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Zusammenfassung

Diese Arbeit ist der sogenannten LDA+DMFT Methode und ihrer Anwendung in der theo-
retischen Beschreibung und Modellierung von unkonventionellen Supraleitern gewidmet. Diese
Methode ist besonders dazu geeignet, Elektronen in Festkörpern zu untersuchen, die sehr stark
miteinander wechselwirken und sich nicht mehr angemessen durch andere konventionelle Theorien
beschreiben lassen.

Die meisten Materialien, die in der theoretischen Festkörperphysik untersucht werden, beste-
hen aus einem regelmäßigen Gitter von Atomrümpfen, die das sogenannte Kristallgitter aufbauen,
und ihren Elektronen, die sich im Kristallgitter bewegen können. Die mathematische Beschreibung
der elektronischen Dynamik eines Festkörpers ist das Feld der theoretischen Festkörperphysik. Sie
beschäftigt sich mit dem Aufstellen von physikalischen Modellen zur Beschreibung eines Festkör-
pers und seiner Elektronen, mit dem Lösen der daraus folgenden mathematischen Gleichungen und
der Interpretation derselben im Bezug auf experimentell beobachtbare Größen.

Aus der Kenntnis der Dynamik der Elektronen lassen sich nicht nur vielzahlige beobachtbare
Eigenschaften ableiten, die etwa mit experimentellen Untersuchungen verglichen werden können,
sondern auch Vorhersagen gewinnen, die wiederum zu neuen Einsichten, Ansätzen oder Materialien
in der experimentellen Festkörperphysik führen können. Insbesondere lassen sich mit theoretischen
Modellen materialspezifische Eigenschaften untersuchen und vorhersagen, zu denen beispielsweise
die elektrische Leitfähigkeit, die optischen, magnetischen und thermischen Eigenschaften, struk-
turelle Parameter und auch mögliche Supraleitung, bei der der elektrische Widerstand des Materials
praktisch auf Null absinkt, gehören.

Der typische Abstand von den Atomkernen in Festkörpern beträgt etwa 10−9 Meter. Dies hat
zur Folge, dass die elektrostatische Wechselwirkung, die sogenannte Coulombkraft, die wichtig-
ste Wechselwirkung zwischen den Atomen und Elektronen in diesen Systemen ist. Zwischen zwei
Ladungen steigt die Coulombkraft proportional zum Inversen des Abstandes an, was im Festkörper
dazu führt, dass alle anderen Kräfte wie die Schwerkraft um Größenordnungen kleiner sind und
daher vernachlässigt werden können. Damit lässt sich eine äußerst präzise Beschreibung der Dy-
namik von Elektronen in einem Festkörper ausschließlich über Berücksichtigung der Coulombkraft
erreichen.

In der theoretischen Physik können wir im Rahmen der Quantenmechanik Differentialgleichun-
gen aufstellen, die die zeitliche Entwicklung der quantenmechanischen Wellenfunktionen der Elek-
tronen beschreiben. Diese bestehen aus der sogenannten Schrödingergleichung, die das zeitliche
Verhalten der Wellenfunktion der Elektronen in Bezug zu ihrer kinetischen und potentiellen En-
ergien setzt. Da im Festkörper die Coulombkraft die dominierende ist, ist die potentielle Energie
rein durch das Coulombgesetz gegeben.

Diese potentielle Energie eines einzelnen Elektrons setzt sich zusammen aus der Wechsel-
wirkung mit allen anderen im Festkörper vorhandenen Elektronen, sowie der Wechselwirkung mit
den Atomrümpfen des Gitters. Die erstere Wechselwirkung ist eine abstoßende, das heißt, aufgrund
der gleichen negativen Ladung der Elektronen erfahren diese eine repulsive Kraft, je näher sich zwei
Elektronen einander annähern. Andererseits ist die zweite Wechselwirkung zwischen den Elektro-
nen und Atomrümpfen eine anziehende, da die Atomkerne aufgrund ihrer Bausteine, der positiven
geladenen Protonen und neutralen Neutronen, eine entgegengesetzte Ladung zu den Elektronen be-
sitzen.

Diese beiden sehr verschiedenen Wechselwirkungen, die sich im Festkörper auf kleinstem Raum
abspielen, erzeugen eine komplizierte zeitliche Entwicklung der elektronischen Dynamik. Die Elek-
tronen sind daher nicht frei, sondern eingeschränkt in ihrer Bewegung durch die unterschiedlichen
abstoßenden und anziehenden Kräfte im Festkörper.

Das Lösen der resultierenden Schrödingergleichung gestaltet sich damit als sehr schwierig. Das
Gewinnen einer exakten Lösung ist in der Praxis nicht möglich, da allein die schiere Menge gekop-
pelter Gleichungen nicht im Computer gespeichert werden kann. Daher bemüht man sich in der
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theoretischen Festkörperphysik, möglichst effektive Näherungen zu der exakten Lösung zu finden,
die das Verhalten des Materials qualitativ noch korrekt wiedergeben, aber eine ausreichende Verein-
fachung der Gleichungen ergeben, so dass diese sich analytisch oder numerisch lösen lassen.

Eine der häufigsten Näherungen ist die sogenannte Born-Oppenheimer Näherung, welche bere-
its eine signifikante Vereinfachung des Problems erreicht. In den Differentialgleichungen, die den
Festkörper beschreiben, geht die Dynamik der Atomkerne gleichberechtigt mit der der Elektronen
ein. Dabei muss berücksichtigt werden, dass die Atomkerne aufgrund ihrer immens höheren Masse,
die etwa das zweitausend- bis zwanzig tausendfache eines Elektrons beträgt, eine viel langsamere
Dynamik als die der Elektronen besitzen. Aus dem Gesichtspunkt der Elektronen stehen die Atom-
kerne daher quasi “still”, da ihre Bewegung signifikant langsamer als die der Elektronen abläuft.
Daher approximiert man die Atomkerne in der Born-Oppenheimer Näherung als fixiert und unbe-
weglich, woraus sich wiederum ableiten lässt, dass in den Differentialgleichungen des Systems der
kinetische Anteil der Atomkerne und deren Wechselwirkungen untereinander nicht berücksichtigt
werden müssen.

Damit reduziert sich das Lösen der Schrödingergleichung rein auf das elektronische Problem.
Die Atomkerne an den fixen Gitterpositionen erzeugen ein statisches Hintergrundpotential, in dem
sich die Elektronen bewegen und wechselwirken. Auf der Basis dieser Form von Differentialgle-
ichungen bauen zahlreiche erfolgreiche Theorien und Methoden auf.

Obwohl diese Form der Schrödingergleichung nun eine deutliche Vereinfachung erfahren hat,
ist sie immer noch zu komplex um im allgemeinen Fall analytisch gelöst werden zu können. Einen
wertvollen Einblick liefern dabei Näherungen der sogenannten Molekularfeldtheorien. Diese bilden
das System von wechselwirkenden Elektronen auf ein effektives ein-Teilchen Problem ab, bei dem
ein einzelnes Elektron nicht direkt mit den anderen Elektronen interagiert, sondern über ein effek-
tives umgebendes Potential beeinflusst wird. Dazu vernachlässigt man zeitliche und räumliche Fluk-
tuationen der Elektronenverteilung im Raum und approximiert diese durch eine zeitlich konstante
Dichte, mit der das jeweilige Elektron wechselwirkt. Da diese Dichte aus der Mittelung über alle
Elektronen gebildet wird, beeinflusst sich die Elektronenverteilung dadurch effektiv selbst, wodurch
eine Selbstkonsistenzrelation für die endgültige Elektronendichte entsteht. Dieses Problem kann
dann iterativ gelöst werden, so dass man eine der Molekularfeldtheorie entsprechend konsistente
Dichte erhält, die die gesamte Elektron-Elektron-Wechselwirkung effektiv beschreiben kann.

