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Chaos and hydrodynamics



® Transport from the Boltzmann equation: a dilute gas

Maxwell

1

n = gmpém.f-p- (V%)



® Transport from the Boltzmann equation

Maxwell
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Boltzmann is based on successive 2-2 collisions
This microscopic picture is also what encodes chaotic trajectories



® A very special feature of dilute gases

van Zon, van Beijeren, Dellago
Maxwell

:_m«/ P <%1H(M)2>g Wiel) ST s

0'2 to—9 Tave gm.f.p.

® Transport follows from the Boltzmann equation

1.0 = [ (R (p.K) ~ B (p,10) f (k.1

k



® A very special feature of dilute gases

Maxwell

:_m\/i A=

02 _to—2

van Zon, van Beijeren, Dellago

T _1 A—»Q ~ <v1?el> ~ 2
(3 (A2 = Y0 o 5 ()
m.f.p.

® Can we understand chaos from a kinetic-like equation?

Ad hoc: clock equation

k—2
d
I =—f+ F2 4 2 e ;_% fo

I

van Zon, van Beijeren,
Dorfman;
Saarloos
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® Scrambling rate/Chaos is a microscopic “particle” property

® Transport diffusion is a macroscopic collective property



® A generic system

particle picture

applies

hydro applies
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® Special case: weakly coupled dilute gas

particle picture

applies hydro applies

<

>
| |
I I

t =20 thydro—onset tmfp T = o

_ _mﬁ

02_to—2

Implies hydro/Boltzmann/kinetic theory should also know about chaos!



scrambling=chaos=ergodicity is very different from local therm.=equilibration

There is a connection:
In classical thermalization chaos is the source of ergodicity
In special situations (weakly coupled dilute gas) they are set by the same physics



—Quantdr chaos from an out-of-time correlation function
Semi-classical



e A QFT way to detect chaos

® Choose

Chaos : q(t) ~ 6q(0)e~! C(t) ~ h*e*M with A = Arya



® Semi-classical computation of conductivity in weak disorder

® Semiclassical regime A\ < a

Larkin, Ovchinnikov



® Semi-classical computation of conductivity in weak disorder

AN
N
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® Semiclassical regime A\ < a variation on Sinai billiards

Larkin, Ovchinnikov

C(t) = —([W (), VO)'[W (), V(0)]) ~ h?e



® Semi-classical computation of conductivity in weak disorder

® Semiclassical regime A\ < a

® Nevertheless: quantum physics takes over when Larkin, Ovchinnikov

C(t) = —([W (@), VO W (), V(O)) ~ h2e2M 1

Ehrenfest time:

t 11 !
r — Y =
Eh b\ 7



® Careful:
In the quantum regime chaotic behavior is hard.

i.e. most quantum analogues of classical systems with chaos do
not exhibit exponential growth in this OTOC correlator.

e.g. Grozdanov, Kukuljan, Prosen

= Need a small parameter Bertini. Kos, Prosen
® |n semi-classical systems A C(t) ~ h2e2M
" |n holography/in SYK: 1 C(t) ~ iew

N N2

Semi-classical single-trace lumps: large /N classicalization/
master field



A bound on chaos = a bound on diffusion?



® A bound on chaos Maldacena, Shenker, Stanford

= Related regulated function:

P(t) = WDV OW(tyV(0)y) ~ 1= g
\/y - Z
= Not time ordered: but  [TFD) =Y e 2Fn)|n) T

Answer depends
on regulating.

F(t) = Z(TFD’(W(t)V(()) @ 1)(1o W (t)V(0))|TFD) This one encodes

chaos correctly

n

Romero-Bermudez,

F(t) ~ Y WV ) (W (t)V(0)) Schalm,

Scopelliti

= Analyticity in QFT demands
A < 27T



Scrambling and diffusion

® A refined version

C(t,x) = —([W(t,2), V(O [W(t, z), V(0)]) ~ h?eStmvrrt
gives you a “‘scrambling” velocity
VLR = 2\
= First pioneered in |+| dimension systems

= Lieb-Robinson proved:

The velocity v, R is an absolute upper bound on information
spreading.

" ULR acts as en emergent lightcone.

