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Chaos and hydrodynamics



• Transport from the Boltzmann equation: a dilute gas
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• Transport from the Boltzmann equation
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Boltzmann is based on successive 2-2 collisions 
This microscopic picture is also what encodes chaotic trajectories



• A very special feature of dilute gases

• Transport follows from the Boltzmann equation
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• A very special feature of dilute gases

• Can we understand chaos from a kinetic-like equation? 
 
Ad hoc: clock equation
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FIG. 7. A plot of the Lyapunov exponents, in units of v/a, for the moving particle in a random,
dilute Lorentz gas in two dimensions (top) and three dimensions (bottom), as functions of the

density n, in units of a−d. The solid lines are the results given by kinetic theory, Eq. (90),
respectively, Eqs. (91) and (93), and the data points are the numerical results of Dellago and
Posch.

B. Formal Kinetic Theory for the Low Density Lorentz Gas

The formal theory for the KS entropy of the regular gas is easily applied to the Lorentz
gas, which is, of course, considerably simpler. Thus by following the arguments leading to
Eq. (13) for the sum of the positive Lyapunov exponents for the regular gas, we find that
the KS entropy for the equilibrium Lorentz gas is given by

∑

λi>0

λi = ad−1
∫

dx dρ d"Rdσ̂Θ(−"v · σ̂)|"v · σ̂|δ("r − "R− aσ̂)×
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the fraction of particles which have experienced     collisionskfk



• Scrambling rate/Chaos is a microscopic “particle” property 

• Transport diffusion is a macroscopic collective property



• A generic system

tmfp thydro-onsett = 0 t = 1

hydro applies

particle picture

applies



• Special case: weakly coupled dilute gas

tmfpthydro-onsett = 0 t = 1

hydro applies

particle picture

applies
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Implies hydro/Boltzmann/kinetic theory should also know about chaos!



scrambling=chaos=ergodicity local therm.=equilibrationis very different from

There is a connection: 
In classical thermalization chaos is the source of ergodicity 

In special situations (weakly coupled dilute gas) they are set by the same physics



Quantum chaos from an out-of-time correlation function
Semi-classical



• A QFT way to detect chaos 
 
 

Choose

C(t) = �h[W (t), V (0)]†[W (t), V (0)]i

W = q(t) V = p(0)

[W (t), V (0)] = [q(t), p(0)] = i~{q(t), p(0)} = i~ @q(t)
@q(0)

C(t) ⇠ ~2e2�t with � = �LyaChaos : q(t) ⇠ �q(0)e�Lt



• Semi-classical computation of conductivity in weak disorder

• Semiclassical regime � ⌧ a
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• Semi-classical computation of conductivity in weak disorder

• Semiclassical regime                 variation on Sinai billiards� ⌧ a

C(t) = �h[W (t), V (0)]†[W (t), V (0)]i

Larkin, Ovchinnikov

⇠ ~2e2�t ⇠ 1



• Semi-classical computation of conductivity in weak disorder

• Semiclassical regime

• Nevertheless: quantum physics takes over when
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• Careful:  
 
In the quantum regime chaotic behavior is hard.  
 
i.e. most quantum analogues of classical systems with chaos do 
not exhibit exponential growth in this OTOC correlator. 

Need a small parameter

In semi-classical systems 

In holography/in SYK:

Semi-classical single-trace lumps: large      classicalization/
master field

N

~ C(t) ⇠ ~2e2�t

C(t) ⇠ 1

N2
e2�t

1

N

e.g. Grozdanov, Kukuljan, Prosen
Bertini, Kos, Prosen



A bound on chaos = a bound on diffusion?



• A bound on chaos

Related regulated function:  

Not time ordered: but

Analyticity in QFT demands

Maldacena, Shenker, Stanford
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Careful:
Answer depends 
on regulating.

This one encodes 
chaos correctly
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Schalm,

Scopelliti



vLR

vLR

Scrambling and diffusion

• A refined version 
 
 
 
gives you a “scrambling” velocity 
 

First pioneered in 1+1 dimension systems

Lieb-Robinson proved: 
 
The velocity          is an absolute upper bound on information 
spreading.

         acts as en emergent lightcone.

• Idea: also in other systems this butterfly/Lieb-Robinson velocity is the 
maximum “speed” at which information spreads

C(t, x) = �h[W (t, x), V (0)]†[W (t, x), V (0)]i ⇠ ~2e⇠(x�vLRt)

⇠vLR = 2�



• Diffusion is characterized by a velocity

• Long sought goal: a fundamental quantum bound on diffusion

• (Unstated) Hypothesis:            provides this fundamental velocity
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• Semi-classical chaos in weakly coupled systems

• Most of these are weakly coupled zero density field theory 
results. 
 
This should not be a surprise. This is the classical dilute gas 
computation. 
 

“Surprisingly a relation of the form                    shows up in a number 
of non-holographic contexts”

D ⇠ v2LR⌧



• Semi-classical chaos in weakly coupled systems

• Most of these are weakly coupled zero density field theory 
results. 
 
This should not be a surprise. This is the classical dilute gas 
computation. 
 
From the point of view what you compute it is a surprise

“Surprisingly a relation of the form                    shows up in a number 
of non-holographic contexts”

D ⇠ v2LR⌧



Scrambling in weakly coupled QFT is classical dilute gas

• Object of interest for 

• Object of interest for 

C(t) = �h[W (t), V (0)]†[W (t), V (0)]i
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  growing mode   

Boltzmann transport only supports decaying modes:
viscosity set by smallest decay mode — relaxation time approximation  



• Transport • Scrambling/Chaos

C(t) ⇠ h[�ab,�cd][�ab,�cd]i�GR(t) ⇠ pxpyqxqyh[�ab�ab,�cd�cd]i�
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• Transport

In free field theory

In perturbation theory Transport and Scrambling sum the same 
ladder diagrams

Stanford, Jeon

24

terms of the type �ra(p)�ra(p) and �ar(p)�ar(p) have poles on the same side of the real

energy axis and thus they give much smaller contribution to the expressions (110) and (111)

than the pinching poles, and may be safely ignored in further computations. The omission

of these terms constitutes the pinching pole approximation.