Als Nachteil dieser Methode stellt sich heraus, dass die Vernachlässigung jeglicher zeitlicher
und räumlicher Fluktuationen in der Dichte nicht korrekt Phasenübergänge beschreiben kann, in
denen die Korrelationslänge, also der mittlere Abstand über den sich Elektronen effektiv spüren
können, sehr groß wird. Damit werden etwa bestimmte Phasen als zu stabil eingeschätzt, die in
Wahrheit durch Quantenfluktuationen destabilisiert werden. Auch können Systeme mit vermehrt
inhomogener Elektronenverteilung nicht akkurat beschrieben werden.

Einer der heutzutage am weitesten verbreiteten Methoden, die sich als eine verbesserte Variante
der Molekularfeldtheorie verstehen lässt, ist die sogenannte Dichtefunktionaltheorie (DFT). Diese
Theorie baut auf den Theoremen von Walter Kohn und Pierre Hohenberg auf, welche besagen, dass
anstatt der quantenmechanischen Wellenfunktionen der Elektronen nur die Dichte der Elektronen
ausreicht, um das System im Grundzustand vollständig zu beschreiben. Dieser Formalismus führt
zu einer deutlichen methodischen Vereinfachung, da nun anstatt der sehr hohen Anzahl an Wellen-
funktionen nur eine einzige Funktion, die der Dichte, gespeichert werden muss. Diese Formulierung
ist an sich exakt und kann prinzipiell eingesetzt werden, um Grundzustandseigenschaften zu unter-
suchen.

Auf diesen Theoremen aufbauend, entwickelten Walter Kohn und Lu Jeu Sham einen For-
malismus, der das wechselwirkende Elektronensystem exakt abbildet auf ein effektives nicht-
wechselwirkendes System. Sie leiteten Gleichungen her, die es ermöglichen, das reelle System über
das effektive nicht-wechselwirkende System zu beschreiben und die exakte Grundzustandsdichte zu
berechnen. Dies führt ähnlich in der besprochenen Molekularfeldtheorie zu einer deutlichen Vere-
infachung, da nicht mehr die komplizierte Form der direkten Elektron-Elektron-Wechselwirkung
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behandelt werden muss, sondern die Elektronen über ein effektives Feld, was selbstkonsistent ge-
funden werden muss, wechselwirken. Diese Abbildung ist prinzipiell exakt, in der Praxis müssen
aber weiterhin bestimmte Näherungen angewendet werden.

Diese Näherungen in praktischen Implementationen von DFT beziehen sich auf den sogenannten
Austausch-Korrelations-Term, der die effektive Elektron-Elektron-Wechselwirkung enthält, die über
die Wechselwirkung mit der Elektronendichte hinausgehen. Dieser Term wird meist approximiert
durch den Beitrag, den man für ein homogenes Elektronengas mit der vorgegeben Dichte erhalten
würde. Diese Näherung bezeichnet man als lokale-Dichte Approximation (LDA). Als Folge dessen
eignet sich diese Approximation sehr gut für Systeme, in denen die Elektronen eine sich im Raum
nur langsam und stetig ändernde Dichte erzeugen. Dies trifft auf viele Materialien und insbesondere
Metalle zu, so dass damit der DFT als sogenannte ab initio Methode, welche ohne Wahl freier
Parameter auskommt, große Popularität und Erfolg zu Teil wurde. Über die Zeit konnte sich die
DFT somit als die Standardmethode zur theoretischen Untersuchung von Festkörpern etablieren.

Für Systeme, in denen die Elektronendichte dagegen nicht als homogen genähert werden kann,
sorgt die LDA dafür, dass teilweise quantitativ und qualitativ keine Übereinstimmung mit exper-
imentellen Beobachtungen erzielt werden kann. Insbesondere sagt die DFT für gewisse Systeme
metallische Eigenschaften vorher, wohingegen diese in der Praxis Isolatoren sind, was zum Beispiel
in Übergangsmetalloxiden beobachtet wurde. Auch die Tatsache, dass in der DFT nur Eigenschaften
des Grundzustandes zugänglich sind, erlaubt es nicht, physikalisch gerechtfertigte Aussagen über
angeregte Zustände zu treffen.

Um diese Defizite zu beseitigen, wurden unter anderem die Approximation des Austausch-
Korrelations-Term verbessert, was zur Entwicklung der sogenannten generalisierten Gradienten-
Methode, die auch die lokale Änderung der Elektronendichte berücksichtigt, sowie von Hybridfunk-
tionalen führte. Ein anderer Ansatz verfolgt die Idee, starke elektronische Wechselwirkungen, die
nicht ausreichend in der DFT beschrieben werden, in erster Näherung auf einem effektiven Gitter-
modell zu berechnen und dann der DFT wieder zuzuführen, wie es zum Beispiel in der sogenannten
LDA+U Methode angewandt wird. Diese Erweiterungen haben zu einer verbesserten Beschreibung
von Materialien geführt, konnten aber insbesondere nicht das isolierende Verhalten von vielen Ma-
terialien physikalisch korrekt beschreiben.

Zunächst separat von der DFT wurden effektive minimale Modelle zur Beschreibung von Fes-
tkörpern entwickelt, die neue und andere Lösungsansätze hervorbrachten. Das bekannteste Modell
ist das Hubbardmodell, bei dem der Festkörper durch ein periodisches Gitter von Atomrümpfen ap-
proximiert wird, in dem die Elektronen mit einer gewissen Amplitude von Atom zu Atom hüpfen
können, und nur wechselwirken, wenn sie sich auf dem gleichen Gitterplatz befinden. Dieses Modell
ist eine Vereinfachung des kinetischen und des Coulombterms der Schrödingergleichung, beinhaltet
aber weiterhin das volle Spektrum der Wechselwirkungsstärke vom nicht wechselwirkenden met-
allischen System bis hin zu einem stark wechselwirkenden System mit inhomogener Dichte, wo die
Coulombwechselwirkung dominiert.

Auch das Hubbardmodell ist in dieser Form außer in speziellen Grenzfällen nicht analytisch lös-
bar und bedarf daher besonderer approximativer oder numerischer Methoden zur Lösung. Eine sehr
erfolgreiche Methode, die 1989 von Walter Metzner und Dieter Vollhardt vorgeschlagen wurde, ist
die dynamische Molekularfeldtheorie (DMFT). Sie ist ähnlich zur klassischen, statischen Moleku-
larfeldtheorie, behält aber dem Namen entsprechend die volle zeitabhängige Dynamik des Systems.

In der DMFT wird der Grenzfall von unendlicher Dimensionalität betrachtet, oder auch äquiva-
lent der Grenzfall in dem die Konnektivität des Gitters, also die Anzahl an Gitternachbarn jedes Git-
terplatzes, gegen unendlich geht. Im Falle eines kubischen Gitters in zwei Dimensionen beträgt die
Anzahl an nächsten Nachbarn eines Platzes bereits vier, in drei Dimensionen bereits 6. Metzner und
Vollhardt konnten zeigen, dass im Fall unendlicher Dimensionalität sich die Lösung des Hubbard-
modells grundlegend vereinfacht und sich in die Lösung eines effektiven Störstellenproblems umfor-
mulieren lässt. Das bedeutet, dass jeder Gitterpunkt seine Umgebung nicht als diskrete umgebende
Gitterplätze erfährt, sondern als ein effektives homogenes aber zeitabhängiges Feld wahrnimmt.
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Ähnlich der klassischen Molekularfeldtheorie muss auch in der dynamischen Molekularfeldtheorie
dieses effektive Feld selbstkonsistent bestimmt werden.

Diese Abbildung im Grenzwert unendlicher Dimensionalität hat den Vorteil, dass effiziente nu-
merische Verfahren angewendet werden können, um das Störstellenproblem sehr akkurat zu lösen.
Aufgrund der Tatsache, dass dieser Grenzfall keine weiteren Näherungen am kinetischen Term oder
dem Coulombterms vornimmt, bleibt die volle Konkurrenz zwischen diesen beiden Termen erhalten.
Dies erlaubt es, auch für stark wechselwirkende Systeme sehr genaue Lösungen zu erhalten, solange
die Anzahl an nächsten Nachbarplätzen groß ist. Mit der DMFT wurde es somit möglich, bedeut-
samen Einblick in die Physik des Hubbardmodells zu gewinnen. Insbesondere konnte damit der
Metall-Isolatorübergang als Funktion der Stärke der Coulombwechselwirkung beschrieben werden.

