"Ab-initio" materials simulations for correlated electron systems with vacancies

Marcello Turtulici

CPHT, Ecole Polytechnique Supervisor: Silke Biermann Started in November 2017

Picture of VO₂ crystal from J. B. Bundai, et al., Nature 515, 535-539 (2014)

VO₂ Metal-Insulator Transition (MIT)

S. Kumer, et al., Nature Scientific Reports, 27699 (2016)

VO₂ Effects of defects on the MIT

Investigation of the nature of the MIT and study of the electronic structure modification due to the presence of defects

M1 phase with Oxygen vacancies

Relaxed

DA=0.16 A (1) 0.06 A (2)

DA=0.26 A (exp)

DA = Dimerization amplitude

One missing oxygen atom in a 96 atoms supercell breaks the dimers!

In spite of the fact that Density Functional Theory tends to "over-dimerize" the system (DA= 0.35 A)

Phonons

The structural transition can be described in terms of phonons softening

A phonon softening at R point (experimentally observed) resulted from calculations

Question

How do phonons frequencies depend on doping?

S. Kim et al., PR B (2013)