vs T, from 77 to 300 K. The lines are guides to the eye.

beled x- I —e) had been left about two weeks in air be-
fore being sealed and has probably lost some oxygen.
Samples kept now for more than one year in such vials
did not show any change in their properties. The posi-
tions ~ of the NMR line relative to a YC13 reference,
determined as in Ref. 7, are summarized in Fig. 1 for
samples with x &0.35 which arc not antifcrromagnetic
above 100 K. It can bc seen that AE is nearly T in-
dependent above T; only for x 1, in good agreement
with Cu NMR data, ' while a large-T variation of hE
is detected already for x 1 —e. Except for x =1, earlier
data reported above 150 K" agree with thc present re-
sults.

Let us recall here that the shift tensor AK(x) =a(x)
+K, (x) involves a chemical-shift contribution o(x) due
to ftBed electronic shells and a spin contribution K, (x)
due to the susceptibility on the G(2p) holes. Data on
oriented powders, to be reported elsewhere, ' confirm
that e is T independent, as might be expected from the
negligible T variation of the lattice parameters, and that
K, (x) is purely isotropic, as obtained indirectly from
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Quantum oscillations and the Fermi surface in an
underdoped high-Tc superconductor
Nicolas Doiron-Leyraud1, Cyril Proust2, David LeBoeuf1, Julien Levallois2, Jean-Baptiste Bonnemaison1,
Ruixing Liang3,4, D. A. Bonn3,4, W. N. Hardy3,4 & Louis Taillefer1,4

Despite twenty years of research, the phase diagram of high-
transition-temperature superconductors remains enigmatic1,2. A
central issue is the origin of the differences in the physical prop-
erties of these copper oxides doped to opposite sides of the super-
conducting region. In the overdoped regime, the material behaves
as a reasonably conventional metal, with a large Fermi surface3,4.
The underdoped regime, however, is highly anomalous and
appears to have no coherent Fermi surface, but only disconnected
‘Fermi arcs’5,6. The fundamental question, then, is whether under-
doped copper oxides have a Fermi surface, and if so, whether
it is topologically different from that seen in the overdoped
regime. Here we report the observation of quantum oscillations
in the electrical resistance of the oxygen-ordered copper oxide
YBa2Cu3O6.5, establishing the existence of a well-defined Fermi
surface in the ground state of underdoped copper oxides, once
superconductivity is suppressed by a magnetic field. The low oscil-
lation frequency reveals a Fermi surface made of small pockets, in
contrast to the large cylinder characteristic of the overdoped
regime. Two possible interpretations are discussed: either a small
pocket is part of the band structure specific to YBa2Cu3O6.5 or
small pockets arise from a topological change at a critical point
in the phase diagram. Our understanding of high-transition-
temperature (high-Tc) superconductors will depend critically on
which of these two interpretations proves to be correct.

The electrical resistance of two samples of ortho-II ordered
YBa2Cu3O6.5 was measured in a magnetic field of up to 62 T applied
normal to the CuO2 planes (Bjjc). (Sample characteristics and details
of the measurements are given in the Methods section.) With a Tc of
57.5 K, these samples have a hole doping per planar copper atom of
p 5 0.10, that is, they are well into the underdoped region of the
phase diagram (see Fig. 1a). Angle-resolved photoemission spec-
troscopy (ARPES) data for underdoped Na2 2 xCaxCu2O2Cl2 (Na-
CCOC) at precisely the same doping (reproduced in Fig. 1b from
ref. 6) shows most of the spectral intensity to be concentrated in a
small region near the nodal position (p/2, p/2), suggesting a Fermi
surface broken up into disconnected arcs, while ARPES studies on
overdoped Tl2Ba2CuO61d (Tl-2201) at p 5 0.25 reveal a large, con-
tinuous cylinder (reproduced in Fig. 1c from ref. 4).