Da das Hubbardmodell ein effektives Modell mit frei wählbaren Parametern wie der Hüpfampli-
tude ist, blieb der DMFT zunächst die erfolgreiche Anwendung auf realistische Systeme verwehrt.
Schnell wurden jedoch Versuche unternommen, die DMFT auf reale Systeme zu erweitern. Dies
führte zur Entwicklung der sogenannten LDA+DMFT Methode. Sie kombiniert dabei die Vorteile
der ab initio DFT mit den Fähigkeiten der DMFT, so dass die Defizite der DFT, stark wechselwirk-
ende Systeme zu beschreiben, durch DMFT ausgeglichen werden. Diese Kombination erlaubt es
prinzipiell, stark korrelierte ab initio Rechnungen für realistische Festkörper durchzuführen.

Die LDA+DMFT Methode wurde fortan erfolgreich zur Untersuchung von einer Vielzahl von
Materialien eingesetzt, die sich vorher nur unzureichend von der DFT beschreiben ließen. Zusätzlich
zur Fähigkeit, stark wechselwirkende Systeme untersuchen zu können, erweisen sich als Vorteile der
LDA+DMFT unter anderem die korrekte Behandlung von Elektronenanregungen, was zu einer deut-
lichen Verbesserung der Vergleichbarkeit von Theorie und Experiment führte, sowie die Berücksich-
tigung von endlicher Temperatur, so dass nicht nur Grundzustandseigenschaften zugänglich sind.

In dieser Arbeit werden wir die LDA+DMFT Methode verwenden, um die Familie der unkon-
ventionellen eisenbasierten Supraleiter zu untersuchen. Der Grundbaustein dieser Systeme besteht
aus einer Eisen-Pniktid- oder Eisen-Chalkogen-Schicht, in der die Eisenatome ein regelmäßiges
rechteckiges Gitter bilden. Oberhalb und unterhalb dieser Ebene befinden sich die Pniktid- oder
Chalkogenatome, welche tetraederförmig um die Eisenatome angeordnet sind. Diese atomaren
Schichten können nun kombiniert mit anderen Atomen in verschiedener Form auftreten.

Die strukturell einfachste Form der eisenbasierten Supraleiter besteht aus übereinander ange-
ordneten Eisen-Pniktid- oder Eisen-Chalkogen-Schichten, wie sie zum Beispiel in der Verbindung
FeSe auftreten. Diese Gruppe wird aufgrund der Stöchiometrie 11-Familie genannt. Bei den 111-
Systemen befinden sich weitere Atome, zum Beispiel aus der Alkalireihe, zwischen den Eisen-
schichten, wie im System LiFeAs der Fall. Desweiteren gibt es die sogenannte 122-Familie, bei
der nach jeder Zwischenschicht von Fremdatomen die Eisenschicht in Schichtrichtung gespiegelt
ist. Das bekannteste System dieser Familie ist BaFe2As2. In der 1111-Familie befinden sich zwis-
chen den Eisenschichten weitere komplex angeordnete Schichten von Atomen, wobei als bekanntes
Beispiel LaFeAsO zu nennen wäre.

Entdeckt wurden die supraleitenden Eigenschaften von eisenbasierten Supraleitern das erste Mal
2006 in LaFePO, welches eine Sprungtemperatur von etwa 4 K aufwies. Bald danach konnte bereits
in dem System LaFeAsO1−xFx eine Sprungtemperatur von 26 K erreicht werden. Die Entdeck-
ung der Supraleitung in diesen Materialien kam zunächst überraschend, da in bekannten Kuprat-
Supraleitern die Dotierung mit Eisen generell eine Absenkung der Sprungtemperatur zur Folge
hatte. Die höchsten Sprungtemperaturen reichen heute bis an 56 K heran, wobei vereinzelt auch
von möglichen Werten über 100 K in dünnen Schichtsystemen berichtet wird.

Die Physik der eisenbasierten Supraleiter wird im wesentlichen von den 3d Orbitalen der
Eisenatome bestimmt, die den dominanten Beitrag zur Zustandsdichte an der Fermikante bilden.
Damit sind diese Materialien unter Normalbedingungen Metalle. Aufgrund der starken räum-
lichen Lokalisierung der Eisen 3d Orbitale beobachtet man aber auch Effekte von elektronischen
Korrelationen in diesen Materialien, die zum großen Teil nicht von der DFT korrekt beschrieben
werden können. Je nach System können dabei die Abweichungen im Vergleich zum Beispiel zu
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spektroskopischen Experimenten sehr gering sein, oder sich auch signifikant und qualitativ unter-
scheiden. Insbesondere im Bereich der Loch-dotierten Supraleiter wie KFe2As2 wird der Einfluss
der elektronischen Korrelationen auf die Eigenschaften der Systeme immer wichtiger, welche sich
dadurch nur unzureichend im Rahmen der DFT beschreiben lassen.

Speziell um ein besseres Verständnis zum Mechanismus der Supraleitung in diesen Systemen
zu gewinnen, bedarf es hochentwickelter theoretischer Methoden, die auf eine akkurate Beschrei-
bung der elektronischen Struktur angewiesen sind. Deswegen ist es insbesondere in diesen Systemen
wichtig, elektronische Korrelationen ausreichend genau zu behandeln, so dass oftmals eine Beschrei-
bung innerhalb der DFT nicht ausreichend ist. Im Rahmen dieser Arbeit motiviert diese Tatsache
die Anwendung der LDA+DMFT Methode auf eisenbasierte Supraleiter.

Im ersten Kapitel dieser Arbeit werden wir eine Einleitung zur theoretischen Beschreibung von
Festkörpern geben. Dabei gehen wir auf die grundlegenden Methoden ein, wie ein wechselwirk-
endes Elektronensystem quantenmechanisch beschrieben werden kann. Im Anschluss werden wir
eine Einführung zu eisenbasierten Supraleitern geben und auf ihre strukturellen wie elektronischen
Eigenschaften eingehen.

Im zweiten Kapitel werden wir zuerst die Grundlagen der DFT einführen und zeigen, an welcher
Stelle Approximationen notwendig sind und welche zur Unterschätzung von elektronischen Korrela-
tionen führen. Dabei werden wir auch mögliche Erweiterungen wie LDA+U oder Hybridfunktionale
ansprechen.

Im dritten Kapitel werden wir dann den Formalismus Greenscher Funktionen einführen, welche
die Grundlage für die DMFT legen. Insbesondere besprechen wir die Formulierung in imaginärer
Zeit und Frequenz, welche eine sehr elegante Handhabung der entstehenden Gleichungen zur Folge
haben.

Das daraus ergebende Problem der analytischen Fortsetzung werden wir im vierten Kapitel
diskutieren. Zur Extrahierung von physikalischen Observablen ist eine Rücktransformation von
der imaginären zur reellen Zeitachse vonnöten, welche aufgrund der schlechten Konditionierung
des Problems nicht einfach zu lösen ist. Dabei werden wir verschiedene Methoden vorstellen und
vergleichen.

Im fünften Kapitel führen wir dann das Konzept der DMFT ein und beschreiben die Herleitung
der wichtigsten Formeln zur effektiven Lösung des Hubbardmodells.

Im darauf folgenden sechsten Kapitel widmen wir uns der Kombination der DFT und der DMFT,
um den LDA+DMFT Formalismus zu entwickeln. Dabei beschreiben wir, wie mit Hilfe einer Pro-
jektionsmethode eine lokale Basis aus den DFT Blochfunktionen gewonnen werden kann, mit deren
Hilfe das effektive Hubbardmodell aufgestellt wird. An dieser Stelle gehen wir außerdem darauf
ein, welche Folgen das sogenannte Energiefenster hat, welches man für die Projektion wählen muss.
Abhängig davon, wie viele Blochzustände für die Projektion verwendet werden, erzeugt dies eine
unterschiedliche Lokalisierung der lokalen Orbitalzustände, welche bedeutsame Folgen für die Wahl
der effektiven Coulombwechselwirkung und damit dem Grad der Korrelationen hat.