® |dea:also in other systems this butterfly/Lieb-Robinson velocity is the
maximum “speed” at which information spreads



Assumption:

. . . . . Planckian
e Diffusion is characterized by a velocity dissipation _ _ 11
v? v? / T A

D~ — ~ — Maximal

T A Chaos

® |ong sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — A
5 5 Hartnoll
V: U Hartman, Hartnoll, Mahajan
D> ¢ or D < < Lucas |
—_— —_— T 9

® (Unstated) Hypothesis: U], R provides this fundamental velocity



® Semi-classical chaos in weakly coupled systems

66 o o . 2 .
Surprisingly a relation of the form L) ~ v] pTshows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.



® Semi-classical chaos in weakly coupled systems

¢ o o . 2 .
Surprisingly a relation of the form L) ~ v] pTshows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.

From the point of view what you compute it is a surprise



Scrambling in weakly coupled QFT is classical dilute gas

® Object of interest for A\, vrr

C(t) = —([W (1), VO W (1), V(0)]) ~ e i)

growing mode

e Object of interest for D = g
, 1
N = uljlg%) EIm(TW(w), Try(—w))R

Boltzmann transport only supports decaying modes:
viscosity set by smallest decay mode — relaxation time approximation



® Transport ® Scrambling/Chaos
GR(t) ~ Pebylady (270", @“®ca])g  C(t) ~ (2, 2°][Dup, Ped])

Schwinger-Keldysh contour OTOC contour




® Transport ® Scrambling/Chaos
GR(t) ~ Pebylady (270", @“®ca])g  C(t) ~ (2, 2°][Dup, Ped])

Schwinger-Keldysh contour OTOC contour

= |n free field theory

C(t) ~ Gr(t) = —2GR"(t) + O(\)

. . Stanford, Jeon
® |n perturbation theory Transport and Scrambling sum the same

ladder diagrams

O+D+AD++

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T is denoted by the crossed dots and black dots are the vertices with the coupling constant A.



This Bethe-Salpeter egn
Schwinger Keldysh Cont is the QFT version of the
Boltzmann equation

O+ D+ D+

~ m 0(pg — Ep) 1+/ d*/
By —iw + 21, (27)4

R(t - p>é<£\k>} |

G(plk) = 0(pg — E2)f(p|k)

{1 n /I(R(El —Ey,1—p)+ R(E + Ep,1— p))f(uk)} .



This Bethe-Salpeter egn
Schwinger Keldysh vs OTOC is the QFT version of the
Boltzmann equation

. SctheId©+@+@ T

~ m 0(pg — E) d*e ~

G(plk) = B, it 21313 [1 +/ (27r)4R(€ —p)G(ﬁk)} .
e OTOC
~ o 0(pg — E2) d*¢ sinh(Bp°/2) ~
G(plk) = FEy —iw + 21£)p {1 +,/ (27)4 sinh (560 /2) R(f —p)g(ﬁ\k)} '
® Ansatz

G(plk) = 8(p§ — Ep)f(plk)

(i 20 f(pIR) = [ S S (R0 — ROkl

1




This Bethe-Salpeter egn

Schwinger Keldysh vs OTOC is the QFT version of the

Boltzmann equation

. SctheId©+@+@ T

G(plk) =

m 0(pg —

e OTOC
By —iw + 21,
® Ansatz

d*/

E, iw+fl£2): {1+/(27T)4R(€ P)G W“)}

e
{“/%4 |

G(plk) = 5(p

8 )

/ sinh(8p”/2)

sinh (540 /2)
_ J

— E2)f(p|k)

(R(l4) — R(1-)) f(k|k)




Grozdanov, Schalm, Scopelliti,
® Transport ® Scrambling/Chaos

GRr(t) ~ PaDyquqy ([P OY, @“Dyl)s  C(t) ~ ([@, D[ @yp, Pcd]) 5

Schwinger-Keldysh contour OTOC contour
O+DO+ D+

Boltzmann equation (net density) Kinetic equation (gross collisions)
if( t) L (Rm( k) o Rout( k))f(k t) if(p t) _ / €(p) (Rm(p k) +@t(p k))f(k)
dt P, — P, P, ) dt ? E(k) ’ ’

k k
purely relaxational front propagation into unstable states
f(p,t) ~eM with A <0 f(p,t) ~ e with A < Apaz > 0