The Hall resistance Rxy as a function of magnetic field is displayed
in Fig. 2 for sample A, and in Supplementary Fig. 1 for sample B, where
oscillations are clearly seen above the resistive superconducting trans-
ition. Note that a vortex liquid phase is believed to extend well above
the irreversibility field, beyond our highest field of 62 T, which may
explain why Rxy is negative at these low temperatures, as opposed to
positive at temperatures above Tc. Nevertheless, quantum oscillations
are known to exhibit the very same diagnostic characteristics of

frequency and mass in the vortex state as in the field-induced normal
state above the upper critical field Hc2(0) (for example, ref. 7). They are
caused by the passage of quantized Landau levels across the Fermi level
as the applied magnetic field is varied, and as such they are considered
the most robust and direct signature of a coherent Fermi surface. The
inset of Fig. 2 shows the 2 K isotherm and a smooth background curve.
We extract the oscillatory component, plotted in Fig. 3a as a function

1Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Canada J1K 2R1. 2Laboratoire National des Champs Magnétiques Pulsés (LNCMP), UMR CNRS-UPS-
INSA 5147, Toulouse 31400, France. 3Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada V6T 1Z4. 4Canadian Institute for Advanced Research,
Toronto, Canada M5G 1Z8.
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Figure 1 | Phase diagram of high-temperature superconductors.
a, Schematic doping dependence of the antiferromagnetic (TN) and
superconducting (Tc) transition temperatures and the pseudogap crossover
temperature T* in YBCO. The vertical lines at p 5 0.1 and p 5 0.25 mark the
positions of copper oxide materials discussed in the text: ortho-II ordered
YBa2Cu3O6.5 and Na-CCOC, located well into the underdoped region, and
Tl-2201, well into the overdoped region, respectively. b, c, Distribution of
ARPES spectral intensity in one quadrant of the Brillouin zone, measured
(b), on Na-CCOC at p 5 0.1, and (c), on Tl-2201 at p 5 0.25 (reproduced
from ref. 6 and ref. 4, with permissions from K. M. Shen and A. Damascelli,
respectively). These respectively reveal a truncated Fermi surface made of
‘Fermi arcs’ at p 5 0.10, and a large, roughly cylindrical and continuous
Fermi surface at p 5 0.25. The red ellipse in b encloses an area Ak that
corresponds to the frequency F of quantum oscillations measured in YBCO.
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Figure 2. Schematic phase diagram of high Tc materials. The
antiferromagnet (AF) is rapidly destroyed by doped holes. The
d-wave superconductor is subject to strong phase fluctuations below
the dotted line, where the proliferation of vortices has been detected
by the Nernst effect. A pseudogap region extends up to high
temperatures in the underdoped region.

the Mott transition [16]. Amazingly it was discovered that
when the Mott insulator is destroyed, the system immediately
becomes a superconductor, before becoming a metal at even
higher pressure. Furthermore, the transition temperature
reaches 11.6 K, the highest known among the organics. There
is also strong evidence that these superconductors have d-wave
pairing symmetry [17].

I would argue that 11.6 K for an organic metal qualifies
it as an example of a high Tc superconductor! The reason
is that the electronic energy scale for organic solids is much
smaller than that for ordinary solids. For example, the hopping
matrix element t is about 0.05 eV compared with 0.4 eV for the
cuprates. Thus the ratio kBTc/t ≈ 1

40 is about the same for both
systems. To emphasize this point, in figure 3. I have put both
materials on the same phase diagram in the parameter space
U/t andx of the Hubbard model. Is the d-wave superconductor
that appears with doping connected with the one that appears
under pressure? We do not have the answer at present. My
point is that with so many ‘unconventional’ examples, our
mindset today should be different from that of 20 years ago, and
we should be more receptive to the idea that superconductivity
may be a highly competitive ground state in a pure repulsive
model such as the Hubbard model.

With that remark let us return to the cuprates and examine
the phase diagram in more detail. The region between the
disappearance of AF and the onset of superconductivity is
complicated by disorder effects, even though heroic efforts
to make pure samples of YBCO have yielded interesting new
information [18]. We shall not discuss this region further. The
regions of the phase diagram with doping to the left and right
of optimal is called underdoped and overdoped, respectively.
The metallic state above Tc in the underdoped region has been
under intense study and exhibits many unusual properties not
encountered before in any other metal. This is shown below
the dashed line in figure 2 and has been called the pseudogap
phase. It is not a well defined phase in that a definite finite
temperature phase boundary has never been found, so the
dashed line should be regarded as a cross-over. There is now

Figure 3. Location of high Tc cuprates and organic superconductors
in the Hubbard model phase diagram. At half-filling, the
antiferromagnetic insulator onsets when U/t exceeds a critical value
Uc/t , where the Mott transition occurs. High Tc superconductivity
occurs when holes are doped into the Mott insulator over a
concentration range between 6% and 25%. In certain organic
compounds, 12 K superconductivity lives on the boundary between
the Mott insulator and the metal. The ratio kBTc/t is about 1

40 for
both systems. Whether the two superconducting regions are
connected is not known and indicated by the question mark.

broad agreement that the high Tc problem is synonymous with
that of doping of a Mott insulator. It then makes sense to focus
on the underdoped region, where the battle line between Mott
insulator and superconductivity is drawn.