Replacement of bare propagators by dressed ones means that we need to deal with the

skeleton expansion where propagators are dressed and vertices remain bare. Here, we are

to study the first loop of this expansion. However, since the thermal width is related to the

imaginary part of a self-energy, some complications arise. In the weakly coupled ��4 theory

the lowest contribution to Im⌃ comes from a two-loop diagram which is of the order O(�2)

and since the pinching pole contribution dominates, the one-loop diagram is of the order

O(1/�2) [3]. However, one realizes that there may be momentum exchange between the side

rails of the loop. This is represented by the one-loop rungs connecting the two side rails as

shown in Fig. 2.

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T̂ xy is denoted by the crossed dots and black dots are the vertices with the coupling constant �.

Each rung introduces a factor of �2 coming from the vertices and a factor of the order

O(1/�2) coming from the pinching poles introduced by the additional pair of propagators.

Therefore, all such multi-loop ladder diagrams contribute at the leading order. They must

be resummed to give the full result in the leading order.

The situation described above holds when the single transport coe�cient, such as the

shear viscosity, is analyzed. In case of the combination ⌘⌧⇡, it gets more involved and it will

be discussed in the next part of this work.

D. Evaluation of ⌘ and ⌘⌧⇡ in the one-loop limit

Before we include all ladder diagrams let us consider first only the one-loop diagram with

the resummed propagators. This is illuminating as we can find the typical scales of ⌘ and

⌘⌧⇡.

• Scrambling/Chaos

C(t) ⇠ h[�ab,�cd][�ab,�cd]i�GR(t) ⇠ pxpyqxqyh[�ab�ab,�cd�cd]i�

C(t) ⇠ GR(t) = �2G��
R (t) +O(�)

Schwinger-Keldysh contour OTOC contour



Schwinger Keldysh Contour

• Ansatz 
 
 
 
 
 
 
gives
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The situation described above holds when the single transport coe�cient, such as the

shear viscosity, is analyzed. In case of the combination ⌘⌧⇡, it gets more involved and it will

be discussed in the next part of this work.

D. Evaluation of ⌘ and ⌘⌧⇡ in the one-loop limit

Before we include all ladder diagrams let us consider first only the one-loop diagram with
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Schwinger Keldysh vs OTOC Contour

• SchwKeld

• OTOC

• Ansatz

24

terms of the type �ra(p)�ra(p) and �ar(p)�ar(p) have poles on the same side of the real

energy axis and thus they give much smaller contribution to the expressions (110) and (111)

than the pinching poles, and may be safely ignored in further computations. The omission

of these terms constitutes the pinching pole approximation.

Replacement of bare propagators by dressed ones means that we need to deal with the

skeleton expansion where propagators are dressed and vertices remain bare. Here, we are

to study the first loop of this expansion. However, since the thermal width is related to the

imaginary part of a self-energy, some complications arise. In the weakly coupled ��4 theory

the lowest contribution to Im⌃ comes from a two-loop diagram which is of the order O(�2)

and since the pinching pole contribution dominates, the one-loop diagram is of the order

O(1/�2) [3]. However, one realizes that there may be momentum exchange between the side

rails of the loop. This is represented by the one-loop rungs connecting the two side rails as

shown in Fig. 2.

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T̂ xy is denoted by the crossed dots and black dots are the vertices with the coupling constant �.

Each rung introduces a factor of �2 coming from the vertices and a factor of the order

O(1/�2) coming from the pinching poles introduced by the additional pair of propagators.

Therefore, all such multi-loop ladder diagrams contribute at the leading order. They must

be resummed to give the full result in the leading order.

The situation described above holds when the single transport coe�cient, such as the

shear viscosity, is analyzed. In case of the combination ⌘⌧⇡, it gets more involved and it will

be discussed in the next part of this work.

D. Evaluation of ⌘ and ⌘⌧⇡ in the one-loop limit

Before we include all ladder diagrams let us consider first only the one-loop diagram with

the resummed propagators. This is illuminating as we can find the typical scales of ⌘ and

⌘⌧⇡.

This Bethe-Salpeter eqn 
is the QFT version of the

Boltzmann equation

eG(p|k) = ⇡

Ep

�(p20 � E2
p)

�i! + 2�p


1 +

Z
d4`

(2⇡)4
R(`� p) eG(`|k)

�
.

eG(p|k) = ⇡

Ep

�(p20 � E2
p)

�i! + 2�p


1 +

Z
d4`

(2⇡)4
sinh(�p0/2)

sinh(�`0/2)
R(`� p)eG(`|k)

�
.

(�i! + 2�p)f(p|k) =
Z

l

sinh(�p0/2)

sinh(�`0/2)
(R(l+)�R(l�)) f(k|k)

eG(p|k) = �(p20 � E2
p)f(p|k)



Schwinger Keldysh vs OTOC Contour

• SchwKeld

• OTOC

• Ansatz

24

terms of the type �ra(p)�ra(p) and �ar(p)�ar(p) have poles on the same side of the real

energy axis and thus they give much smaller contribution to the expressions (110) and (111)

than the pinching poles, and may be safely ignored in further computations. The omission

of these terms constitutes the pinching pole approximation.

Replacement of bare propagators by dressed ones means that we need to deal with the

skeleton expansion where propagators are dressed and vertices remain bare. Here, we are

to study the first loop of this expansion. However, since the thermal width is related to the

imaginary part of a self-energy, some complications arise. In the weakly coupled ��4 theory

the lowest contribution to Im⌃ comes from a two-loop diagram which is of the order O(�2)

and since the pinching pole contribution dominates, the one-loop diagram is of the order

O(1/�2) [3]. However, one realizes that there may be momentum exchange between the side

rails of the loop. This is represented by the one-loop rungs connecting the two side rails as

shown in Fig. 2.

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T̂ xy is denoted by the crossed dots and black dots are the vertices with the coupling constant �.

Each rung introduces a factor of �2 coming from the vertices and a factor of the order

O(1/�2) coming from the pinching poles introduced by the additional pair of propagators.