Saarloos, vBeijeren,
Aleiner, Faoro, loffe
Gu, Kitaev

«: Rout(p,k) = R*(p,k) — 26(p — k)R (k k)



® Chaos follows from kinetic equation for gross energy exchange

< f(p,1) = / P (R (p.1) + R™(p.k) — 20(p — k)R (k. )) F(k

® This is derived as opposed to ad hoc clock model

k—2
d
I = [+ F2 o+ 2fk s ;_% fo

Qualitatively physics is similar (unstable front dynamics)



blue: eigenvalues \ for SchwKeld/Boltzmann

red: eigenvalues A for OTOC/Energy-exchange
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= This explicitly shows in weakly coupled dilute QFT scrambling
and diffusion are set by the same dynamics --- even though they
are not identical.

—m\/ A = ! <11n(A?7)2> ~ (Vrel) ~ p\/ (V%) 09 t0-2

0-2 to—2 Tave 2 Em.f.p.



® Chaos follows from kinetic equation for gross (energy) exchange

d €\p mn ou ou,
0.0 = [ SR (R (k) + B (k) = 20(p — R (k. K) (K
dt e(k)
k
® We have now shown that this holds in general:
= For bosonic and fermionic systems (Gross-Neveu model)

= Models near a QCP approached from perturbative regime
(Wilson-Fisher O(N') model)

= Shorter derivation using 2Pl formalism

® |n all cases off-shell Bethe-Salpeter contains both chaos and
Boltzmann transport.

= One solution ansatz: Boltzmann. Complement: Chaos
= pQFT analogue of Maxwell relation: weakly coupled dilute gas.

= Pole-skipping....

Grozdanoy, Schalm, Scopelliti,
arXiv:22summer.xxxx



Ultra strongly correlated systems are similar to dilute gases



® Semi-classical chaos in weakly coupled systems

66 o o . 2 .
Surprisingly a relation of the form L) ~ v] pTshows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.



Assumption:

: s Plancki
® |s scrambling rate related to diffusion!? disas?:at';nn 1 1
T Y — Y —
~N — A —= Maximal

T A Chaos



Holography for Strongly coupled systems

works best when d.o.f. are matrices ®;; 4,5 =1... N with N > 1

semi-classical limit — — 0

N
\\\ R('i_ltl ki
minkowski
\
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Zorr(J) = expiSOs " (o(doaas = J))

Quantum numbers
Finite Temp
Finite Density
Conserved Current
Energy dynamics

Quantum numbers
AdS Black hole
Extremal AdS black hole

Gauge field
Gravity dynamics




® |s scrambling rate related to diffusion!?

v U%R

~N — Y —

T A



OTOC in holography

Roberts, Stanford, Susskind
® Gravitational shockwave calculation in AdS BH computes OTOC

F(t) = (TFD|(W(t)V(0) ® 1)(1e W (t)V(0))|TF D)

W(t)

£




Energy-Momentum transport is computed from the spectrum of
linearized metric perturbations around the black hole (quasi-
normal-modes).

ds? = Gupdxt dx”

__ _Black Hole
g,lﬂ/ o g,ul/ h/,ul/

Obtain and Solve Uh,,,, = 0

Re o'l
]
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Blake;

® |s scrambling rate related to diffusion!? Davison, Fu, Georges, Gu,
Jensen, Sachdev.

For “relevant diffusion” (=irrelevant suscep) in holographic theories

A, 27T

D =

.similar results for massive gravity (mean-field disorder), but fails in general

Lucas, Steinberg;

Gu, Lucas, Qi
® Refinement: charged systems with mean-field disorder
= Thermal diffusivity set by horizon properties only
Dp = U/ST Policastro, Son, Starinets
2
D ~ YLR Blake, Davison, Sachdev

:22—2 )\L



® From a physics perspective these are puzzling results:

Zorr(J) = expiSOs " (o(doaas = J))

