Driving strongly magnetized HED plasmas at Omega

G. Pérez-Callejo – CELIA, Université de Bordeaux – CEA – CNRS

CN

Forum ILP

27 September – 1 October 2021

gabriel.perez@u-bordeaux.fr

UKUE/

université

Collaborators

CELIA – U. Bordeaux

- V. Ospina-Bohórquez
- J. J. Santos
- V. Tikhonchuk
- C. Vlachos

U. Las Palmas de Gran Canaria

• R. Florido

U. Valladolid

• M. A. Gigosos

LLNL

• C. A. Walsh

U. California San Diego

- M. Bailly-Grandvaux
- F. Beg

General Atomics

• C. McGuffey

U. Aix-Marseille

- A. Calisti
- S. Ferri

U. Nevada, Reno

• R. Mancini

Sandia

• T. Nagayama

U. Politécnica de Madrid

• J. J. Honrubia

LLE

• J. R. Davies

Imperial College London

• F. Suzuki-Vidal

U. of York

• N. Woolsey

Universidad de Valladolid

UC San Diego

Aix*Marseille

GENERAL ATOMICS

Magnetic drive: 2 main methods

Externally driven coils

This image corresponds to the MIFEDS platform used in mini MagLIF experiments

Laser-driven Coils

Laser-driven B Coils

- Laser ejects electrons from the backplate
 - The backplate acquires a positive charge
- The laser-generated plasma closes the circuit between the two plates
- A current loops through the circuit
- The coil concentrates the magnetic field lines.
- Possible to mount two in quasi-Helmholtz configuration

These targets have been characterized at LULI

Results from May 2021 \rightarrow 10¹⁵ Wcm⁻², as obtainable at OMEGA or LMJ

Model – B+E field Data Model – Only B-field 500 µm E=10.15 MeV 1=22kA t=713 ps I=22kA Q=5nC

- Design for standard cylindrical implosion at OMEGA (Hansen *et al.* 2018)
- 40 beams on target (14.5 kJ)
- Cylindrical plastic shells with 11atm D_2 fill
- Magnetic field generated by laser-driven coils (day 1) and MIFEDS (day 2)

B-field amplification with target compression

Magnetic flux is conserved (frozen-in-flow) \rightarrow

$$\Phi_0 = B_0 r_0^2 = 50 T \cdot (280 \mu m)^2$$

$$\Phi_1 = B_1 r_1^2 \sim 40 k T \cdot (10 \mu m)^2$$

$$\Gamma = \frac{\Phi_0}{\Phi_1} \sim$$

1

As the magnetic field is compressed with the plasma:

- 1. Electron conduction is magnetized \rightarrow Collisional energy losses decrease \rightarrow Temperature increases
- 2. Magnetic pressure builds up \rightarrow Total pressure in the core increases faster \rightarrow Lower density at peak compression
- 3. Increase the number of nuclear reactions \rightarrow Increase of neutron yield
- 4. In DT fusion, confinement of α particles \rightarrow Increase fusion yield further

MHD simulations summary	(Gorgon)
--------------------------------	----------

	Applied Field	tbang	Burn av. Ti	Burn av. Density	Relative (n) yield
1D	ОТ	1.45 ns	1860 eV	4740 kg/m ³	1
1D	50T	1.47 ns	3320 eV	1570 kg/m ³	1.69
2D	ОТ	1.48 ns	1450 eV	1880 kg/m ³	1 (~10 ⁹)
2D	50T	1.49 ns	2090 eV	620 kg/m ³	1.14

Include extended-MHD effects (magnetized heat transport, Biermann battery, Nernst effect)

Hydrodynamic evolution

- Electron conduction is magnetized
- Magnetic pressure becomes comparable to thermal pressure
 - Increased maximum temperature
 - Reduced core density
- The magnetic field introduces significant gradients
- These effects can be diagnosed with X-ray spectroscopy

7th-11th June 2021

Main diagnostic – X ray spectroscopy

Main diagnostic – X ray spectroscopy

Non-magnetized

Magnetization effects: Photon Energy (eV) 4500 3800 3800 (va) Kbrand The Arabic (va) Ar Lyγ (4p→1s) Lyγ (4p→1s) Lyβ (3p→1s) Ly β (3p \rightarrow 1s) Hey (1s4p \rightarrow 1s²) Hey $(1s4p \rightarrow 1s^2)$ He β (1s3p \rightarrow 1s²) He β (1s3p \rightarrow 1s²) 3600 3600 3400 3400 Lyα (2p→1s) $Lya(2p \rightarrow 1s)$ 3200 3200 Hea (1s2p \rightarrow 1s²) Hea (1s2p \rightarrow 1s²) 3000 3000 1.7 1.3 1.4 1.5 1.6 1.7 1.3 1.4 1.5 1.6 Time (ns) Time (ns)

Synthetic streaked spectra

- Narrower lines •
- Balance shifts to higher ٠ energies

These effects are enhanced by the gradients that appear by the action of the magnetic field.

Magnetized

Despite the >10kT magnetic fields, Zeeman spectroscopy is not applicable owing to the high density of the implosion.

X-Ray Pinhole Camera data

Maximum compression is reached at 1.4-1.5 ns.

- This is in good agreement with hydrodynamic simulations using Gorgon and FLASH.
- However, the compression was much lower than predicted (minimum diameter of 30µm vs 10µm predicted) → Difference in shell thickness?

No significant difference between magnetized and unmagnetized implosions.

Performance of coils was not ideal

- Time evolution of B-field characterized using Bdot probes
 - Field increases while the laser is on

- B-field characterized using proton radiography.
 - Peak was found to be \sim 6T
- To increase B-field, laser-driven coils were replaced by MIFEDS for second shot day (24T)

t=1.73ns

t=1.5ns

gabriel.perez@u-bordeaux.fr

Time-resolved spectrometer

From second shot day \rightarrow Using MIFEDS

Non-magnetized

gabriel.perez@u-bordeaux.fr

Magnetized (24T)

Time-resolved spectrometer

- Time-integrated emission is representative of peak compression
- Conditions pre- and post- peak compression can be obtained
- Streaked spectra can help us characterize conditions before and after peak compression → Saturation during peak compression
- Magnetized case seems to be significantly brighter across the whole spectrum

Unmagnetized

- We carried out the first experiment that includes an implosion and laser-driven coils
 - Coils B-field rises for the duration of the laser pulse
 - The specific geometry of OMEGA imposes a boil geometry that limits the seed B-field
 - The compressing power of the laser was below our expectations \rightarrow Compressed core
- The experiment was repeated using MIFEDS ($B_0 = 24T$)
- Ar (dopant) emission spectroscopy is used for diagnosing the plasma conditions
 - There seem to be indications of the B-field affecting the brightness of the spectra
 - Data currently being analyzed
 - Time-integrated emission representative of peak compression
 - Streaked emission can be used to infer conditions prior and after peak compression

- Scaling up the platform for bigger lasers \rightarrow More compressing power
 - We submitted a proposal for LMJ Accepted last week

By tuning target, laser and different set-up parameters, this new magnetization regime allows for:

- Studying the relative importance of different transport mechanisms
- Investigating Hall physics in HED
- Improving modelling of laser-plasma interaction with magnetic fields
- Mitigating hydrodynamic instabilities
- Enhancing the yield in nuclear fusion

Thank you for your attention

Any questions?