Therefore, all such multi-loop ladder diagrams contribute at the leading order. They must

be resummed to give the full result in the leading order.

The situation described above holds when the single transport coe�cient, such as the

shear viscosity, is analyzed. In case of the combination ⌘⌧⇡, it gets more involved and it will

be discussed in the next part of this work.

D. Evaluation of ⌘ and ⌘⌧⇡ in the one-loop limit

Before we include all ladder diagrams let us consider first only the one-loop diagram with

the resummed propagators. This is illuminating as we can find the typical scales of ⌘ and

⌘⌧⇡.

This Bethe-Salpeter eqn 
is the QFT version of the

Boltzmann equation

eG(p|k) = ⇡

Ep

�(p20 � E2
p)

�i! + 2�p


1 +

Z
d4`

(2⇡)4
R(`� p) eG(`|k)

�
.

eG(p|k) = ⇡

Ep

�(p20 � E2
p)

�i! + 2�p


1 +

Z
d4`

(2⇡)4
sinh(�p0/2)

sinh(�`0/2)
R(`� p)eG(`|k)

�
.

(�i! + 2�p)f(p|k) =
Z

l

sinh(�p0/2)

sinh(�`0/2)
(R(l+)�R(l�)) f(k|k)

eG(p|k) = �(p20 � E2
p)f(p|k)



d

dt
f(p, t) =

Z

k

✏(p)

✏(k)
(Rin(p,k) + dRout(p,k))f(k)

• Transport
Grozdanov, Schalm, Scopelliti, 

• Scrambling/Chaos

C(t) ⇠ h[�ab,�cd][�ab,�cd]i�GR(t) ⇠ pxpyqxqyh[�ab�ab,�cd�cd]i�

Schwinger-Keldysh contour OTOC contour
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Boltzmann equation (net density) Kinetic equation (gross collisions)

front propagation into unstable states

Saarloos, vBeijeren,
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Gu, Kitaev
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⇤



• Chaos follows from kinetic equation for gross energy exchange

This is derived as opposed to ad hoc clock model 
 
 
 
 
 
Qualitatively physics is similar (unstable front dynamics)
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This explicitly shows in weakly coupled dilute QFT scrambling 
and diffusion are set by the same dynamics --- even though they 
are not identical.
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• Chaos follows from kinetic equation for gross (energy) exchange 
 

• We have now shown that this holds in general:

For bosonic and fermionic systems (Gross-Neveu model)

Models near a QCP approached from perturbative regime 
(Wilson-Fisher           model)

Shorter derivation using 2PI formalism

• In all cases off-shell Bethe-Salpeter contains both chaos and 
Boltzmann transport. 

One solution ansatz: Boltzmann. Complement: Chaos

pQFT analogue of Maxwell relation: weakly coupled dilute gas.

Pole-skipping….

d
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O(N)

Grozdanov, Schalm, Scopelliti,
arXiv:22summer.xxxx 



Ultra strongly correlated systems are similar to dilute gases



• Semi-classical chaos in weakly coupled systems

• Most of these are weakly coupled zero density field theory 
results. 
 
This should not be a surprise. This is the classical dilute gas 
computation. 
 

“Surprisingly a relation of the form                    shows up in a number 
of non-holographic contexts”

D ⇠ v2LR⌧



• Is scrambling rate related to diffusion?
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Holography for Strongly coupled systems

IR UVz

d−1,1

z

R
AdSd+1

minkowski

UV
IR

...

Figure 1: The extra (‘radial’) dimension of the bulk is the resolution scale of the field theory.
The left figure indicates a series of block spin transformations labelled by a parameter z.

The right figure is a cartoon of AdS space, which organizes the field theory information
in the same way. In this sense, the bulk picture is a hologram: excitations with different

wavelengths get put in different places in the bulk image. The connection between these two
pictures is pursued further in [15]. This paper contains a useful discussion of many features of

the correspondence for those familiar with the real-space RG techniques developed recently
from quantum information theory.

of length. Although this is a dimensionful parameter, a scale transformation xµ → λxµ can

be absorbed by rescaling the radial coordinate u→ u/λ (by design); we will see below more

explicitly how this is consistent with scale invariance of the dual theory. It is convenient to

do one more change of coordinates, to z ≡ L2

u , in which the metric takes the form

ds2 =

(
L

z

)2
(

ηµνdx
µdxν + dz2

)

. (2.1)

These coordinates are better because fewer symbols are required to write the metric. z will

map to the length scale in the dual theory.

So it seems that a d-dimensional conformal field theory (CFT) should be related to a

theory of gravity on AdSd+1. This metric (2.1) solves the equations of motion of the following

action (and many others)4

Sbulk[g, . . . ] =
1

16πGN

∫

dd+1x
√
g (−2Λ+R+ . . . ) . (2.2)

Here,
√
g ≡

√

| det g| makes the integral coordinate-invariant, and R is the Ricci scalar

but there is no proof for d > 1 + 1. Without Poincaré invariance, scale invariance definitely does not imply
conformal invariance; indeed there are scale-invariant metrics without Poincaré symmetry, which do not have
have special conformal symmetry [16].

4For verifying statements like this, it can be helpful to use Mathematica or some such thing.
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• Is scrambling rate related to diffusion?

D ⇠ v2

T
⇠ v2LR

�



OTOC in holography

• Gravitational shockwave calculation in AdS BH computes OTOC

F (t) =
X

hTFD|(W (t)V (0)⌦ 11)(1⌦W (t)V (0))|TFDi

V (0)

W (t)

Roberts, Stanford, Susskind



• Energy-Momentum transport is computed from the spectrum of 
linearized metric perturbations around the black hole (quasi-
normal-modes).

ds2 = gµ⌫dx
µdx⌫

gµ⌫ = gBlack Hole

µ⌫ + hµ⌫

Obtain and Solve ⇤hµ⌫ = 0



• Is scrambling rate related to diffusion? 
 
 
For “relevant diffusion” (=irrelevant suscep) in holographic theories

• Refinement: charged systems with mean-field disorder

Thermal diffusivity set by horizon properties only

Blake;
Davison, Fu, Georges, Gu, 

Jensen, Sachdev.

