10 PetaWatt Laser System for Extreme Light Physics

S. RICAUD, O. CHALUS, C. RADIER, G. MATRAS, V. LEROUX, C. RICHARD, F. LUREAU, A. BALEANU, R. BANICI, A. GRADINARIU, C. CALDARARU, C. CAPITEANU, R. DABU, D. URSESCU, I. DANCUS, C. UR

ELI NP - EXTREME LIGHT INFRASTRUCTURE NUCLEAR PHYSICS ROMANIA

Large Instruments

High power laser system : Laser system 2x10 PW

 High intensity gamma beam system

Building (2013-2016) 33 000 m²

CIVIL

Experiment

• 8 experimental rooms

gamma-laser

Laboratories

for gamma, laser and

.

ELI NP - INFRASTRUCTURE

CIVIL

SYSTEM BREAKDOWN STRUCTURE

THALES >

ELANCOURT

HIGH CONTRAST FRONT-END

From oscillator supplier

CIVIL

ELANCOURT

Normalized irradiance (a.u.)

EXPERIMENTAL RESULTS

OPCPA

- Energy > 10 mJ
- Pulse duration ~ 20 ps
- Bandwidth FWHM > 75 nm (FT < 20 fs)</p>
- > Repetition rate : 10 Hz
- > Short term stability < 1 % rms over 500 shots.

CONTRAST RESULTS

CIVIL

Contrast improvement by 7 order of magnitude:

· 4 order thanks to XPW

POWER AMPLIFIERS CHAIN BREAKDOWN STRUCTURE

CIVIL DEFENCE & SECURITY

ELANCOURT

AMPLIFIER 3.2 DETAILED CHARACTERISTICS

- Multipass amplifier in bow-tie configuration :
 - Input fluency close to Ti:Sa fluency of saturation : 0,7 J/cm².
 - ⇒ 3 passes to reach expected specifications.
 - ⇒ Amplifier in saturation regime.
 - o Pumped by 6 ATLAS 100 on both side of the Ti:Sa crystal : ~ 600 J.
 - Thermal focal length ~ 10 km = thermal load is not an issue.
 - Transverse Lasing Threshold => «Perfect» index matching and pump delaying required.

AMPLIFIER OUTPUT

Beam line 1: 340 J

Beam line 2: 327 J

ELANCOURT

.

Long term energy stability over 90 minutes at 300J

- average energy = 300J
- energy stabilty < 2 % rms

UNIQUE OPTICAL COMPONENTS WORLDWIDE FOR ELI NP

Diffractive optical gratings for pulse compression up to 1 meter size Manufacturer HORIBA France

Grating size : 1015 x 575 mm²

Gratings integrated in the vacuum vessel

9 gratings manufactured

DIAGNOSTIC BENCH – 10 PW

COMPRESSOR OUTPUT - BEAM LINE 2

(MEASUREMENTS AT FULL APERTURE WITH ENERGY ATTENUATED BEFORE COMPRESSOR)

Pulse compression 21.7 fs

 Compressor efficiency 74 % / Amplifier output = 327 J

Picosecond contrast > 10¹³:1 before -200 ps

* : measurements made at 1Hz 22 J and 1shot/Min 320 J

Measured in partnership with

Dr. Daniel Cardenas Dr. Hans Koop

ELANCOURT

ELI NP - 10 PW BEAM LINES CHARACTERISATION – SPATIAL PARAMETERS

Wavefront and beam pointing stability

- Strehl ratio > 0,8 with deformable mirror
- Beam pointing stability < 1,2 µrad rms over 100 minutes</p>

D=450mm FWHM / reduction factor 180x

ELI NP - EXPERIMENTAL AREAS LASER MATTER INTERACTION

ELANCOURT

ELI NP - LASER BEAM TRANSPORT SYSTEM

Mirrors with motorization stages and monitoring of the positions

ELI NP - LBTS TEST PURPOSE

- Full power beam propagation through LBTS
- Beam blocked with a dedicated dump

CIVIL

ELI NP - LBTS TEST CONFIGURATION – STEP 1

HPLS laser running at full energy attenuated before compressor for beam profile analysis after propagation through the LBTS and transmission efficiency

ELI NP - LBTS TEST CONFIGURATION - STEP 2

- Beam dump installation replacing the diagnostic bench
- HPLS running at full energy/full power sent through the compressor and the LBTS

 Several shots at 3PW, 7PW and 10 PW (energy/power increase by turning on pump laser on the last amplifiers

ELI NP - LBTS TEST CONFIGURATION – STEP 3

- Verification of transmission efficiency
- Visual inspection of optical components within HPLS compressor and LBTS

No losses of efficiency (~ 60%) and no damages observed

COMPRESSOR OUTPUT - BEAM LINE 2

Calculated peak power = 10,2PW (in the main pulse)

ELI NP - ELI A EUROPEAN PROJECT

Delivery of set of optics for focusing the 10PW beams

Sphere – LFM Long Focal Length Mirrors

Square Spherical Mirror

ELI NP SYSTEM

Thales joined the Extreme Light Infrastructure for Nuclear Physics (**ELI-NP**) program in 2013 to develop the High Power Laser System (HPLS), the **most powerful system of its kind in the world**.