Since we are interested in the case where U is sufficiently
large compared with t for the Hubbard model to be in the Mott
insulator phase, it is useful to expand in t/U . The leading
order result is the t–J model

H = P




∑

〈ij〉,σ
tij c

†
iσ cjσ + J

∑

〈ij〉

(
Si · Sj − 1

4
ninj

)

 P. (2)

The second term is the AF Heisenberg exchange between
local spins Si = 1

2c†
iασαβciβ discussed earlier. The nontrivial

part of the t–J model resides in the projection operator
P which restricts the Hilbert space to exclude the doubly
occupied states. The strong Coulomb repulsion now becomes
a constraint of no double occupation. Compared with the
Hubbard model, the Hilbert space is reduced from four states
per site to three, namely, spin up, spin down or empty. The
parameters of the t–J model appropriate for the cuprates is
also well established. J ∼ 0.13 eV–1500 K, t/J ∼ 3 and t ′/t

is negative, of order −0.2, and is believed to vary somewhat
from compound to compound [19].

Equations (1) and (2) are deceptively simple looking
Hamiltonians which have defied accurate numerical or analytic
solution. Nevertheless, the belief among many workers in
the field is that they contain the rich physics of the high
Tc phase diagram. The situation is not unlike quantum
chromodynamics (QCD), where the Lagrangian is known, but
precise understanding of confinement and the mass spectrum
has just begun to emerge from quantum Monte Carlo after
decades of hard work. To make matters worse, the high Tc

problem at finite doping is analogous to the QCD problem with
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finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x # 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
(± π

2a
, ± π

2a
) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
2a

, ± π
2a

) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only byx carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x # 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that

(e)

Figure 4. (a) Fermi pockets in a doped AF. The dashed lines
indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
second nearest-neighbour hopping. (c) Schematic picture of the
Fermi arcs. The excitations are gapless when path A crosses the arc
but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x # 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
(± π

2a
, ± π

2a
) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
2a

, ± π
2a

) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only byx carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x # 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that

(e)

Figure 4. (a) Fermi pockets in a doped AF. The dashed lines
indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
second nearest-neighbour hopping. (c) Schematic picture of the
Fermi arcs. The excitations are gapless when path A crosses the arc
but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x # 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
(± π

2a
, ± π

2a
) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
2a

, ± π
2a

) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only byx carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x # 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that

(e)

Figure 4. (a) Fermi pockets in a doped AF. The dashed lines
indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
second nearest-neighbour hopping. (c) Schematic picture of the
Fermi arcs. The excitations are gapless when path A crosses the arc
but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x # 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
(± π

2a
, ± π

2a
) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
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, ± π
2a

) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only byx carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x # 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that
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Figure 4. (a) Fermi pockets in a doped AF. The dashed lines
indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
second nearest-neighbour hopping. (c) Schematic picture of the
Fermi arcs. The excitations are gapless when path A crosses the arc
but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
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Figure 1 |Quasiparticles in ARPES data. a–d, EDCs at kF: node (top) to antinode (bottom). Insets: Fermi surface intersection for each cut. e, Octet model
QPI wave vectors, q1–q7, connect the ends of CCEs (red solid lines)5 around the Fermi surface (dashed line), where blue (yellow) regions represent
1(k) > 0 (1(k) < 0). f, Fourier-transform (FT) STS infers the Fermi surface by tracking dispersing QPI wave vectors, terminating at the antiferromagnetic
zone boundary (dashed line)5. For a similar doping, ARPES detects quasiparticles extending to the antinode. Inset: UD75 EDCs at the antinode measured
at 85 K and 65 K, showing emergence of the quasiparticle peak near Tc.
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Figure 2 | Scattering-rate fits. a,b, Symmetrized EDCs at kF for UD75 (a)
and UD92 (b) were fitted to an energy-dependent scattering rate, � = ↵!,
convolved with the experimental energy resolution. The characteristic
scattering rate, � ⇤