= Quantum numbers
AdS Black hole
Extremal AdS black hole

Gauge field
Gravity dynamics

Quantum numbers
Finite Temp
Finite Density
Conserved Current
Energy dynamics



® Shock waves are sound
® General metric
dsa, o = A(UV)dUAV + B(UV)g;dx'dz? — A(U,V)h(U,Z)dUdU

= Shock wave equation

B/
6(U) (Agh d— h> = 321 EAS(Z2)5(U)
= Sound perturbation from AdS/CFT
. B . B __ 0 N
A h(U, Z) — Qth(U, r) —d 1 U%h(U, r) =0

for h(U,x) ~ 6(U)h(Z) reduces to shock



OTOC Shockwave = Sound at imaginary values of freq. and momentum
)\2
w = 2mil = 1)\ : ]{'2 — —Iu2 — —67-(2T2 —
UB
Hydrodynamical sound (known up to 3rd order analytically)

1 ;
EY=+——k— — K+ ...
w(k) V3 6T *

—1/4}t




OTOC Shockwave = Sound at imaginary values of freq. and momentum
)\2
w = 2mil = 1)\ : ]{'2 — —Iu2 — —67-(2T2 —
UB
Hydrodynamical sound (known up to 3rd order analytically)

1 l
k)=+—k— —k>+... _skipping:
w(k) 7 6T + Pole-skipping:

QNM mode residue
vanishes precisely at

0 = vpq w = 2mil’

Also happens in SYK.
[Gu, Qi, Stanford]
Direct consequence of the
existence of the shockwave
solution.

[Blake, Lee, Liu]
Beautiful GR story:

. u/{i‘wT/x #/2; non-unique BC
S |
!

—1/4+ at the horizon

[Blake, Davison, Grozdanoy, Liu]



Physical diffusion
is given by the
behavior near

w1

by now verified in
many models

[Blake, Davison,
Grozdanov,Liu]

Im 1o

_1/4

m:qu

Pole-skipping:

QNM mode residue
vanishes precisely at

w = 2m T’

Also happens in SYK.
[Gu, Qi, Stanford]
Direct consequence of the
existence of the shockwave
solution.

[Blake, Lee, Liu]
Beautiful GR story:
non-unique BC
at the horizon

[Blake, Davison, Grozdanoy, Liu]



® A generic system

particle picture

applies

hydro applies

<
|

0 tmfp

|
thydro—onset



(conformal /long range entangled)

ultra strongly

hydro applies

coupled physics

u
t — O tmfp
thydro—onset



From microscopic scrambling to macroscopic scrambling

In classical physics microscopic scrambling is responsible for macroscopic ergodicity.
What about quantum physics?



® AdS-CFT: Can model black hole evaporation (quenched cooling)
with conventional quantum systems.




singularity  j*

® A black hole quantum quench

Q
fﬁ—;oing I+ P
radiation
negative energg,‘-‘a.,..‘,u
shockwave
Almheiri;
Almbheiri, Engelhardt, Marolf, Maxfield;
A careful computation reproduces Penington

the Page curve.



® AdS-CFT: Can model black hole evaporation (quenched cooling)
with conventional quantum systems.

= We will use two coupled SYK models:

Sachdev-Ye-Kitaev model: N complex/real fermions with ¢ = 2p-point interactions

S N | t |
H—lezz.--zpjljg--dpczlcz -2 Gy €1 Cha - - - Gy

with random disorder averaged interactions

(Tivin i o T s 1) = <p')2J25 5.
11%2...%pJ1J2---Jp 1’11’2...%]135...31’) N2p—1 112y - Y519]




® AdS-CFT: Can model black hole evaporation (quenched cooling)
with conventional quantum systems.

= We will use two coupled SYK models:

Sachdev-Ye-Kitaev model: N complex/real fermions with ¢ = 2p-point interactions

= This has a quantum spin liquid (long range entangled strongly
correlated) ground state, which is exactly solvable in the large
NN limit, and dual to an AdS2 gravity theory.