Daran schließt sich eine Diskussion des Doublecounting-Problems an, welches innerhalb der
LDA+DMFT Methode von enormer Wichtigkeit ist. Es tritt auf, da bereits in DFT bestimmte Ko-
rrelationen behandelt werden, die wiederum in DMFT auch berücksichtigt werden. Daraus ergibt
sich eine doppelte Berücksichtigung dieser Beiträge, die abgezogen werden muss. Da die DFT und
DMFT fundamental unterschiedlich formuliert sind, lässt sich dieses Problem nicht exakt lösen und
bedarf approximativer Ansätze. Wir untersuchen dabei die Auswirkungen verschiedener Varianten
und zeigen auf, in welchen Systemen Unterschiede in den Methoden relevant werden.

Je nach Wahl des Projektionsfensters ergibt sich ein anderer Wert der effektiven Coulombwech-
selwirkung, denn alle Zustände, die bei der Projektion nicht berücksichtigt werden, tragen zu einer
Abschirmung bei, die den Wert der effektiven Wechselwirkung reduziert. Dabei besprechen wir
die Konstruktion der Coulombmatrix für verschiedene Orbitaltypen sowie übliche Approximations-
möglichkeiten.

Im siebten Kapitel wenden wir dann die LDA+DMFT Methode auf das lochdotierte System
KFe2As2 an und untersuchen die Einflüsse elektronischer Korrelationen auf die elektronische Struk-
tur. Dabei stellen wir fest, dass dieses System starke Korrelationseffekte zeigt, welche für eine
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deutliche Bandbreitenrenormierung und Änderungen in der Fermifläche im Vergleich zu der DFT
sorgen. Damit zeigen wir, dass eine Übereinstimmung mit experimentellen Beobachtungen nur
unter korrekter Berücksichtigung von Korrelationen möglich ist.

Im achten Kapitel erweitern wir dann unsere Untersuchungen, ausgehend vom lochdotierten
KFe2As2, auf die isovalenten Systeme RbFe2As2 und CsFe2As2, welche bisher noch nicht im Rah-
men von LDA+DMFT untersucht wurden. Diese zeichnen sich durch einen vergrößerten inter-
atomaren Abstand aus, da der atomare Radius von Kalium nach Rubidium zu Cäsium anwächst.
Dies hat zur Folge, dass die Hybridisierung der Eisenorbitale sinkt und damit deren Lokalisierung
zunimmt. Wir werden dabei zeigen, dass entlang dieser Reihe die Korrelationen zunehmen in Übere-
instimmung mit experimentellen Beobachtungen. Insbesondere sind die elektronischen Zustände
in diesen Systemen von äußerst inkohärenter Natur, welche sich nicht mehr als Fermiflüssigkeit
beschreiben lassen. Die Ursache dafür identifizieren wir in der Hundskopplung, welche Orbitalfluk-
tuationen unterdrückt und das System stark korreliert erscheinen lässt. Unsere Untersuchungen für
verschiedene Wechselwirkungstärken zeigen aber, dass diese Systeme nicht in direkter Nähe zu
einem Mottübergang liegen, wie zuerst in anderen Veröffentlichungen postuliert wurde.

Im neunten Kapitel stellen wir dann Ergebnisse zu dem wohluntersuchten System SrVO3 vor,
welche in Kollaboration mit einer Experimentalgruppe erzielt wurden. SrVO3 ist als System beson-
ders interessant, weil es eine vergleichsweise einfache Struktur, aber gleichzeitig starke Korrela-
tionseffekte aufweist. In der Literatur wurde ein experimentell beobachteter Zustand unterhalb
der Fermikante als Hubbardband identifiziert und mit LDA+DMFT Rechnungen bestätigt. Wir
gingen dabei der Frage nach, in wie weit diese Interpretation wirklich korrekt ist. Aus anderen
Verbindungen wie SrTiO3 ist nämlich bekannt, dass Sauerstoff-Fehlstellen sehr ähnliche Zustände
bei derselben Energie erzeugen können, was aber in SrVO3 noch nicht berücksichtigt wurde. Daher
führten wir umfassende LDA+DMFT Untersuchungen des Systems unter Berücksichtigung dieser
Fehlstellen durch, die tatsächlich zeigen, dass der beobachtete Zustand unterhalb der Fermikante aus
zwei Komponenten besteht: Einmal aus dem bisher bekannten Hubbardband, aber zusätzlich auch
aus einem Beitrag der Sauerstoff-Fehlstellen. Dieses Ergebnis liefert nicht nur wichtige Hilfestel-
lung bei der experimentellen Untersuchung zukünftiger verwandter Systeme, sondern bestätigt auch
die Gültigkeit bestehender LDA+DMFT Untersuchungen.

Im letzten Teil dieser Arbeit fassen wir noch einmal die wichtigsten Punkte und Ergeb-
nisse zusammen und geben einen Ausblick auf mögliche Erweiterungen von LDA+DMFT, wie
beispielsweise die schrittweise Berücksichtigung von nichtlokalen Korrelationen, einer dynamis-
chen Coulombwechselwirkung oder Möglichkeiten zur Behandlung des Doublecounting Problems.
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Abstract

The study of the electronic properties of correlated systems is a very diverse field and has lead to
valuable insight into the physics of real materials. In these systems, the decisive factor that governs
the physical properties is the ratio between the electronic kinetic energy, which promotes delocaliza-
tion over the lattice, and the Coulomb interaction, which instead favours localized electronic states.
Due to this competition, correlated electronic systems can show unique and interesting properties
like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in
general a high sensitivity to the environmental conditions.

A theoretical description of these systems is not an easy task, since perturbative approaches
that do not preserve the competition between the kinetic and interaction terms can only be applied in
special limiting cases. One of the most famous approaches to obtain the electronic properties of a real
material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground
state density of the system under investigation by mapping onto an effective non-interacting system
that has to be found self-consistently. While being an exact theory, in practical implementations
certain approximations have to be made to the exchange-correlation potential.

The local density approximation (LDA), which approximates the exchange-correlation contribu-
tion to the total energy by that of a homogeneous electron gas with the corresponding density, has
proven quite successful in many cases. Though, this approximation in general leads to an under-
estimation of electronic correlations and is not able to describe a metal-insulator transition due to
electronic localization in the presence of strong Coulomb interaction.

A different approach to the interacting electronic problem is the dynamical mean-field theory
(DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non-local
fluctuations. It has been successfully used to study the whole range of weakly to strongly correlated
lattice models, including the metal-insulator transition, since even in the relevant dimensions of
d = 2 and d = 3 spatial fluctuations are often small.

The extension of DMFT towards realistic system by the use of DFT has been termed
LDA+DMFT and has since then allowed for a significant improvement of the understanding of
strongly correlated materials.

We dedicate this thesis to the LDA+DMFT method and the study of the recently discovered iron-
pnictide superconductors, which are known to show effects of strong electronic correlations. Thus,
in many cases these materials cannot be adequately described by a pure DFT approach alone and
provide and ideal case for an investigation of their electronic properties within LDA+DMFT.

We will first review the DFT method and point out what kind of approximations have to be made
in practical calculations and what deficits they entail. Then we will give an introduction into the
Green’s function formalism in the real and imaginary time representation and discuss the resulting
consequences like analytic continuation to pave the way for the derivation of the DMFT equations.
After that, we will discuss the combination of DFT and DMFT into the LDA+DMFT method and
how to set up the effective lattice models for practical calculations.

Then we will apply the LDA+DMFT method to the hole-doped iron-pnictide superconductor
KFe2As2, which we find to be a rather strongly correlated material that can only be reasonably
described when electronic correlations are treated on a proper level beyond the the standard DFT
approach. Our results show that the LDA+DMFT method is able to significantly improve the agree-
ment of the theoretical calculation with experimental observations.