�� ⌘ [⇢]� [µ] > 0D =
d� ✓

��

v2LR

2⇡T

..similar results for massive gravity (mean-field disorder), but fails in general

Lucas, Steinberg;
Gu, Lucas, Qi

DT =
z

2z � 2

v2LR

�L

Blake, Davison, Sachdev

DP = ⌘/sT Policastro, Son, Starinets



• From a physics perspective these are puzzling results:
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• Shock waves are sound

General metric

Shock wave equation

Sound perturbation from AdS/CFT

�(U)

✓
�gh� d

B0

A
h

◆
= 32⇡EA�d(~x)�(U)

�gh(U, ~x)� 2d
B

A
h(U, ~x)� d

B0

A
U

@

@U
h(U, ~x) = 0

ds2d+2 = A(UV )dUdV +B(UV )gijdx
idxj �A(U, V )h(U, ~x)dUdU

for h(U, ~x) ⇠ �(U)h(~x) reduces to shock



• OTOC Shockwave = Sound at imaginary values of freq. and momentum

• Hydrodynamical sound (known up to 3rd order analytically)

!(k) = ± 1p
3
k � i

6⇡T
k2 + . . .
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• OTOC Shockwave = Sound at imaginary values of freq. and momentum

• Hydrodynamical sound (known up to 3rd order analytically)

!(k) = ± 1p
3
k � i

6⇡T
k2 + . . .

! = 2⇡iT = i� , k2 = �µ2 = �6⇡2T 2 = � �2
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Pole-skipping:

 QNM mode residue
vanishes precisely at 

Also happens in SYK.

Direct consequence of the
existence of the shockwave 

solution.

Beautiful GR story: 
non-unique BC 
at the horizon

! = 2⇡iT

[Blake, Lee, Liu]

[Gu, Qi, Stanford]

[Blake, Davison, Grozdanov, Liu]
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Physical diffusion
is given by the 
behavior near

by now verified in 
many models

! ⌧ 1

[Blake, Davison, 
Grozdanov,Liu]

Pole-skipping:

 QNM mode residue
vanishes precisely at 

Also happens in SYK.

Direct consequence of the
existence of the shockwave 

solution.

Beautiful GR story: 
non-unique BC 
at the horizon

! = 2⇡iT

[Blake, Lee, Liu]

[Gu, Qi, Stanford]

[Blake, Davison, Grozdanov, Liu]



• A generic system

tmfp thydro-onsett = 0 t = 1

hydro applies

particle picture

applies



tmfp

thydro-onset
t = 0 t = 1

hydro applies
ultra strongly

coupled physics

(conformal/long range entangled)



From microscopic scrambling to macroscopic scrambling

In classical physics microscopic scrambling is responsible for macroscopic ergodicity. 
What about quantum physics?



• AdS-CFT: Can model black hole evaporation (quenched cooling) 
with conventional quantum systems.

Figure 1. Our two-sided AdS2 system initially has reflecting boundary conditions (solid

vertical lines) on its right boundary. An independent copy B of our CFT on the right half

of Minkowski space which will play the role of the bath also begins with reflecting boundary

conditions. At some finite time (orange dot), the right-AdS2 boundary conditions become

transparent, coupling the AdS2 CFT to the Bath CFT.

Because the AdS2 system is no longer isolated, bulk von Neumann entropies depend

on a choice of Cauchy slice, or at least a choice of where such slices meet the right AdS2

boundary. In this sense, the QES of the right boundary becomes time-dependent. The

time-dependent QESs may be viewed as a proxy for what one would find if one turned

o↵ the coupling at the given time, used the data on the stated Cauchy surface as initial

data for a new AdS2 bulk, and computed the QES in the resulting isolated spacetime.

The isolated QES and the proxy QES in the coupled spacetime will coincide up to

corrections associated with the details of how the coupling is switched o↵. This setting

and aspects of JT gravity are reviewed in section 2, while section 3 presents initial

studies of the matter sector.

The proxy QESs are studied in section 4. Although we consider only standard

perturbative semiclassical bulk physics, tracking the proxy QES and computing Sgen as

a function of boundary time reproduces features one would expect from general consid-

erations of fully unitary evolution. In particular, the Page time, when the fine-grained

von Neumann entropy of the black hole saturates at the coarse-grained thermodynamic

entropy, is marked by a phase transition where the quantum extremal surface jumps.

Thereafter, the location of the quantum extremal surface gives a quantum geometric

realization of the Hayden-Preskill protocol [23], as described holographically in [24].

For the convenience of the reader, the technical results are then summarized in section

4.6.

An important part of the above description is the gap between the QESs XL and

XR associated with the left and right boundaries of AdS2, and this gap is discussed

further in section 5. We close with further discussion in section 6, which in particular

– 3 –



• A black hole quantum quench  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A careful computation reproduces 
the Page curve.

t = 0

J+

negative energy
shockwave

outgoing
radiation

Almheiri;
Almheiri, Engelhardt, Marolf, Maxfield;

Penington



• AdS-CFT: Can model black hole evaporation (quenched cooling) 
with conventional quantum systems.

We will use two coupled SYK models:

H = Ji1i2...ipj1j2...jpc
†
i1
c
†
i2
. . . c

†
ip
cj1cj2 . . . cjp

hJi1i2...ipj1j2...jpJi01i02...i0pj01j02...j0pi =
(p!)2

N2p�1
J2�i1i01 . . . �j1j01

with random disorder averaged interactions

Sachdev-Ye-Kitaev model: N complex/real fermions with q = 2p-point interactions



• AdS-CFT: Can model black hole evaporation (quenched cooling) 
with conventional quantum systems.

We will use two coupled SYK models:

This has a quantum spin liquid (long range entangled strongly 
correlated) ground state, which is exactly solvable in the large 
     limit, and dual to an AdS2 gravity theory.