2 = ↵�(k), is plotted as a function of Fermi surface angle
along with the fitted �(k). Error bars for � ⇤

2 are estimated by the 3�

confidence interval of the fitting and error bars for the gap are described in
ref. 10. There is no evidence that the scattering rate diverges near the
antiferromagnetic zone boundary for either doping. In addition, the peak
width in the antinodal region is smaller than the gap, indicating that the
peaks are quasiparticle-like.

the peaks are quasiparticle-like in this region of interest. For UD92,
the quasiparticle width changes little from the node to the antinode,
a result similar to earlier work on overdoped samples14. The UD75
scattering rate shows a stronger momentum dependence, but the
overall variation is still only a factor of three. For both dopings,
there is no anomaly in the scattering at the antiferromagnetic zone
boundary, ruling out proposals for quasiparticle extinction that
invoke a sudden increase in single-particle scattering there5.

What could plausibly explain the apparent contradiction
between ARPES and Fourier-transform STS results? One intriguing
observation is that not all QPI wave vectors in ⇢(q,!) vanish across

the antiferromagnetic zone boundary: q1,4,5 survive, whereas the
others fall below the Fourier-transform STS noise floor5. Here, we
study the effects of quasiparticle scattering from impurities on the
basis of a weak-coupling approach15. Although this neglects the
large, relevant, spatial inhomogeneity in the LDOS shown with
STS (ref. 7), it places a simple focus on the differences between
measurements, contrasting electron removal spectra in ARPES
against two-particleQPImechanisms in Fourier-transformSTS.

On the basis of ARPES results, the electron propagators are
described by theNambuGreen’s function Ĝ in the superconducting
state and the momentum-dependent T̂ matrix determines the
non-uniform part of ⇢(q,!) (ref. 16):

�⇢(q,!)= �1
⇡

Im
X

p

[Ĝ(p,!)T̂ (p,p+q)Ĝ(p+q,!)]11

where Ĝ(p,!) = 1/[!⌧̂0 � ⇠(p)⌧̂3 � 1(p)⌧̂1] is written in terms
of Pauli matrices ⌧̂1,3, the unit matrix ⌧̂0, the band struc-
ture ⇠(p) and the d-wave superconducting gap 1(p) = 10[cos
(pxa)�cos(pya)]/2. Contributions to the T̂ matrix can be classified
according to how they modify electron parameters: conventional
impurity scattering occurs in the ⌧̂3 channel, whereas local super-
conducting gapmodification occurs in the ⌧̂1 channel.

A single impurity at site (0, 0) locally modifies hopping and the
d-wave superconducting gap through an impurity contribution
to the Hamiltonian17–19: H = P

r
 †

r
[⌧̂3�t (r)+ t̂1�1(r)] 0 + h.c.,

where spin indices have been suppressed. The hopping and
d-wave gap modulations, �t (r) and �1(r), are proportional to
�(r �ax)±�(r �ay)+�(r +ax)±�(r +ay), where a is the square
lattice spacing and the upper (lower) sign is for hopping (d-wave
gap) modulation. Given this form of the impurity Hamiltonian,
the Fourier transform, T̂ (p,p+q), has a simple momentum-space
form: ⌧̂3,1[cos(px)±cos(py)+cos(px +qx)±cos(py +qy)] for hop-
ping and d-wave gap modulated scattering, respectively. In the ⌧̂1
channel (gap modulation), scattering vanishes between points with
opposite order-parameter phases. Thus, q2,3,6,7 vanish identically,
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d-wave superconducting gap through an impurity contribution
to the Hamiltonian17–19: H = P

r
 †

r
[⌧̂3�t (r)+ t̂1�1(r)] 0 + h.c.,

where spin indices have been suppressed. The hopping and
d-wave gap modulations, �t (r) and �1(r), are proportional to
�(r �ax)±�(r �ay)+�(r +ax)±�(r +ay), where a is the square
lattice spacing and the upper (lower) sign is for hopping (d-wave
gap) modulation. Given this form of the impurity Hamiltonian,
the Fourier transform, T̂ (p,p+q), has a simple momentum-space
form: ⌧̂3,1[cos(px)±cos(py)+cos(px +qx)±cos(py +qy)] for hop-
ping and d-wave gap modulated scattering, respectively. In the ⌧̂1
channel (gap modulation), scattering vanishes between points with
opposite order-parameter phases. Thus, q2,3,6,7 vanish identically,

NATURE PHYSICS | VOL 5 | OCTOBER 2009 | www.nature.com/naturephysics 719

Is fractionalization compatible with  
the observation of Bogoliubov QP in 

the anti-nodal region ?