Then we expand our study towards the isovalent series of KFe2As2, RbFe2As2 and CsFe2As2,
which we propose to show even stronger effects of electronic correlations due to an increase in
localization of the iron 3d orbitals. This assumption is indeed confirmed by our calculations and we
also find a significant increase in the incoherence properties along the series, which shows that these
systems cannot be described within a Fermi-liquid picture even at lower temperatures.

Finally, we close the circle by reinvestigating the probably best studied system within
LDA+DMFT, the cubic perovskite SrVO3. In the literature there was an overall agreement that
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a low-energy feature below the Fermi level in SrVO3 is to be interpreted as a lower Hubbard band.
In contrast to that we show that oxygen vacancies that are well-known in related materials create a
similar feature at the same energy, so that an interpretation of this state purely in terms of a lower
Hubbard band is not correct.
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Chapter 1

Introduction

The concept of electronic correlations is one of the hardest, yet most interesting aspects in the field
of theoretical as well as experimental solid state physics. This thesis will investigate the realisations
of strong electronic correlations due the Coulomb repulsion between electrons in different materials
and theoretical concepts of describing and investigating their effects on physical properties.

In this chapter we will give a short overview over the main aspects of this thesis. We will first
introduce the very general problem of how an ensemble of electrons in a solid interacts and what
problems arise when we want to investigate the system from the viewpoint of a theoretical physicist.

After that, we will review a special type of materials, namely a class of superconductors in which
electronic correlations are important to consider for a correct physical description and interpretation
of their properties.

1.1 The problem of interacting electrons
One of the most fundamental reasons why solid state physics is such a diverse field and never seems
to stop surprising researchers investigating experimentally and theoretically the properties of solid
matter is the complicated interplay and interaction of how the electrons “live” and move in-between
and around the atoms of a crystal. These electrons originally belonged to the atoms that are the
building block of the material, and when we think bringing single atoms close together to assemble
the crystal lattice, these electrons start to “feel” the electrons from other atoms and interact with
them. How the electrons interact can be described in mathematical terms by the Coulomb interaction,
which makes electrons repel each other, but feel attracted to the atoms of the lattice.

This two-sided form of the interaction in general causes electrons to avoid each other, while
at the same time they want to cling close to an atom, causing them to accumulate close together
around the atoms and feel each other even more! These conflicting interests give rise to a plethora of
many-body effects, ranging from nearly-free electronic systems found in metals to highly correlated
insulating systems where the Coulomb repulsion between the electrons becomes so dominant that
the electrons in the outer atomic shells completely localize on the atomic sites in order to reduce the
repulsive interaction from the other electrons on other atoms as much as possible.

Interestingly, these two extreme cases are the easiest to study, since in these limits approxima-
tions can be made that allow for a significant simplification of the problem without neglecting any
other important effects. For example, in a very good metal the Coulomb repulsion only has a negli-
gible contribution to the total energy compared to the kinetic energy of the electrons, which makes it
possible to forget about the electron-electron interaction altogether and describe the system as non-
interacting electrons without notable loss of accuracy. On the other hand for insulating systems with
localized electrons, the kinetic energy contribution can be often be simplified and the system can be
described in terms of a Heisenberg model.

Naturally, most systems found in real life fall in-between these two limits and are thus much
harder to investigate, since neither the kinetic energy nor the Coulomb interaction dominates over

1



2 1. Introduction

the other but rather, they compete with each other. As a result, theoretical approaches to these
systems need to be able to treat these two contributions on equal footing if we want to be able to
describe physical properties with reasonable accuracy. This thesis is dedicated to a method which
follows exactly this approach: the dynamical mean-field theory (DMFT).

This method does not resort to severe approximations of neither the kinetic nor the Coulomb
interaction part by assuming one of the limits discussed above, and thus retains the competition
between these terms even when both are of equal strength. Instead, it makes approximations about
the underlying lattice structure which become more accurate the more neighbours surround the atoms
in the lattice. In the most simple cubic lattice, one atom has already Z = 6 nearest neighbours, and
this number can increase quite quickly like in the face-centered cubic (fcc) lattice structure which
has Z = 12 nearest neighbours for a given site. As Z increases, it can be shown that the special
lattice approximation in DMFT becomes exact in the limit of Z →∞.

These aspects make DMFT a very valuable approach to study systems that fall in-between the
two limits of free and localized electrons, since the lack of approximation on these two parts fully re-
tains their competition allows for an investigation of the whole range from weak to strong interaction
strength. In this thesis we will apply the DMFT method in combination with other well-established
theoretical methods, called LDA+DMFT, to realistic systems that fall into the category of inter-
mediate to strong electronic interactions. They already show manifestations of strong Coulomb
interaction effects but are impossible to describe within methods that drastically approximate the
kinetic energy contributions. These systems include the family of the so-called iron-pnictide su-
perconductors, that are a recently discovered and promising type of superconducting materials, as
well as well-known transition metal oxides that still pose a substantial challenge to a theoretical
description.

In the coming sections we will introduce the fundamentals of the method and the theoretical
model we will employ in this thesis in more detail. We will also provide an introduction into the
rather new field of iron-pnictide superconductors and their specific properties which makes them
well-suited for a study within the LDA+DMFT method.

1.2 The theoretical approach
The main object that describes the interaction of electrons and nuclei in a solid is the many-body
Hamiltonian given as

H = Tion + Te + Ve−e + Ve−ion + Vion−ion (1.2.1)

= −
NI∑
i=1

~
2Mi
∇2

Ri
−

Ne∑
i=1

~
2mi
∇2

ri

− 1

8πε0

Ne∑
i,j=1
i 6=j

e2

|ri − rj |
− 1

4πε0

NI ,Ne∑
i,j=1

e2Zi
|Ri − rj |

− 1

8πε0

NI∑
i,j=1
i 6=j

e2ZiZj
|Ri −Rj |

. (1.2.2)

It is composed of the kinetic energy contribution of NI ions Tion and Ne electrons Te, and the
interaction between them. The interacting potential is given by the Coulomb potential, where Ve−e is
the electron-electron, Ve−ion the electron-ion and Vion−ion the ion-ion interaction. The Hamiltonian
in Eq. (1.2.2) describes the full physics of the system exactly (as far as we know). Though, it
cannot be solved due to the sheer number of coupled equations, since NI , Ne ∼ 1023. Even for
small systems like the hydrogen molecule with two electrons and protons finding the Eigenvalues
and Eigenvectors of the Hamiltonian is notoriously difficult due to the fact that the kinetic energy
operator and the Coulomb operator cannot be diagonalized by the same set of Eigenstates. Therefore,
we will always have to rely on some kind of approximations that simplify the Hamiltonian enough
to solve it but retain the most important physical features.

The very first approximation that serves as the starting point for most other further investigations
is to neglect the kinetics of the ions, called Born-Oppenheimer approximation (see Chapter 2). Be-
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cause the mass of the ionsMi is about three orders of magnitude larger than that of the electronsmi,
the kinetic terms of the ions is neglected, and the ion-ion interaction reduces to a constant, which is
usually dropped. With this, one arrives at the simpler Hamiltonian

H = Te + Ve−e + Ve−ion (1.2.3)

= −
Ne∑
i=1

~
2mi
∇2

ri −
1

8πε0

Ne∑
i,j=1
i 6=j

e2

|ri − rj |
− 1

4πε0

NI ,Ne∑
i,j=1

e2Zi
|Ri − rj |

. (1.2.4)

One of the most famous and highly successful approaches to obtain a solution of this Hamil-
tonian is density functional theory (DFT) [1], which we will discuss in more detail in Chapter 2.
Instead of calculating the Eigenvectors directly, DFT reformulates the Hamiltonian in terms of the
electronic density, which fundamentally reduces the complexity of the problem. While being in
principle an exact theory and parameter free (ab initio), we have to pay the price of loosing all in-
formation about the excited states, since only the ground state properties can be accessed in DFT. In
practice, approximations to the electron-electron interactions will be made in DFT, which generally
underestimate the localized nature of electrons in correlated materials.