Sachdev-Ye-Kitaev model:

N

N complex/real fermions with q = 2p-point interactions



• Quenched cooling in two coupled SYK quantum dots
Zhang: 1909.10637

Hint

Hint = g
ij1...jn(c†i j1 . . . jn +  

†
jn

. . . 
†
j1
ci)✓(t)



• Quenched cooling in two coupled SYK quantum dots

Hint

Hint = g
ij1...jn(c†i j1 . . . jn +  

†
jn

. . . 
†
j1
ci)✓(t)

4

time calculation shown in Figure. 1. This gives the self-
energy:

⌃̂�,↵�(t, t
0) ⌘

✓
⌃T
� (t, t

0) �⌃<
� (t, t

0)

�⌃>
� (t, t

0) ⌃T̃
� (t, t

0)

◆

↵�

= �J2↵�G3
�,↵�(t, t

0)

� V 2↵�(�1)
n+1
2 ✓(t)✓(t0)Gn

 ,↵�(t, t
0),
(24)

⌃̂ ,↵�(t, t
0) ⌘

 
⌃T
 (t, t

0) �⌃<
 (t, t

0)

�⌃>
 (t, t

0) ⌃T̃
 (t, t

0)

!

↵�

= �J2↵�G3
 ,↵�(t, t

0). (25)

Similarly to the Green’s function, we could also define
the retarded, advanced, Keldysh components of the self-
energy for both � and  as:

⌃R(t, t
0) = ✓(t� t0)(⌃>(t, t0)� ⌃<(t, t0)), (26)

⌃A(t, t
0) = ✓(t0 � t)(⌃<(t, t0)� ⌃>(t, t0)), (27)

⌃K(t, t0) = ⌃<(t, t0) + ⌃>(t, t0). (28)

As in the imaginary-time calculation, the bath  is not
a↵ected by the small system. As a result, we know G 

is always given by the equilibrium result. The spectral
function A (!) = � 1

⇡ ImGR, (!) in thermal equilibrium
with temperature T can be determined numerically by
the self-consistent equation of retarded Green’s function:

GR, (!)
�1 = ! � ⌃R, (!), (29)

⌃R, (!) = �iJ2

Z 1

0
dtei!t(n (t)

3 + (n (t)
⇤)3),

(30)

n (t) =

Z
d!e�i!tA (!)nF (!, T ), (31)

where nF (!, T ) is the Fermi-Dirac distribution function
at temperature T and we have used the relation [11]:

G>(!) = �inF (�!, T )A(!), (32)

valid for Majorana fermions on thermal equilibrium.
In contrast, the small � system is driven by its cou-

pling to the large system and becomes time-dependent.
For such an evolution problem, it is better to write the
self-consistent equation in the form of Kadano↵-Baym
equations in real-time for t > 0 using the Langreth rules
[12], this gives:

i@t1G
>
� (t1, t2) =

Z
dt3(⌃

R
� (t1, t3)G

>
� (t3, t2)

+ ⌃>
� (t1, t3)G

A
� (t3, t2)), (33)

�i@t2G
>
� (t1, t2) =

Z
dt3(G

R
� (t1, t3)⌃

>
� (t3, t2)

+G>
� (t1, t3)⌃

A
� (t3, t2)). (34)

In these equations, the evolution of G>
� (t, t

0) only de-
pends on information of G>

� (t1, t2) with t1 < t and

FIG. 2. The result of quench dynamics for n = 3 with
V/J = 0.6, T� = 0.2J and T� = 1.5T . (a). The real
part of G>

� (t +
tr
2 , t � tr

2 ) as a function of tr for di↵erent
t. (b). F (!, t) = G�,K(!, t)/ (G�,R(!, t)�G�,A(!, t)) for
di↵erent time t. (c). The evolution of e↵ective temperature
T (t). The red line shows the result of exponential fitting of
the late-time behavior. The green line represents the distance
between F (!) and 1� 2nF (!, T (t)) defined by (38), we take
the cuto↵ ⇤ by requiring F (⇤) = 0.8. (d). The evolution of
energy E(t) determined by (39). The green line is a fit for
the short-time linear increase of energy and the red line is a
late-time exponential fit for the relaxation of energy.

t2 < t0, which make the causal structure explicit. The
initial condition of G>

� (t, t
0) is given by the thermal so-

lution:

G>
� (t, t

0) = G>
� (t� t0), for t, t0 < 0. (35)

where G>
� (t� t0) is determined similar to (29), (30) and

(31), with T replaced by T�. Solving (33) and (34) with
initial condition (35) leads to exact (for large N � 1)
quench dynamics of the small SYK model when coupled
to a large SYK bath. We have checked that if V = 0, the
numerical evolution preserve the translation symmetry
G>
� (t, t

0) = G>
� (t� t0).

After numerical evolution, we define the e↵ective tem-
perature at time t:

1/T (t) = 2
d

d!

✓
G�,K(!, t)

G�,R(!, t)�G�,A(!, t)

◆

!=0

⌘ 2
d

d!
(F (!, t))!=0 . (36)

Here we have performed the Wigner transformation of
Green’s functions:

G(!, t) =

Z
dt0ei!t

0
G(t+

t0

2
, t� t0

2
). (37)

We also define

� =

Z

|!|<⇤
d!

✓
G�,K(!, t)

G�,R(!, t)�G�,A(!, t)
� (1� 2nF (T ))

◆2

,

(38)

Zhang: 1909.10637



• Follow-ups also show  
counterintuitive early energy rise in hot system.

Figure 1: Typical behavior of system energy as a function of time for a large bath at lower
temperature. We distinguish four dynamical regimes, labeled (1), (2), (3), and (4), which are
discussed in detail in the text. Roughly they correspond to the early time energy rise, the
subsequent turnover to energy loss, a sustained period of energy loss, and the final approach
to global equilibrium.

time-scale of the inherent system dynamics. Define the integrated energy flux by

F =

Z 1

0

dte�tĖS. (5)

We show that this quantity is guaranteed to be positive for su�ciently large :

 � 2/�S =) F � 0. (6)

This result is proven for any system and any bath to leading order in perturbation theory in
g. In the context of SYK, we show that it holds more generally (Section 3.9). The constant
 sets the time-scale; reintroducing Planck’s constant ~ and Boltzmann’s constant kB, the
boundary value of  is

2

�S

=
2~

TSkB
= 2.6⇥ 10�14 s at TS = 293 K (7)

The other main results are obtained in a particular model in which both system and bath
are SYK clusters. We consider two SYK models, a system composed of N fermions with
qS-body interactions and a bath composed of M fermions with qB-body interactions. The
system and bath are coupled via a random term involving fS system fermions and fB bath
fermions. We take M � N so that the bath is una↵ected by the coupling to the system.
See Section 3.1 for more details and Ref. [36] for another study of two coupled SYK clusters.