Coherence of the electrons ?

CONTENTS 32

Figure 17. (Color online) (a) Loci of the Bogoliubov band turning points as the
voltage increases extracted from STM quasiparticle interference. The loci end at the
AF reduced BZ boundary enclose an area close to the doping level, from Kohsaka
et al. [31]. (b) The hole pocket area predicted in YRZ Green’s function and the
area obtained from the STM experiments as defined in (a), along with areas obtained
by other methods. The down triangles denote the hole densities calculated from the
Luttinger theorem extrapolating the arcs to give a full Fermi surface. There is good
agreement between the YRZ ansatz and the areas in (a).

Figure 18. (Color online) (a-d) Doping x and temperature dependences (ranging
from 300 � 10K) of AIPES spectra. (h-k) The first derivative curves of the AIPES
spectra with respective to energy of the spectra (2nd row) with the maxima indicated
by the red dots [30]. Each spectrum is shifted vertically so that one can see the peaks
clearly.
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The concept of SU(2) symmetry

2

anti-nodal region of the Brillouin zone (BZ) [42–44], and
led to an interpretation in terms of a pair-density-wave
(PDW) [45, 46]- or a finite momentum superconducting
state Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [47, 48].
Coherent neutron scattering showed a Q = 0 signal [49–
54], which was interpreted in terms of intra-unit-cell loop
currents [55–57]. Although a Q = 0 phase is unable to
open a gap in the electronic density of states, the loop-
current line surprisingly follows the T ⇤-line. Note that
NMR [58, 59] and µSR [60, 61] techniques were not able
to detect such loop current. An explanation could be
the longer time scale of local probes (⇡ 10�8 � 10�6s)
compared with the INS time scale (⇡ 10�11s). At lower
temperature, a Kerr effect signal has been reported, hint-
ing at a breaking of time-reversal (TR) symmetry inside
the PG [62]. This last observation is widely discussed by
the community, but it is necessarily related to the Q = 0
loop currents [63, 64]. The inelastic neutron scattering
(INS) is also interesting for revealing collective modes of
the system. A resonance at 41meV was found in YBCO
the early days of cuprate superconductivity [65] and at
similar energies in other compounds [66–69]. It was first
believed that this collective excitation existed only in the
SC phase, where it has a typical “hour-glass” shape cen-
tered around 41 meV at Q = (⇡,⇡), as a function of
energy and wave-vector. It was later shown that the res-
onance exists as well in the PG phase above Tc, where
it is still centered around 41meV, but shows a typical
“Y”-shape with a long energy-extension at Q = (⇡,⇡)[70–
73]. Many theoretical approaches have been invoked to
describe the resonance below the SC transition [74–77].
This observation of the resonance around similar typical
energies in the SC and PG phases, however, has never re-
ceived a theoretical description, and constrains theories
of the PG to keep some reminiscence of the SC phase.
The neutron resonance was also observed in mono-layer
tetragonal compounds (Hg-1201), where the long energy
extension at Q = (⇡,⇡) persists below Tc [78].