Zhang: 1909.10637
® Quenched cooling in two coupled SYK quantum dots




Zhang: 1909.10637
® Quenched cooling in two coupled SYK quantum dots

Re G,’(t)

(a) i (b) &
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FIG. 2. The result of quench dynamics for n = 3 with
V/J = 06, Ty = 0.2J and T, = 1.5Ty;. (a). The real
part of G5 (t + X,t — &) as a function of ¢, for different
t. (b). F(w,t) = Gy, x(w,t)/ (Gx,r(w,t) — Gy, a(w,t)) for
different time t. (c). The evolution of effective temperature
T'(t). The red line shows the result of exponential fitting of
the late-time behavior. The green line represents the distance
between F'(w) and 1 — 2np(w,T(t)) defined by (38), we take
the cutoff A by requiring F(A) = 0.8. (d). The evolution of
energy F(t) determined by (39). The green line is a fit for
the short-time linear increase of energy and the red line is a

late-time exponential fit for the relaxation of energy.



Maldacena, Milekhin: 1912.03276

® Follow-ups also show Almbheiri, Milekhin, Swingle: 1912.04912

counterintuitive early energy rise in hot system.

ta @ @)
> "\ Hot Cold
2 system: Bath
5 (3)
A
—_— (4)

Time

Figure 1: Typical behavior of system energy as a function of time for a large bath at lower
temperature. We distinguish four dynamical regimes, labeled (1), (2), (3), and (4), which are
discussed in detail in the text. Roughly they correspond to the early time energy rise, the
subsequent turnover to energy loss, a sustained period of energy loss, and the final approach
to global equilibrium.



Maldacena, Milekhin: 1912.03276
® Follow-ups also show Almbheiri, Milekhin, Swingle: 1912.04912

counterintuitive early energy rise in hot system.

= Almbheiri, Milenkhin, Swingle give a non-proof proof

d—QE(t)\ >0 (4
a2 !

E(t)|t=0 =0 generically>
of the energy in a hot system coupled to a cold bath with a

counter-example: two coupled two-level systems

® |t is in fact easy to show in two coupled two-level systems

d2

@E(t)\t:o ~ (e_BBAEB _ e—BAAEA)

= This counterintuitive rise must be due to some special effect.



Thermal Quench in |+| CFTs Bernard, Doyon

steady state with Jpeqr # 0 Th

(J) = 15 (T2 = T7)

= Quantum version of hydrodynamic Riemann problem where
hydrodynamic (classical) intuition is exact. Bhaseen, Doyon, Lucas, KS
(free field representation of |+| CFTs)

® AdS Gravity dual is known. No “rise in energy” in the hot bath.



: T : Cheipesh, Gnezdilov,
® Exact diagonalization in Majorana SYK

Ohanesjan, Pavloy, KS
He (t) =H1+Hy+6 (t) Vi ¥ix; e (T) =Ha+H+6 (1) Viy Vix;
N1=1e, q1=4, j]_:l ; N2=10, q2=4, J2=1 ; 1=0.1 N1=1e, q1=4) J1=1 5 N2=1e, q2=4, \72=1 5 V=0.1
7,=0.5; T,=0.1 /a-m 11=0.5, 15=0.1
7 0.005 7

/n{; T SV
<= g
A ~H e

=000 7 -0.005 i

_0.015O ‘ 20 40 60 80 100 0 ; J‘ ‘ g é‘g 10

t

E, =Tr(Hyp), Ey=Tr(H2p), Eint =Tr(Hinep), Ef =Tr((H1+ Ha+ Hint)p)



® Exact diagonalization in Majorana SYK

He (t) =H1+H2+6 (T) Vi ¥rix;
N1=10, q1=4, J1=1 ; N=10, Qq,=4, J,=1 ; Vv=0.1
T1=O.5; T2=O.1

0.010 ———+——— ‘

0.005 -

0.000

AE/N

-0.005 -

~0.010 L L L | L L L | L L L | L L L |
0

AE/N

N1=10, q:=4, J1=1 ; N=10, q,=4, J,=1 ; V=0.1

0.002

0.001

0.000

-0.001

-0.002

-0.003

—-0.004
0

T1=0.5; T2=O.1

Subsequent decoupling
quench pumps in energy

This is related to the two-time
measurement protocol in
quantum thermodynamics
studies