We derive the full large N , large M Schwinger-Keldysh equations of motion for this
system and numerically solve them following the technique in Refs. [37, 38]. This allows us
to compute the entire energy curve for this system-bath model as a function of the initial
system temperature, the initial bath temperature, and all the other parameters of the model.

5

Maldacena, Milekhin: 1912.03276
Almheiri, Milekhin, Swingle: 1912.04912

Figure 1. Our two-sided AdS2 system initially has reflecting boundary conditions (solid

vertical lines) on its right boundary. An independent copy B of our CFT on the right half

of Minkowski space which will play the role of the bath also begins with reflecting boundary

conditions. At some finite time (orange dot), the right-AdS2 boundary conditions become

transparent, coupling the AdS2 CFT to the Bath CFT.

Because the AdS2 system is no longer isolated, bulk von Neumann entropies depend

on a choice of Cauchy slice, or at least a choice of where such slices meet the right AdS2

boundary. In this sense, the QES of the right boundary becomes time-dependent. The

time-dependent QESs may be viewed as a proxy for what one would find if one turned

o↵ the coupling at the given time, used the data on the stated Cauchy surface as initial

data for a new AdS2 bulk, and computed the QES in the resulting isolated spacetime.

The isolated QES and the proxy QES in the coupled spacetime will coincide up to

corrections associated with the details of how the coupling is switched o↵. This setting

and aspects of JT gravity are reviewed in section 2, while section 3 presents initial

studies of the matter sector.

The proxy QESs are studied in section 4. Although we consider only standard

perturbative semiclassical bulk physics, tracking the proxy QES and computing Sgen as

a function of boundary time reproduces features one would expect from general consid-

erations of fully unitary evolution. In particular, the Page time, when the fine-grained

von Neumann entropy of the black hole saturates at the coarse-grained thermodynamic

entropy, is marked by a phase transition where the quantum extremal surface jumps.

Thereafter, the location of the quantum extremal surface gives a quantum geometric

realization of the Hayden-Preskill protocol [23], as described holographically in [24].

For the convenience of the reader, the technical results are then summarized in section

4.6.

An important part of the above description is the gap between the QESs XL and

XR associated with the left and right boundaries of AdS2, and this gap is discussed

further in section 5. We close with further discussion in section 6, which in particular
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• Follow-ups also show  
counterintuitive early energy rise in hot system.

Almheiri, Milenkhin, Swingle give a non-proof proof 
 
 
 
 
of the energy in a hot system coupled to a cold bath with a 
counter-example: two coupled two-level systems

It is in fact easy to show in two coupled two-level systems

This counterintuitive rise must be due to some special effect.

Maldacena, Milekhin: 1912.03276
Almheiri, Milekhin, Swingle: 1912.04912

d2

dt2
E(t)|t=0 ⇠

�
e��B�EB � e��A�EA

�

d2

dt2
E(t)|t=0 > 0

✓
d

dt
E(t)|t=0 = 0 generically

◆



• Thermal Quench in 1+1 CFTs

Quantum version of hydrodynamic Riemann problem where 
hydrodynamic (classical) intuition is exact. 
(free field representation of 1+1 CFTs)

AdS Gravity dual is known. No “rise in energy” in the hot bath.                 

TRTL steady state with Jheat 6= 0

x = �ct x = ct

Bernard, Doyon

hJi = c⇡

12
(T 2

L � T 2
R)

Bhaseen, Doyon, Lucas, KS



• Exact diagonalization in Majorana SYK

E1 = Tr(H1⇢) , E2 = Tr(H2⇢) , Eint = Tr(Hint⇢) , Ef = Tr((H1 +H2 +Hint)⇢)

Hf(t)=H1+H2+�(t)Vij �i�j
N1=10, q1=4, �1=1 ; N2=10, q2=4, �2=1 ; �=0.1
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Cheipesh, Gnezdilov,
Ohanesjan, Pavlov, KS



• Exact diagonalization in Majorana SYK

Hf(t)=H1+H2+�(t)Vij �i�j
N1=10, q1=4, �1=1 ; N2=10, q2=4, �2=1 ; �=0.1
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FIG. 4. Energy evolution for three di↵erent bath temperatures, with the interaction turned o↵ at

t = 1.

Temperature from the GC ensemble:

E1(t) =Tr [H1⇢1(t)] (7)

E1(t) =Tr
⇥
H1e

�H�1(t)
⇤

(8)

FIG. 5. Temperature of each subsystem extracted fom the grand canonical ensemble, with the

interaction turned o↵ at t = 1.

Follow thermalization with the metric on PK1? The idea is to compute the distance from

the density matrix of each subsystem to some thermal density matrix, with the expectation

that when the subsystem formalizes its density matrix will be close to the thermal matrix,

as measured with the geodesic on P (9).