Collective modes of a material give useful insights to
probe symmetries of an effective model. One example
is a resonance observed in the Raman A1g channel, that
appears at energies very similar to the ones where a col-
lective mode was observed by INS [79–81]. Raman scat-
tering typically probes the symmetries of the Fermi sur-
face and the presence of “two gaps” in the underdoped
regime of the cuprates was observed below Tc [82–84].
This fact was corroborated in a series of ARPES exper-
iments on BSCO from which the gap velocity v� at the
nodes was extracted and shown to differ from the Fermi
velocity. Three regions in the phase diagram were iden-
tified [85]. Starting from the over-doped region and de-
creasing the doping, v� is shown to first increase then
to reach a plateau in the underdoped region -down to
dopings of the order of 5 %, and after that it drops at
lower dopings when the system gets close to the insulat-
ing Mott-transition. The key question associated with

the PG phase is whether it is a “strong-coupling” phe-
nomenon, emerging as a direct consequence of the Mott
transition [86–90], or whether it is a a very unusual collec-
tive phenomenon which is sensitive to other peculiarities
of the physics of the cuprates, like its low dimensional-
ity, the antiferromagnetic fluctuations or its fermiology
[91–94]. In this work, we argue that the key to explain
the mystery of the PG phase resides in an underlying
emergent SU(2) symmetry, which produces SU(2) pairing
fluctuations at intermediate energy scales. These fluctu-
ations are in turn unstable toward the formation of a new
kind of excitonic state, the (RPE) state, which is respon-
sible for gapping out the Fermi surface in the anti-nodal
region of the BZ [94].

The paper is organized as follows: In section II, we
present the basics of the emergent symmetry model with
SU(2) symmetry. Section III discusses the competition
between the U(1) and SU(2) paring fluctuations in the
framework of the non linear � model. In particular, we
propose to explain the PG state as a new type of charge
order: the Resonant Peierls Excitonic (RPE) state com-
ing from the SU(2) fluctuations. We also demonstrate
that the CDW state is a secondary instability produced
by U(1) fluctuations mediated by a Leggett mode. In sec-
tion IV, we discuss the possible experimental evidence of
this phase before to conclude in section V.
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The effective theory describing the pseudo-spin symme-
try is the SO (4) [SO (4) = (SU (2) ⇥ SU (2))/Z2] non-
linear �-model which excites thermally from the SC state
to the ordered state. This model describes transitions
from one state to the other within the generic framework
of “spin-flop” transitions. In the case above one has a
pseudo spin-flop from the s-wave SC to the CDW states,
whereas the standard spin-flop transition from easy axis
to easy plane belongs to the SO(3) group [97]. The con-
cept of SU(2)-symmetry was used later on in an effec-
tive theory of the PG leading to a rotation from the d-
wave superconductor to the d-density wave state [98].
Here the generators of the symmetry are simply i⌘+, i⌘�
and ⌘z and the effective theory is the O (4) non-linear
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Note that the chemical potential couples to the generator
⌘z (or L0) and thus a finite chemical potential breaks the
SU(2) symmetry in favor of the SC state.

Another rotation, this time from the SC state towards
the AF state, was introduced early on and became fa-
mous as the SO(5) theory [97, 101, 102] . The SO(5)
theory is the one of a non-linear �-model which oper-
ates on a five state “superspin”
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FIG. 1. (Color online) Schematic phase diagram of the
SO(5) model [100]. Four types of scenarios are discussed in
Ref. [100]: 1) a direct first order transition with a bi-critical
point, 2) two second order transitions with an intermediate
coexistence regime, 3) one single second order transition ter-
minating at a QCP at zero temperature and 4) two second
order transitions with a quantum disordered phase. Although
the SO(5) symmetry is broken in scenario 1), 2) and 3) at zero
temperature, thermal fluctuations lead to a restoration below
the mean-field critical temperature TMF . Adapted from Ref.
[100].

these compounds and are close enough in energy so that
in between their respective phase transition an SO(5)-
symmetric state is found where SC and AFM are undis-
tinguishable. This phase was naturally associated with
the PG of the cuprates. A typical SO(5) non-linear �-
model was introduced to describe the effective physics of
the system, and four typical phase diagrams were derived
which are depicted in Fig. 1. The mechanism favoring
one of the states in the non-linear �-model can be un-
derstood as a spin-flop transition- also called “super spin
flop” transition for the SO(5) symmetries. As mentioned
above, one gets a very accurate picture by thinking of
the spin-flop transition of the antiferromagnetic state in a
uniform magnetic field B along the easyz-axis [103, 104].
The magnetic field creates an easy plane xy, so that at
a critical value of the field, the Néel wave vector changes
its orientation abruptly from the z-axis to the xy-plane.
Hence although in each of the above cases the symme-
tries are different, the underlying physics is as simple
as the one on a spin-flop transition. The four typical
phase diagrams show the various phases as a function of
temperature and an external parameter which breaks the
symmetry and are depicted in Fig. 1. They correspond
to the cases where: 1) a first order transition between
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FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].

symmetry in a region of the Brillouin zone, in the sense
that one can define an SU(2) algebra relating the two
[38]. This symmetry is exact on a line of the Brillouin
zone joining the hot-spots, and is broken away from it
[38]. This naturally causes the arising of the fluctuations
associated to this symmetry, which we call SU(2) fluctu-
ations [38].