Another approach is to map the interacting Hamiltonian onto an effective lattice model and
(usually) to apply approximations to both the kinetic and interaction terms which are supposed to
have only little impact on the physical properties. The most well-known lattice model is the so-called
Hubbard model [2–4]. Introducing a basis of local orbitals |χimσ〉, where i labels the atomic sites of
the crystal, m labels the atomic orbitals of the electrons and σ the spin degrees of freedom, we can
rewrite the Hamiltonian in Eq. (1.2.4) in second quantization in the following form

H =
∑

ij,mm′,σ

tijmm′c
†
imσcjm′σ +

1

2

∑
ijkl

mm′nn′,σσ′

V ijklmnm′n′c
†
imσc

†
jnσ′cln′σ′ckm′σ, (1.2.5)

where tijmm′ = 〈χimσ|Te + Ve−ion|χjm′σ〉 is the matrix element of the kinetic energy and the back-
ground potential generated by the ions, which is also called hopping amplitude, since it corresponds
to the annihilation of an electron at site j and recreation at site i, with a possible change of orbitals
m′ to m. Furthermore, V ijklmnm′n′ = 〈χimσχjnσ′ |Ve−e|χkm′σχln′σ′〉 are the matrix elements of the
two-particle operator corresponding to the Coulomb interaction.

No simplification has been made so far, and we still face a problem with an infinite number of
parameters tijmm′ , V

ijkl
mnm′n′ . To reduce the complexity of the Hamiltonian, the Coulomb interaction

can be assumed to be a short-range local interaction

V ijklmnm′n′ = Umnm′n′δijδjkδkl. (1.2.6)

This approximation is often not a severe one, since the site-offdiagonal matrix elements V ijklmnm′n′

are usually small, because the product of the local orbitals χ(r) ∼ e−r with the Coulomb term
V (r) ∼ 1/r falls off very quickly as a function of distance (see also discussion in Chapter 5).
Depending on the specific type of orbitals, many other orbital-offdiagonal terms can be shown to
either vanish by symmetry or be very small. One of the most widely used approximations is to
keep only the density-density terms of the interaction, i.e. Umnm′n′ = Umnδmm′δnn′ . With this
approximation, one arrives at the simplified Hubbard model

H =
∑

ij,mm′,σ

tijmm′c
†
imσcjm′σ +

1

2

∑
i

mn,σσ′

Umnnimσninσ′ , (1.2.7)

where nimσ = c†imσcimσ is the particle number operator. This is the final form of the Hamiltonian
that will be used to investigate real materials in this thesis. By appropriately choosing the parameters
tijmm′ and Umn of the model, a good representation of the real system can be usually achieved. In
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this thesis we will use the so-called LDA+DMFT method to obtain the necessary input parameters
and solve the effective Hamiltonian in Eq. (1.2.7).

Even though we already simplified the original Hamiltonian in Eq. (1.2.2) quite extensively,
Eq. (1.2.7) still cannot be solved analytically except in one dimension [5]. For that reason we have
to resort to further approximations and numerical methods. As already mentioned, in this thesis we
will be interested in materials that can neither be described in terms of almost free electrons, where
the kinetic energy dominates tijmm′/Umn →∞, nor as localized systems, where the Coulomb energy
dominates tijmm′/Umn → 0. Therefore, perturbative theories on the kinetic or interacting term are
ruled out. Instead, we will employ the dynamical mean-field theory, which is non-perturbative in
both tijmm′ and Umn. It relies on the observation by Metzner and Vollhardt [6], that in the limit
of infinite dimensions, or infinite number of nearest-neighbours, the Selfenergy of the interacting
electronic system becomes a purely local quantity where all site-offdiagonal terms vanish.

This finding leads to a significant simplification of the original Hubbard model, which in this
limit can be exactly mapped onto a single impurity problem embedded in a non-interacting bath,
as shown by Georges and Kotliar [7]. All spatial degrees of freedom can be integrated out and
only temporal fluctuations remain, which makes it possible to use efficient numerical methods like
continuous-time quantum Monte Carlo [8, 9], that can obtain an exact solution of the d → ∞ im-
purity model (within numerical accuracy). This method will allow us to study the whole range of
the competition between the kinetic energy and interaction strength, since no further approximation
is made on these terms. For real systems we loose the momentum-dependence of the Selfenergy,
which is supposed not to be a severe approximation in the relevant case of three dimensions. All the
systems we are going to study either show a cubic perovskite crystal structure with Z = 6 nearest-
neighbours or the face-centered cubic lattice structure with Z = 12, where the local approximation
is known to hold quite well [10].

In addition to DMFT, which is used to solve the Hamiltonian, we will employ DFT to obtain
an ab initio effective Hubbard model by a projection technique as explained in Chapter 6.2. This
combination of DFT for setting up a realistic Hubbard model and DMFT for solving it, is termed
LDA+DMFT (local density approximation + dynamical mean-field theory).

First, we will give a brief introduction of DFT in Chapter 2, why it is not able to describe strongly
correlated systems adequately and possibilities for improvements by hybrid functionals or LDA+U
methods. As the next step we will introduce the formalism of Green’s function in Chapter 3 in
the real and imaginary time formulation, and the resulting peculiarities like Matsubara frequency
summations or the problem of analytic continuation in Chapter 3.8 and 4. Finally, we will discuss
the DMFT derivation and the resulting equations in Chapter 5.2, and how they can be combined with
DFT to obtain the LDA+DMFT method in Chapter 6.

1.3 Iron-based superconductors
When the first iron-based superconductor LaFeAsO1−xFx with a Tc = 26 K [11,12] was discovered
in 2006, it lead to the beginning of a new and quickly evolving field of theoretical and experimental
research of these materials. The finding of these type of superconductors actually came as a surprise,
since at that time it was assumed that iron is in general detrimental to superconductivity since doping
it into cuprate superconductors quickly reduces the critical temperature [13]. Though, shortly after
the discovery new iron-based materials could be synthesized that reached critical temperatures up to
Tc ≈ 56 K [14] and there are indications that even Tc > 100 K might be possible in single-layered
materials [15].

All members of the iron-pnictide superconductor family share the same structural element of an
iron-pnictide or iron-chalcogenide layer, where the iron atoms form a square lattice are surrounded
by a tetrahedron of pnictogen or chalcogen atoms. These layers are then stacked with potentially
other atomic species in-between to build up the whole crystal. Possible realizations are for example
no ions in-between the layers like in FeSe, called 11 family, or alkali ions between the layers like
in LiFeAs, which is called the 111 family. A variation of the latter is the 122 family, where the
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Figure 1.1: The basic structure of iron-based superconductors is a rectangular grid of iron-pnictide
or iron-chalcogenide layers (shown on the left side). In this layer, every iron atom is surrounded by
a tetrahedron of pnictide or chalcogenide atoms.
A typical representative of the 122-family is shown on the right side, where the iron layers are
alternatively stacked with other atoms in between the layers. The most prominent examples of the
122-family are BaFe2As2,CaFe2As2 or KFe2As2 (figure generated with [16]).

unit cell contains two iron-layers with one layer flipped like in BaFe2As2. Furthermore, the 1111
family features more complex layers that are sandwiched between the iron layers like in LaFeAsO.
In Fig. 1.1 we show the structure of the 122 member BaFe2As2 and the respective iron layer that is
characteristic for all the iron based materials.

In this thesis we will put a special focus on the 122 family, specifically the hole-doped com-
pounds that can be obtained from the parent system BaFe2As2 by substituting either potassium,
rubidium or caesium into the barium site, which show many features of a strongly correlated elec-
tronic system.

The iron-based superconductors are three-dimensional metallic systems under ambient condi-
tions with nominally 6 electrons occupying the Fe 3d shell. Since the tetrahedral environment of
each iron is not a perfect tetrahedron, the iron 3d orbitals split only approximately into the two-
fold degenerate eg and three-fold degenerate t2g orbitals. Thus, in the tetragonal phase of the 122
members only the Fe 3dxz and 3dyz orbitals are exactly degenerate.