8

E1 = Tr(H1⇢) , E2 = Tr(H2⇢) ,

Eint = Tr(Hint⇢) , Ef = Tr((H1 +H2 +Hint)⇢)

Subsequent decoupling 
quench pumps in energy 

 
This is related to the two-time 

measurement protocol in
quantum thermodynamics 

studies



Von Neumann Entropy 
 

Exact diagonalization in Majorana SYK

Hf(t)=H1+H2+�(t)Vf1 f2 �f1�f2
N1=10, q1=4, �1=1 ; N2=10, q2=4, �2=1 ; �=0.1
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Von Neumann Entropy 
 

Exact diagonalization in Majorana SYK

For t ⌧ 1

J
: E1(t) = T1SvN,1(t)
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• This intrigued us greatly …. path to a universal understanding of 
the behavior of 

• Information Free energy improvement on thermal equilibrium 
free energy

• Easy to show

d2

dt2
E(t)|t=0

D(⇢A||⇢B) = Tr⇢A log ⇢A � Tr⇢A log ⇢B

�E1(t) = T1�S1(t) + T1D(⇢1(t)||⇢T1)

cf. Deffner, Campbell

Finfo(⇢(t)||⇢T1) = E(t)� T1SvN(t) = F + T1D(⇢(t)||⇢T1)



• Quenched cooling of a thermal state: decoupled at time  
 
 
 
 
 
 
 
implies the following quantum “non-equilibrium” inequality for 
quenched cooling

�E1(t) = T1�S1(t) + T1D(⇢1(t)||⇢T1)

D(⇢1(t)||⇢T1) � 0 strictly true

t
essential to make E well defined

�E1(t) � T1�SvN,1(t)
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• Intuitively at low      ,                              is dominated by/
completely determined by the growth in quantum correlations:

This explains qualitatively the “counterintuitive rise in energy”

But it also prompts the question: 
 
“Can one direcly detect quantum correlations between subparts 
of a quantum composite system by measuring the resulting 
energy increment?”

T1 �SvN,1(t) > 0



“Can one direcly detect quantum correlations between subparts 
of a quantum composite system by measuring the resulting 
energy increment?” 

Yes, perturbative Fermi systems with local tunneling quench 
contact:

�E1(t) = T1�SvN,1(t) ?

Essential Ingredient:

Perturbation Theory:

�E ⇠ �2

�SvN,1 ⇠ �2

D(⇢(t)||⇢T1) ⇠ �3

[assuming TA,B < µA,B ]

H(t) = HA +HB + (✓(t)� ✓(t� t0))VAB

HA =
X

p

⇠pa
†
pap

HB =
X

p

⇠
0
pb

†
pbp

VAB = ��(x)(a†(x)b(x) + b
†(x)a(x))



“Can one direcly detect quantum correlations between subparts 
of a quantum composite system by measuring the resulting 
energy increment?” 

Yes, perturbative Fermi systems with local tunneling quench 
contact:

�E1(t) = T1�SvN,1(t) ?

H(t) = HA +HB + (✓(t)� ✓(t� t0))VAB

HA =
X

p

⇠pa
†
pap

HB =
X

p

⇠
0
pb

†
pbp

VAB = ��(x)(a†(x)b(x) + b
†(x)a(x))

Abanin, Demler; Beenakker, Emary, 
Kinderman, van Velzen;

Cardy; Islam et al;
Klich, Levitov

One of by now several ways 
to “measure” 

SvN



• Quenched cooling of two thermal quantum systems

This explains qualitatively the “counterintuitive rise in energy” 
seen in many cases. Though this does not automatically imply 

When do we recover intuitive classical physics with heat flowing 
from hot to cold? 
 

�E1(t) = T1�S1(t) + T1D(⇢1(t)||⇢T1)

D(⇢1(t)||⇢T1) � 0 strictly true

�E1(t) � T1�SvN,1(t)

d2

dt2
E(t)|t=0 > 0



• Classical physics should emerge in the high temperature, perturbative 
particle regime.

��� � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FIG. 7. The generic contact quench is characterized by an early time quantum scrambling domi-

nated regime (red) that transitions to a regime exhibiting conventional classical relaxation (green).

The transitions between these regimes are not sharp, but roughly indicated by the top of the initial

energy bump and the saturation of the relative entropy, where the final density matrix has become

approximately thermal.

phenomenon, only then something can be said about entanglement. This can happen in

some common systems as few qubits or Ising chains], however. This can therefore only hap-

pen in circumstances where the “classical” relaxation overwhelms the quantum growth. Or

more precisely, knowing that

�EA(t) � TA�SvN,A(t), (22)

[AP: this is an example when the same formula is repeated several times throughout the

text under di↵erent numbers] this transition can only happen if the ”classical” thermal

contribution to the von-Neumann entropy dominates over the entanglement contribution to

the von-Neumann entropy already at the earliest possible time. From the atomic statistical

mechanics underpinning of classical thermodynamics we know that this must happen when

we have a theory with well defined particles with suppressed quantum correlations. This

should be the case at high temperatures (weak coupling) and low densities. However, when

we study the high T (TA, TB � J
2 and TA � TB) regime in quenched cooling two SYK4-dots,

this disappearance of the initial rise and a transition to immediate classical energy flow from

hot to cold is not seen to emerge. This is even so when we extrapolate our finite size exact

diagonalization result to the thermodynamic limit (N ! 1) (with the assumption that the
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• Classical physics should emerge in the high temperature, perturbative 
particle regime.

Em= bump height
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FIG. 8. Quenched cooling of two SYK2 or SYK4 dots. Top: Height Em of the energy bump (left)

and time tm of the bump (right) Bottom: Height Em of the energy bump roughly extrapolated to

larger N for various initial temperatures �A. Extrapolating to �A = 0, the counterintuitive initial

rise in the hotter system energy EA seems to persists for any finite TA and infinite N

finite N studies do capture the appropriate large N behavior). Fig. 8 shows the height of

the energy bump Em = Emax�E(t = 0) per particle (Em/N) in the Majorana SYK4 model

directly before it starts to decrease as a function of the temperature TA. Any finite N system

will always contain quantum signatures and the classical behavior need only emerge in a

thermodynamic limit. Numerics directly gives away that Em has a leading scaling with N
2.

Dividing this overall scaling out, a rough extrapolation to N = 1 nevertheless shows that

a positive energy bump remains.7

7 This turns out to also be true for SYK2 models. Though within the random ensemble of SYK2 couplings,

17

tm = bump time



• Classical physics should emerge in the high temperature, perturbative 
particle regime.
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and time tm of the bump (right) Bottom: Height Em of the energy bump roughly extrapolated to

larger N for various initial temperatures �A. Extrapolating to �A = 0, the counterintuitive initial

rise in the hotter system energy EA seems to persists for any finite TA and infinite N

finite N studies do capture the appropriate large N behavior). Fig. 8 shows the height of

the energy bump Em = Emax�E(t = 0) per particle (Em/N) in the Majorana SYK4 model

directly before it starts to decrease as a function of the temperature TA. Any finite N system

will always contain quantum signatures and the classical behavior need only emerge in a

thermodynamic limit. Numerics directly gives away that Em has a leading scaling with N
2.