The degeneracy of the various channels at the hot-
spots introduced above has been shown to be lifted by
considering the SU(2) fluctuations through the diagram
in Fig. 2B [38], similarly to what happens in the order-
by-disorder formalism, first described by Villain in the
classical context [50].

Remarkably, the choice of the starting charge modula-
tion wave vector becomes irrelevant at this point, since it
was found that the SU(2) fluctuations select three wave
vectors characterizing respectively d-wave nematic order-
ing at Q0 = (0, 0) and axial modulations with or without
C4 symmetry breaking at Q0 = (±Qx, 0) and (0,±Qy)
[38] (Fig. 2A). Both nematic and axial orders are there-
fore naturally selected by the SU(2) fluctuations.

These axial modulations have been described in a pre-
vious work by the arising of excitonic patches prolifer-
ating in some regions of the phase diagram [38]. In the
following, we give a topological interpretation of the pro-
liferation of local objects in real space, by introducing the
SU(2) order parameter, which enables us to encompass
many aspects of the phase diagram of the cuprates in an
integrated manner.

SU(2) order parameter

The order parameter that naturally emerges from the
previous discussion to describe the pseudogap is a com-
posite of � and �, which can be cast into the form:

�̂SU2 =

✓
� �

��⇤ �⇤

◆
, (3)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
SU2 = �2

R + �2
I +�2

R +�2
I . (4)

where the indices R and I denote the real and imaginary
parts of the operators, respectively. In this picture, �SU2

represents the energy scale below which the fluctuations
between the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.

At every doping x, equation (4) describes a three di-
mensional hypersphere S3 in a four-dimensional space.
The transverse fluctuations of the order parameter on
this hypersphere are naturally described by an O(4) non-
linear �-model [48]

S =

Z
d2x

X

↵=1,4

1

2

"
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(@µn↵)

2 +
X

↵

m↵n
2
↵

#
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where ↵ = 1, 4 are the four-component vector subject
to the constraint n

2 = 1, with n1,2 = �I ,�R, n3,4 =
�I ,�R, where � = �/�SU2, � = �/�SU2 and the sign
of the masses m↵ depends on the presence or absence
of an applied magnetic field. The amplitude modes, or
massive modes, can be safely neglected since the energy
di↵erence between the charge and superconducting states
is much smaller than both their energies.

In the specific context of the S3 sphere, no topological
defect is generated, since a careful examination of the
corresponding homotopy class gives ⇡2

�
S3

�
= 0 [51]. In

the following, we discuss the case where one degree of
freedom is lost, allowing for topological defects to appear.

Topological defects

We now argue that, as the temperature is lowered,
the phase of the charge modulations is frozen in some
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of some of the most fascinating phenomena in

condensed matter physics. Here we argue that

skyrmions in the pseudo-spin space related to an

emerging SU(2) symmetry enlighten many myste-

rious properties of the pseudogap phase in under-

doped cuprates. We detail the role of the SU(2)

symmetry in controlling the phase diagram of the

cuprates, in particular how a cascade of phase

transitions explains the arising of the pseudogap,

superconducting and charge modulation phases

seen at low temperature. We specify the struc-

ture of the charge modulations inside the vor-

tex core below Tc, as well as in a wide temper-

ature region above Tc, which is a signature of the

skyrmion topological structure. We argue that

the underlying SU(2) symmetry is the main struc-

ture controlling the emergent complexity of exci-

tations at the pseudogap scale T ⇤
. The theory

yields a gapping of a large part of the anti-nodal

region of the Brillouin zone, along with q = 0
phase transitions, of both nematic and loop cur-

rents characters.