This laser will support research in nuclear physics and help advance human understanding of the physics of matter

- **Operating** the system from laser preparation to experiences management (beam available from 9am to 6pm)
- Thales intervene by
- **Training** ELI NP team regarding our dedicated program launched in 2019 for our users
- Maintaining the system with preventive and corrective maintenance

ELI NP - FROM LABVIEW HMI TO FULLY ERGONOMIC SUPERVISON

SYSTEM CONTROL

High number of equipment : not easy to control by one person

SYSTEM DETAILED CHARACTERISTICS

Full supervision software coupled with internal diagnostics

ELI NP - CONTROL ROOM

Dedicated Supervision software solution developed by Thales to start, operate, monitor and diagnose Thales systems and subsystems

ELANCOURT

Beamlines commissioning

100TW COMMISSIONING

Max Energy:		< 2.5 J
Pulse duration:		~ 25 fs
Central wavelength		~ 810 nm
Beam diameter:		~ 54 mm
Laser pointing fluctuation:		∼ ±7 µrad
Parabolic mirror:	1.5 m focal length (F# ~28)	
Spot size diameter:	~ 22±2 µn	n at FWHM
Encircled energy	~ 75% @ 1/e ²	

The laser spot is measured at full power, with attenuation wedges

Laser pointing stability representing the laser far-field horizontal and vertical pointing fluctuation as function of time. The rm.s. of the fluctuations is 47 μ rad.

Laser energy drift J

Stability of the laser pulse energy as function of time. The corresponding power is represented on the right axis.

ELANCOURT

100TW COMMISSIONING

Experimental setup for LWFA (E4 Area)

Diagnostics (all at full power shot)

- Electron spectrometer (~0.7 Tesla magnet)

nuclear physics

ELANCOURT

- Laser FarFiled and NearField monitoring
- Optical probing of gas jet
- Top view of gas jet self-emission
- Electron beam pointing/divergence
- Optical spectrometer for laser pulse
- Pulse duration

Target: 2mm dia. gas-jet Gas: He, He + 2%N Electron density scan in the range of 10¹⁸ e/cm³

100TW COMMISSIONING

Gas: He + 2% N2

Typical electron continuum spectrum obtained with gas admixture of He and 2% N2 : a) Lanex image; b) analyzed energy spectrum.

Gas: He

CIVIL

Typical electron peak spectrum obtained with pure He gas: a) Lanex image; b) analyzed energy spectrum.

Electron cut-off energy scan

Vertical scan for several distances from the nozzle taken to map the trend for the maximum electron energy at a fixed gas pressure of 20 bar.

Electron cut-off energy scan

Electron maximum energy versus laser focal position from the center of the gas jet. The scan was done at 2.4 mm above the nozzle (i.e., $n_e \sim 7 \times 10^{18}$ cm⁻³).

ELANCOURT

ELANCOURT

1PW COMMISSIONING

Phase 1

Phase 2

- TNSA proton acceleration, commissioning experiment to assess the HPLS 1 PW performance and test diagnostics, following the ELI-NP ISAB plan
- Improved ion acceleration (TNSA/RPA) in 2 steps, by using a deformable mirror before the focusing mirror and a single plasma mirror, in preparation for the 10 PW experiments.
 Target wheel: up to 32 targets

LWFA commissioning experiment at 1 PW by using a gas cell, step towards the10 PW experiments.

10 PW COMMISSIONING (APPROVED BY ISAB)

E1 experimental area

- Laser beam: 2 x 10 PW (~250 J, ~25 fs, 810nm, 1/60 Hz)
- > OAP mirror: 2 x F/2.7 (laser beam diameter ~ 55cm)
- Laser intensity expected: ~ sub-10²³ W/cm²
- Laser-driven ion acceleration / accelerating protons above 200 MeV
- > Y-flash generation / Showing the fast scaling growth of gamma yield..

E6 experimental area

CIVII

- Laser beam: 2 x 10 PW (~250 J, ~25 fs, 810nm, 1/60 Hz)
- > One short, one long focal / OAP mirror: ~ F/52 for 10 PW and ~ F/150 for 1 PW
- Laser intensity expected : up tp a few10²⁰ W/cm²
- > LWFA / accelerating electrons in the GeV energy range

E4 Experiment: laser characteristics

100 TW Laser nominal parameters

Max Energy:~ 2.5 J (max, after compressor)Pulse duration:~ 25 fsBeam diameter:~ 56 mmLaser pointing fluctuation:~ 30 µrad

100 TW Laser experimental parameters

Max Energy: ~ 1.9 J (max on gas target) Pulse duration: ~ 25 fs Parabolic mirror: 1500 mm focal length (F# ~28) Spot size diameter: ~ 18 µm at FWHM Encircled energy : ~ 70 - 75% @ 1/e²

Laser focal spot

The laser spot is measured at full power

Laser focal spot profiles

E4 Experiment: laser statistic

100 TW Laser energy variation

Experimental data for He + 2% N

On-axis diagnostics: electron beam profile

5 mrad <u>5 mrad</u> Be window

Electron beam profile improvement with further optimization Electron beam divergence ~ 5 mrad, and pointing ~ \pm 5 mrad

Optical probe

Shadowgraphy

Top view: scattered radiation

ELANCOURT

Experimental data for He and He + 2%N

Typical electron spectra obtained with gas density of ~ 3.5×10^{18} atom/cm³

ELI NP - ELI A EUROPEAN PROJECT

ELI – Extreme Light Infrastructure

850 millions euros

from ERDF (European Regional Development Fund) raised to develop four ELI laboratories

GERARD MOUROU & DONA STRICKLAND Inventor of the CPA with Dona Strickland and both Winners of the 2018 Nobel Prize

CIVIL

ELI NP - LASER ROOM

Laser room 2400 m²

- Clean room: ISO7
- Temperature regulation: 22°C +/- 0.5°C
- Humidity regulation: [35%-50%]
- Floor stability: VC-E (3 µm/s) according to the ASHRAE criteria
- Flatness default lower than 9 mm

LASER ROOM

UTILITY ROOM

MANNE-

UTILITY ROOM

100

ELI NP - HPLS ARCHITECTURE : TI:SA LASER, DOUBLE CPA CONFIGURATION

·····