In general all Fe 3d orbitals have finite weight at the Fermi level, which causes the physics
of these systems to be of multi-orbital nature. Due to the partial hybridization with the pnicto-
gen/chalcogen atoms above and below the iron layer, these atoms also contribute to a small degree
with 4p orbital character around the Fermi level. Though, the most weight at the Fermi level is orig-
inating from the Fe 3dxy , 3dxz and 3dyz orbitals. In the parent compound up to three bands cross
the Fermi level at the Γ point that form Fermi surface pockets of hole-like character, with usually
two two additional pockets at the M point of electron-like character.

In the iron-based superconductors the Coulomb repulsion between the electrons occupying the
Fe 3d orbitals plays an important role for the electronic properties, especially when the system is
brought from the nominal 3d6 configuration closer to half-filling by hole doping.

While DFT is able to describe the electronic structure of these systems to some extent qualita-
tively correct [17], strong electronic correlations give rise to certain features that cannot be explained
via a DFT approach alone. The most direct comparison of the electronic structure is provided
by optical spectroscopy [18], photoemission spectroscopy [19–21] or quantum oscillation experi-
ments [22–26], which can vary from a satisfactory agreement to significant deviations. From these
results one generally observes that the neglect of strong correlations in DFT leads to an underesti-
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mation of the effective electron mass, bandwidth renormalization, differing sizes of Fermi surface
pockets or even qualitatively wrong Fermi surfaces like in LaFePO [27].

Due to this shortcomings of DFT, an improved treatment of the electronic correlations via
LDA+DMFT has proven to be quite successful in many materials [27–32]. Promising results
and significant improvements of the agreement with experiments have been obtained by the in-
clusion of aspects that are simply out of the scope of DFT, like possible non-Fermi liquid be-
haviour [28, 29, 33–35] or the double-faced nature of the Hund’s coupling JH , which can lead to
very different characteristics of correlated systems [33–38]. Especially the latter aspect is still under
active discussion [38–41], since the Hund’s coupling JH can, dependent on the orbital filling, on the
one hand render a moderately correlated system even more correlated and bad metal-like, while on
the other hand it can reestablish metallic behavior in a highly correlated system [38, 41].

In this thesis we will apply the LDA+DMFT method to the strongly correlated hole-doped 122
series AFe2As2 (A=K, Rb, Cs) to study especially the effects of electronic correlations that are not
captured in DFT, like effective mass enhancements, electronic structure and Fermi surface modifi-
cations introduced by correlations, and non-Fermi liquid behavior in combination with the effect of
the Hund’s coupling JH .

The hole doped 122 series is especially interesting for a comparative study, since the isovalent
doping by K, Rb and Cs corresponds to an effective negative chemical pressure that leads to an
expansion of the unit cell, that in turn increases the localization and thus the correlation of the Fe 3d
orbitals. Manifestations of correlations were already suggested on the experimental side in form of a
coherence-incoherence transition [42,43] and strongly enhanced Sommerfeld coefficient [42,44–48],
which is proportional to the effective electronic mass. These observations seem to indicate that these
hole-doped systems are one the most strongly correlated 122 iron-pnictide superconductors.

Theoretical investigations seem to confirm the strong electronic correlations in KFe2As2 [28,40,
42, 49]. While there exist LDA+DMFT calculations for KFe2As2 [28, 49] that show the effects of
correlations on the Fermi surface and susceptibility, the temperature dependence and influence of
the Hund’s coupling JH have not been studied in detail in this system so far.

Therefore, we will devote Chapter 7 solely to the KFe2As2 system and our results we obtained
within LDA+DMFT for the band structure, Fermi surface and the so-called de Haas-van Alphen
frequencies, which give a measure about the extremal cross-sections of the Fermi surface pockets.
Chapter 8 will then continue to investigate the hole-doped 122 series AFe2As2 (A=K, Rb, Cs) with
a special focus on correlation induced non-Fermi liquid behavior, where the lifetime of the quasi-
particle excitations is significantly reduced, and the influence of the Hund’s coupling JH , where our
LDA+DMFT results for RbFe2As2 and CsFe2As2 are the first in the literature. In Chapter 9 we
will close the cycle and come back to one of the best studied systems within LDA+DMFT, namely
SrVO3. While basically all experimental and theoretical groups assumed for more than a decade to
correctly identify a low-energy spectral feature as a correlation induced Hubbard band [50–57], we
will show that the interpretation of this feature solely in terms of incoherent spectral weight is not
correct.



Chapter 2

Density functional theory:
advantages and shortcomings

One of the most successful methods for theoretical investigation of the properties of solids is the
density functional theory (DFT). It is probably one of the most well-known and most often applied
approaches, finding wide use in physics, chemistry and material sciences. Its success is not only
founded on its accuracy of calculating ground state energies, but also on its versatility, which makes it
possible to determine many observable properties of solids, like lattice parameters, elastic constants,
magnetization or, to some extent, absorption and excitation spectra, and its generality of being able
to be applied to basically any solid material.

2.1 The density functional formalism
We will now give a short overview over the most important equations and approximations that are
applied in DFT, and possible weaknesses arising from them. In this section we will follow the ideas
of the excellent review on DFT by Cottenier [58].

A solid consists of a collection of electrons that move in a usually, but not necessarily, regular
lattice of positively charged ions. The only terms that enter the energetics of the system are given by
the kinetic energy of the electrons and ions, and the Coulomb interaction between them. For a usual
solid the number of electrons and ions is of the order of ∼ 1023, making it obviously impossible to
be solved exactly right from the start.

Nonetheless, we can exactly write down the physical equations that govern the evolution and
energetics of such many-body systems. Assuming that only the Coulomb interaction is the main
interaction between all particles involved, the Hamiltonian for any general solid is given by

H = Tion + Te + Ve−e + Ve−ion + Vion−ion (2.1.1)

= −
∑
i

∇2
Ri

2Mi
−
∑
i

∇2
ri

2mi

−
∑
ij

Zi
|Ri − rj |

− 1

2

∑
i6=j

1

|ri − rj |
− 1

2

∑
i 6=j

ZiZj
|Ri −Rj |

, (2.1.2)

using atomic units, where e = mi = ~ = 1
4πε0

= 1. mi, Mi are the electronic and ionic mass,
and ri, Ri are the electronic and ionic positions, respectively. The first two terms correspond to the
kinetic energies, while the last three terms describe the Coulomb interaction between the particles.

The first approximation that we will apply to the full Hamiltonian in Eq. (2.1.2) is the so-called
Born-Oppenheimer approximation. Noticing that the ionic mass is usually three orders of magnitude
larger than the electronic mass Mi � mi, we know that the dynamics of the ions will much slower

7
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than that of the electrons. Therefore, the ions are basically fixed at their lattice sites on the timescale
of the electronic dynamics and we can neglect the kinetic part of the ions without introducing a
significant error to the dynamics of the system. Without the kinetic part, Vion−ion is just a constant
since the ionic positions will not change over time and can be dropped.

The resulting Hamiltonian is now much simpler

H = Te + Ve−e + Ve−ion (2.1.3)

= −
∑
i

∇2
ri

2mi
− 1

2

∑
i 6=j

1

|ri − rj |
−
∑
ij

Zi
|Ri − rj |

, (2.1.4)

but still too complicated to be solved exactly. The first two terms Te, Ve−e are completely universal
and independent of the particular solid. All information about the material is encoded in Ve−ion and
the complicated interaction between a moving electron and moving ion has now been replaced by
the much simpler problem of an electron moving in a static background potential.

The big problem of solving the Hamiltonian in Eq. (2.1.4) is that it is completely intractable even
if we could devise a numerical procedure to solve it due to its complexity. Its Eigenfunctions |ψn(r)〉
would be given as a linear combination of antisymmetric products of N -electron wave functions,
whereN ≈ 1023, which makes any approach that computes |ψn(r)〉 even approximately completely
unrealistic.