Dividing this overall scaling out, a rough extrapolation to N = 1 nevertheless shows that

a positive energy bump remains.7

7 This turns out to also be true for SYK2 models. Though within the random ensemble of SYK2 couplings,
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tm = bump time

Two SYK dots are “too quantum”.  There is never a classical regime 



• Classical physics should emerge in the high temperature, 
perturbative particle regime.

Two Ising half-lines 
 
Non-extensive interaction energy 
(Similar to perturbative fermions but for              ) 

H1 = �
X

ZiZi+1 � gXi � hZi

H2 = �
X

Z
0
iZ

0
i+1 � gX

0
i � hZ

0
i

Hint = ZlastZ
0
first

T � µ



• Classical physics should emerge in the high temperature, 
perturbative particle regime.

Two Ising half-lines 
 
Non-extensive interaction energy 
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FIG. 9. Quenched cooling in two Ising half lines. Top: Height Em of the energy bump (left)

and time tm of the bump (right) in for various interaction strengths. Bottom: Height Em of the

energy bump roughly extrapolated to larger N for various initial temperatures TA = 1/�A. For

each initial temperature there is a finite extrapolated value of N for which the bump disappears

and the system will cool instantaneously upon contact. The higher the initial temperature, the

lower is this value of N .

As we explain below, one possible reason for this persistence of the energy rise could be

the conformal invariance of the SYK groundstate [AP: the conformal invariance is present

in the SYK model in the regime J/N ⌧ T ⌧ J . Below and above these energy scales there

is no conformal invariance. This condition is obviously violated at high temperatures since

there are empirically always realizations for which the energy EA does decrease instantaneously. However,

the large N results appear to show the counterintuitive increase even at very high TA.
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• Classical physics should emerge in the high temperature, 
perturbative particle regime.

Two Ising half-lines 
 
Non-extensive interaction energy 
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FIG. 10. Quenched cooling in two Ising half lines. For T < Tc ' 77.845J one still observes the

counterintuitive rise in the hotter system A, but for T > Tc one transitions to a regime where

classical intuition is restored and the system cools instantaneously upon contact.

However, such a thermodynamic vanishing is not a true instance where semi-classical hot-

to-cold energy dynamics overwhelms the information-driven gain at short times. For a fixed

temperature, we can estimate where the bump disappears, by extrapolating the Em/N to

large N . Now we see the foretold disappearance of the bump at a fixed finite temperature,

restoring our classical intuition (Fig.9). An explicit finite N example is given in Fig.10. This

finite N example shows that it is not simply the fact that the interaction is local and thus

non-extensive in the thermodynamic limit, that causes it to vanish for higher temperatures.

The most interesting case is the conformal point of the Ising model (Fig. 9). At exactly

g = 1, h = 0 the temperature at which the bump disappears by extrapolation to the con-

tinuum limit again moves to T = 1, similar to the SYK4 results (see also [27]). This is

completely consistent with the earlier results on quenched cooling in conformal systems. The

absence of a bump found there relies on conformal symmetry which is only a true symmetry

in the continuum limit. For any finite size non-integrable system at low T , there appears

to always be a small but non-zero counterintuitive initial rise. This is a correlation driven

e↵ect, as a simple ballistic collision model based on the Boltzmann equation will never have

an initial energy rise in the hot system [21].8 The correlation can still be either quantum or

8 Perhaps the easiest way to see this is to realize that the quenched cooling protocol is the quantum version

of the Riemann problem in hydrodynamics. In hydrodynamics one assumes local equilibrium and thus an

absence of correlations between di↵erent spatial points at distances larger than the local mean free path.
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classical intuition is restored and the system cools instantaneously upon contact.

However, such a thermodynamic vanishing is not a true instance where semi-classical hot-

to-cold energy dynamics overwhelms the information-driven gain at short times. For a fixed

temperature, we can estimate where the bump disappears, by extrapolating the Em/N to

large N . Now we see the foretold disappearance of the bump at a fixed finite temperature,

restoring our classical intuition (Fig.9). An explicit finite N example is given in Fig.10. This

finite N example shows that it is not simply the fact that the interaction is local and thus

non-extensive in the thermodynamic limit, that causes it to vanish for higher temperatures.

The most interesting case is the conformal point of the Ising model (Fig. 9). At exactly

g = 1, h = 0 the temperature at which the bump disappears by extrapolation to the con-

tinuum limit again moves to T = 1, similar to the SYK4 results (see also [27]). This is

completely consistent with the earlier results on quenched cooling in conformal systems. The

absence of a bump found there relies on conformal symmetry which is only a true symmetry

in the continuum limit. For any finite size non-integrable system at low T , there appears

to always be a small but non-zero counterintuitive initial rise. This is a correlation driven

e↵ect, as a simple ballistic collision model based on the Boltzmann equation will never have

an initial energy rise in the hot system [21].8 The correlation can still be either quantum or

8 Perhaps the easiest way to see this is to realize that the quenched cooling protocol is the quantum version

of the Riemann problem in hydrodynamics. In hydrodynamics one assumes local equilibrium and thus an

absence of correlations between di↵erent spatial points at distances larger than the local mean free path.
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Conclusions

• From chaos in hydrodynamics to a kinetic theory for scrambling

Scrambling and diffusion:  
a priori set by different timescales 
 
   
 

• Energy dynamics, information and heat flow and the transition 
from quantum to classical thermodynamics

In quenched cooling, a non-equilibrium first law

Quantum correlation growth and energy relaxation:  
a priori set by different timescales
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arXiv:2011.05238
arXiv:2108.12031
arXiv:2204.12411

Except in a dilute gas: a kinetic theory for chaos

Except in a ultra strongly correlated system: pole skipping in hydrodynamics

�E1(t) = T1�S1(t) + T1D(⇢1(t)||⇢T1)

Except in high T dilute particle limit: classical relaxation dominates



Thank you