The pseudo-gap (PG) phase in the under-doped region
of cuprate superconductors remains one of the most mys-
terious known states of matter. First observed as a de-
pression in the Knight shift of nuclear magnetic resonance
(NMR) [1–3], it was soon established that, for a region
of intermediate dopings around 0.08 < x < 0.20, part
of the Fermi surface was gapped in a region close to the
(0,⇡) and (⇡, 0) points of the Brillouin zone, called anti-
nodal region because of its remoteness from the point
were the d-wave superconducting gap changes sign on
the (0, 0) � (⇡,⇡) segment of the Brillouin zone. In this
anti-nodal region, the Fermi surface was found to be
“wiped out”, and only some lines of massless quasiparti-
cles known as Fermi arcs to be left out [4–9].

This puzzling situation became more complex with the
observation of a reconstruction of the Fermi surface by
quantum oscillation and other transport measurements
in the same doping region [10–17]. This was attributed
to the presence of incipient charge modulations with in-
commensurate wave vectors developing along the crys-
tallographic axes: Qx,Qy ' 0.3⇥ (2⇡/a), where a is the
lattice spacing in a tetragonal structure, detected by X-
ray scattering [18–30]. In real space, patches of charge
modulation of a size of the order of twenty lattice sites
have been observed at low temperatures (T ⇠ 4 K) using
both scanning tunneling microscopy (STM) [31–34] and
nuclear magnetic resonance (NMR) [35] measurements.

FIG. 1: In the some regions of real space, the SU(2) order
parameter is constrained to a two-dimensional hemisphere,
where the vertical axis corresponds to a charge order param-
eter, and the horizontal plane to the superconducting order
parameter. This leads to the proliferation of merons (or half-
skyrmions) in meron-antimeron pairs. Note that in the center
of such a meron or antimeron stands a vector with no super-
conducting component, and a maximal charge component.

These take the form of oscillations of the charge density
on the copper oxide planes of a frequency comparable to
twice the lattice spacing. The amplitude of these oscil-
lations decreases away from its centerpoint in real space
and disappears around ten lattice lengths away from it.

Charge modulations were observed at the core of
the superconducting vortices, below the superconducting
transition temperature (Tc). When voltage bias is in-
creased, these modulations persist until the applied volt-
age reaches the energy scale corresponding to the forma-
tion of the pseudogap: �PG [36, 37].

Below the pseudogap onset temperature T ⇤, loop cur-
rents have been detected [39–41], and the areas exhibit-
ing charge modulations coexist with zones with long-
range nematic order [42, 43], reminiscent of the vicin-
ity of a smectic-nematic transition. The latter are more
and more numerous compared to charge-modulated areas
when the temperature approaches T ⇤ [44]. Simultaneous
measurements of the real and reciprocal space spectral
functions however established that the opening of the
pseudogap is correlated with the presence of charge mod-
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have been observed at low temperatures (T ⇠ 4 K) using
both scanning tunneling microscopy (STM) [31–34] and
nuclear magnetic resonance (NMR) [35] measurements.

FIG. 1: In the some regions of real space, the SU(2) order
parameter is constrained to a two-dimensional hemisphere,
where the vertical axis corresponds to a charge order param-
eter, and the horizontal plane to the superconducting order
parameter. This leads to the proliferation of merons (or half-
skyrmions) in meron-antimeron pairs. Note that in the center
of such a meron or antimeron stands a vector with no super-
conducting component, and a maximal charge component.

These take the form of oscillations of the charge density
on the copper oxide planes of a frequency comparable to
twice the lattice spacing. The amplitude of these oscil-
lations decreases away from its centerpoint in real space
and disappears around ten lattice lengths away from it.

Charge modulations were observed at the core of
the superconducting vortices, below the superconducting
transition temperature (Tc). When voltage bias is in-
creased, these modulations persist until the applied volt-
age reaches the energy scale corresponding to the forma-
tion of the pseudogap: �PG [36, 37].

Below the pseudogap onset temperature T ⇤, loop cur-
rents have been detected [39–41], and the areas exhibit-
ing charge modulations coexist with zones with long-
range nematic order [42, 43], reminiscent of the vicin-
ity of a smectic-nematic transition. The latter are more
and more numerous compared to charge-modulated areas
when the temperature approaches T ⇤ [44]. Simultaneous
measurements of the real and reciprocal space spectral
functions however established that the opening of the
pseudogap is correlated with the presence of charge mod-
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