Exact diagonalization in Majorana SYK

Von Neumann Entropy

He (t) =H1+H2+6 (t) Ve, £, ¥, X4, He (t) =H1+Hy+6 (t) Vg, ¢, ¥, X+,
N1=10J CI1=4: J1=1 H N2=10) Q2=4: J2=1 H v=0.1 N1=10, q1=4, j1=1 5 N2=10, q2=4, J2=1 5 v=0.1

T1=0.5; T2:0.1 T1=0.5; T2=0.1

015 —————————————— /

0.06 — -

0.04 — -

AS/N

0.00

\

20.05 T : [ i . | | |
o 2 % m % = 000 L L

t t
o AS; < AS; o AS; o AS; < AS; o AS;



Exact diagonalization in Majorana SYK

= Von Neumann Entropy

He (t) =H1+H2+6 () Vg, ¢, ¥, X5,

N1=10, qi=4, J1=1 ; N;=10, q,=4, J,=1 ;

v=0.1

He (t) =H1+Ha+6 (t) V¢, ¢, ¥, X,
N1=10, qi1=4, J1=1 ; N»=10, Qq,=4, J,=1 ; V=0.1

T1=0.5; TZIO.I T1=0.5; T2=0.1
015— — /00
: 0.06; 7
0.04; ;
% L
m L
< 0.02 — 7
0.00 L
\ 0.00
-0.05 ‘ 2 ‘ 40 % T ) p . s 8 10
t t
o AS; AS; o ASf o AS; AS, o ASf

= “Ohanesjan’s” First law

N1=10, q:=4, J1=1 ; N»=10, q,=4, J,=1 ; v=0.1
7,=0.5; Ty=0.1

0.005 T

0.000

AE/N

-0.015

-0.020 :
0

He (t) =H1+H+6 (T) Ve, ¢, Y5, X,
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-0.010

1
For t <« j S (t) — TlsVle(t)

He (t) =Hy+Hy+6 (t) V¢, ¢, ¥, X5,
N1=10, q:=4, J1=1 ; N»=10, Qq,=4, J,=1 ; Vv=0.1
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® This intrigued us greatly .... path to a universal understanding of
the behavior of

® Information Free energy improvement on thermal equilibrium
free energy cf. Deffner, Campbell

Einto(p(®)||p1,) = E(t) — ThSun(t) = F +T1D(p(t)]|pr,)

D(pallpp) = Trpalog pa — Trpalog pp

® FEasy to show

AFEy(t) = T1AS:(t) +T1D(p1(t)||pry)



® Quenched cooling of a thermal state: decoupled at time ¢

essential to make E well defined

AFq (t) = TlAsl(t) + TlD(pl(t)HpT1>

D(p1(t)||pr,) = 0 strictly true

implies the following quantum “non-equilibrium” inequality for
quenched cooling

AEL(t) > TiASyn 1 ()



AFEy(t) = T1AS:(t) +T1D(p1(t)||pry)

He (t) =H1+H+6 () Vg, ¢, ¥, X5,
N1=8, qi1=4, J1=1 ; N»=8, =4, J,=1 ; V=0.1

T1=O.5; T2=0.1

He (1) =Hy+Hp+0 (1) Ve, ¢, e, X,

N1=8, qi1=4, J1=1 ; N»=8, =4, J,=1 ; V=0.1

T1=O.5; T2=0.1

AE/N
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-6:6010 [ T
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0
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Note:

AE;(t) > Ty ASyn 1 ()



e Intuitively at low 17, ASyn1(t) >0 is dominated by/
completely determined by the growth in quantum correlations:

® This explains qualitatively the “counterintuitive rise in energy”

= But it also prompts the question:

“Can one direcly detect quantum correlations between subparts
of a quantum composite system by measuring the resulting
energy increment?”



= “Can one direcly detect quantum correlations between subparts
of a quantum composite system by measuring the resulting
energy increment?”

AEL(t) = TiASon1(t) 7

= Yes, perturbative Fermi systems with local tunneling quench

contact:
Essential Ingredient:
Hy = Z &palay, Perturbation Theory:
p
2
Hp = Zfz/?b;bp AFE ~ )\
p

ASyN1 ~ N

H(t) = Ha+ Hp + (0(t) = 0(t —t0))Van

lassuming T4 g < pa, B



= “Can one direcly detect quantum correlations between subparts
of a quantum composite system by measuring the resulting
energy increment?”

