Superconductivity and out of equilibrium systems

Ariane Soret^{1,2}

1 - CPHT, École Polytechnique 2 - Physics department, Technion Institute of Technology (Israel)

PhD under direction of Karyn Le Hur¹ & Eric Akkermans²

< ロ > < 同 > < 三 > < 三 >

2 Out of equilibrium superconductivity

Outline

1 Out of equilibrium physics and mesoscopic Casimir forces

Out of equilibrium superconductivity

Fluctuation induced forces: fluctuating medium + confinment \Rightarrow fluctuation induced forces

Fluctuation induced forces: fluctuating medium + confinment \Rightarrow fluctuation induced forces

Scattering medium

・ 同 ト ・ ヨ ト ・ ヨ ト

Fluctuation induced forces: fluctuating medium + confinment \Rightarrow fluctuation induced forces

Fluctuation induced forces: fluctuating medium + confinment \Rightarrow fluctuation induced forces

• $\langle f_{\perp} \rangle = 0$ on average over disorder. but $\delta f_{\perp} = f_{\perp} - \langle f_{\perp} \rangle \neq 0;$ Spatially long-ranged coherent correlations of the light intensity induce perpendicular forces: fluctuation induced forces: These forces are well studied for far out of equilibrium systems.

イロン 不通 とくほとく ほど

< ロ > < 回 > < 回 > < 回 > < 回 > .

э.

<ロト <回ト < 三ト < 三ト

2

< ロ > < 回 > < 回 > < 回 > < 回 >

э

(日) (同) (日) (日)

• $\langle f_c^2 \rangle = \frac{1}{c^4} \iint_{S \times S} d\mathbf{r} d\mathbf{r}' [D^2 \partial_z \partial_{z'} \langle \delta I(\mathbf{r}) \delta I(\mathbf{r'}) \rangle + \langle \nu_z(\mathbf{r}) \nu_{z'}(\mathbf{r'}) \rangle]$

< ロ > < 同 > < 三 > < 三 >

- $\langle f_c^2 \rangle = \frac{1}{c^4} \iint_{S \times S} d\mathbf{r} d\mathbf{r}' [D^2 \partial_z \partial_{z'} \langle \delta I(\mathbf{r}) \delta I(\mathbf{r'}) \rangle + \langle \nu_z(\mathbf{r}) \nu_{z'}(\mathbf{r'}) \rangle]$
- Universal form: $\langle f_c^2 \rangle = \frac{1}{g_c} \frac{\mathcal{P}^2}{c^2} \xi$
- Dimensionless conductance $g_c = \frac{k^2 le L_1 L_{\perp}}{3\pi L_{\parallel}}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Influence of boundary conditions

- Absorbing (resp. reflecting) plates single out the intensity (resp. noise) contributions to the Casimir forces
 Order of magnitude of the
- Order of magnitude of the Casimir forces easily tuned via the conductance and the boundary conditions
- \rightarrow measurable and significantly more important than in known situations.

< 回 > < 三 > < 三

Outline

Out of equilibrium physics and mesoscopic Casimir forces

2 Out of equilibrium superconductivity

Out of equilibrium topological superconductor

• 1 dimensional spin chain \equiv (topological) p-wave superconductor;

• Characterized by topological invariant (Zak phase or Berry phase).

伺 ト イヨト イヨ

Out of equilibrium topological superconductor

- 1 dimensional spin chain \equiv (topological) p-wave superconductor;
- Characterized by topological invariant (Zak phase or Berry phase).

< 回 > < 三 > < 三

 \Rightarrow Study the dynamics of the Zak phase in the topological superconductor (spin chain) via current measurements.

Perspectives

Perspectives:

- Two papers in progress on fluctuation induced forces;
- Continue the study of out of equilibrium topological superconductor;
- Generalize to the study of the dynamics of spin polarized electric current injected in conventional superconductor.

< 回 > < 三 > < 三

Thank you! Questions?

Ariane Soret Superconductivity and out of equilibrium systems