AEL(t) = TiASon1(t) 7

= Yes, perturbative Fermi systems with local tunneling quench
contact:

One of by now several ways
_ i
Ha=) &aba, to “measure”
p

SVN
Hp =) &biby
p
Vap = Ao(x)(a' (2)b(x) + b (z)a(x))
H(t)=Ha+ Hg + (0(t) — 0(t — t0))Vag Abanin, Demler; Beenakker, Emary,

Kinderman, van Velzen;
Cardy; Islam et al;
Klich, Levitov



® Quenched cooling of two thermal quantum systems

AL (t) =T1AS1(t) + ThD(p1(t)||lpy)

D(p1(t)||pr, ) = 0 strictly true
AFE1(t) > ThASyN1(1)

® This explains qualitatively the “counterintuitive rise in energy”
seen in many cases. I hough this does not automatically imply

d2

ﬁE(t”t:O > O

= When do we recover intuitive classical physics with heat flowing
from hot to cold?



Classical physics should emerge in the high temperature, perturbative
particle regime.

SYKy: N=10: Ty =05J, Tg=01J; J=1: A=0.1J
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— AFEy
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— Quantum Scrambling — Classical relaxation



® C(Classical physics should emerge in the high temperature, perturbative
particle regime.

SYKy; N=10; Tp=0.1J; A=0.1J
SYKy; N=10; Tp=0.1J; A=0.1J
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® C(Classical physics should emerge in the high temperature, perturbative
particle regime.

SYKy; N=10; Tg=0.1J: A=0.1J
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® Two SYK dots are “too quantum”. There is never a classical regime



® C(lassical physics should emerge in the high temperature,
perturbative particle regime.

= Two Ising half-lines

Non-extensive interaction energy
(Similar to perturbative fermions but for 1" > 1)

H1 — — Z Zf,;ZfH_l — ng — hZZ
Hy =~ 2172, — gX| ~ hZ]
Hint — Zla,stZ}@‘rst



Classical physics should emerge in the high temperature,

perturbative particle regime.

= Two Ising half-lines

Non-extensive interaction energy

Ising; N=6; Tp=0.1J; A=0.1J

Ising; N=6; Tp=0.1J; A=0.1J
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® C(lassical physics should emerge in the high temperature,
perturbative particle regime.

= Two Ising half-lines

Non-extensive interaction energy

[sing; N=6;g=1J; h=0.06J; A=0.1J

0.000 0.005 0.010 0.015 0.020
t

— Ty=T72:Tp=01 — Ty=80; Ty =0.1

FIG. 10. Quenched cooling in two Ising half lines. For T < T, ~ 77.845J one still observes the
counterintuitive rise in the hotter system A, but for T' > T, one transitions to a regime where

classical intuition is restored and the system cools instantaneously upon contact.



® C(lassical physics should emerge in the high temperature,
perturbative particle regime.

= Two Ising half-lines

Non-extensive interaction energy

[sing; N=6;g=1J; h=0.06J; A=0.1J
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FIG. 10. Quenched cooling in two Ising half lines. For T < T, ~ 77.845J one still observes the
counterintuitive rise in the hotter system A, but for T' > T, one transitions to a regime where

classical intuition is restored and the system cools instantaneously upon contact.



Conclusions

® From chaos in hydrodynamics to a kinetic theory for scrambling

arXiv:1710.0092|
arXiv:1804.09182
arXiv:22summer

® Scrambling and diffusion:
a priori set by different timescales

Except in a dilute gas: a kinetic theory for chaos

Except in a ultra strongly correlated system: pole skipping in hydrodynamics

® Energy dynamics, information and heat flow and the transition
from quantum to classical thermodynamics

® |n quenched cooling, a non-equilibrium first law arXiv:2011.05238
arXiv:2108.1203 |
AFE(t) =T1AS1(t) + TiD(p1(t)||pr,) arXiv:2204.1241 |

= Quantum correlation growth and energy relaxation:
a priori set by different timescales

Except in high T dilute particle limit: classical relaxation dominates



Thank you