A possible way out of this dilemma was proposed by Hohenberg and Kohn, who suggested that
in the ground state of the system the ground state many-body wave function |ψ0(r)〉 is not necessary
to describe all properties of the system but only the ground state density ρ0(r). From this idea they
formulated two theorems [1]:

1. There exists a unique mapping between the ground state density ρ0(r) of a many-body elec-
tronic system and the external potential Ve−ion. Therefore, the ground state expectation value
of any operator is a unique functional of the ground state density

〈ψ0|O|ψ0〉 = O[ρ0]. (2.1.5)

2. The ground state total energy functional 〈ψ|H|ψ〉 = E[ρ] is given by

E[ρ] = 〈ψ|(Te + Ve−e)|ψ〉+ 〈ψ|Ve−ion|ψ〉 (2.1.6)

= FHK[ρ] +

∫
ρ(r)Ve−ion(r) dr, (2.1.7)

and E[ρ] reaches its minimal value of the ground state energy when ρ = ρ0. The Hohenberg-
Kohn functional FHK[ρ] is universal and contains the kinetic and potential energy contribution
of the electrons.

The substitution of the ground state density as the main variable of interest provides a huge
simplification, since we now only need to know one single function ρ(r), instead of the much larger
and complicated ground state wave function. The Hohenberg-Kohn theorems tell us that the ground
state density thus contains exactly as much information as the ground state wave function, so that
no information is lost. Though, it is important to point out that this statement is only made for the
ground state! For all other states no statement is made about whether they can be substituted by
the corresponding density without loss of information. The only information we have is that the
density from all other states will have a larger energy E[ρ] than ρ0. Since E[ρ] is calculated from
the density, we even do not know whether it is equal to 〈ψ|H|ψ〉 for any other state than the ground
state. Therefore, the Hohenberg-Kohn theorems in general do not allow us to draw conclusions about
excited states.
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2.2 The Kohn-Sham equations
The remaining step to the determination of the ground state density in practice was provided by
Kohn and Sham [59], who showed that ρ0 can be obtained by a related but fictitious non-interacting
electron system. For this, one separates the total energy functional in the following way

E[ρ] = T0[ρ] + VH [ρ] + Vx[ρ] + Vc[ρ]︸ ︷︷ ︸
Vxc[ρ]

+Ve−ion[ρ], (2.2.1)

where T0[ρ] is the functional for the kinetic energy of a non-interacting electron gas, VH [ρ] is the
Hartree contribution given by

VH [ρ] =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)
|r− r′| , (2.2.2)

and Vx[ρ], Vc[ρ] are the exchange and correlation contributions that are unknown at this point. They
contain all the difficult contributions of exchange and correlation that are not included by the simple
Hartree term, which contains only the static Coulomb energy for the electronic density.

Eq. (2.2.1) is nothing but the original total energy functional in Eq. (2.1.7), rewritten in a slightly
different way. The important observation is though that it has the same form of a non-interacting
electron gas subject to the two effective potentials Vxc[ρ] and Ve−ion[ρ]. The Hamiltonian that would
correspond to such energy functional is called the Kohn-Sham Hamiltonian HKS and is given by

HKS = −
∑
i

1

2m
∇2
i +

∫
dr′

ρ(r′)
|r− r′| + vxc + ve−ion, (2.2.3)

where the exchange-correlation and external potential are given by

vxc =
δVxc[ρ]

δρ
and ve−ion =

δVe−ion[ρ]

δρ
. (2.2.4)

We can now reformulate the original problem of finding the ground state density by solving the
effective Kohn-Sham Hamiltonian: The exact ground state density ρ0(r) of the original N -electron
system is given by

ρ0(r) =

N∑
i=1

φ∗i (r)φi(r), (2.2.5)

where the Kohn-Sham wave functions φi(r) are the N lowest-energy Eigenvectors of the effective
non-interacting Kohn-Sham Hamiltonian

HKSφi = εiφi. (2.2.6)

This result is now a significant simplification of the original Hamiltonian (2.1.4), which describes
interacting electrons moving in a background potential Ve−ion. To obtain the same ground state
density, we can instead solve Eq. (2.2.6), which describes non-interacting electrons moving in an
effective potential that depends on the electronic density itself. By this, we have completely avoided
the problem of dealing with the complicated electron-electron interaction due to the Coulomb po-
tential.

As a result, the Hamiltonian to diagonalize now depends on the solution, namely the density
ρ which defines the Hartree and the exchange-correlation term in Eq. (2.2.3). Therefore, we have
obtained a self-consistency relation where we do not know the equation to solve before we have
obtained its solution. We first have to guess an initial ρ0(r), solve the resulting HKS for its Eigen-
functions, obtain the solution ρ0(r), update the Hartree and the exchange-correlation term and solve
the newHKS again until the density is converged. Then we have obtained Kohn-Sham wave function
|φi〉 that generate a density that is consistent with HKS.
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It is important to note that the Kohn-Sham wave functions |φi〉 are not the Eigenfunctions of the
original interacting electron problem. Even the |φi〉 that generate the ground state density ρ0 are
not the ground state, since they correspond to a system of non-interacting electrons. Therefore, also
the Eigenenergies εi are not the Eigenvalues of the true system, though, it is approximately possi-
ble to identify certain Kohn-Sham energies to ionization energies, known as the (DFT-)Koopman’s
theorem [60, 61]. This is very different to the Green’s function formalism which we will discuss in
Chapter 3, where the concept of of excitations of the ground state is properly incorporated from the
very beginning.

2.3 The local density approximation
So far, apart from the Born-Oppenheimer approximation the whole scheme we devised for obtaining
the ground state density for an interacting electronic system was exact. This is mostly due to the
fact that we have put all unknowns about the exchange and correlations arising from the interactions
into Vxc[ρ]. This is where approximations have to be made, since we do not now the form of the
exchange-correlation functional.

The most famous approximation to the exchange-correlation functional is the local density ap-
proximation (LDA) [62], which postulates that the exchange-correlation functional is given by

ELDA
xc =

∫
ρ(r)εxc(ρ(r)) dr, (2.3.1)

where εxc(ρ(r)) is the exchange-correlation energy of the homogeneous electrons as a function of
the density ρ, which is known numerically. ELDA

xc is completely local in the sense that the energy
contribution of the energy at each point r only depends on r via εxc, and not on the neighbouring
density. This form assumes that the density of the real system can be locally approximated to be con-
stant and the exchange-correlation energy is therefore given by the homogeneous electron gas with
the corresponding density. Thus, by construction we can expect LDA to be a reasonable approxima-
tion for systems with a homogeneous or slowly varying density ρ(r). This is fulfilled for systems
where the electrons are rather delocalized and weakly correlated (for a more rigorous definition of
correlations see Chapter 5).

For systems where the electrons show some degree of localization on the atomic sites like in
correlated materials that are close to an insulator transition, the approximation of a slowly varying
density is significantly violated. This usually leads to a severe underestimation of the electronic
correlation effects, where some insulating materials are actually predicted to be metallic in DFT like
in nickel and manganese oxides [63].

Therefore, improvements to the approximations applied to ELDA
xc are the defining factor for

improving the accuracy and predictive power of DFT. Possible extensions to the LDA have been
discussed, which are either based on the improvement of the calculation of the exchange-correlation
functional itself, like accounting also for derivatives in the charge density, or by calculating correla-
tion energies by a specialized approach and adding them to the DFT functional. Of these approaches
we will now shortly discuss the most popular method, the generalized gradient approximation (GGA)
and other hybrid functionals, as well as the LDA+U method. In Chapter 5.2 and 6 we will also dis-
cuss the more sophisticated approach of LDA+DMFT, which will be the main focus of this thesis
and can be seen as an extension of the LDA+U method.

2.4 GGA and hybrid functionals
The first step of improving the LDA functional, which is only dependent on the value of the density
at a specific point r in space, is to include the next term in the Taylor series of the functional by con-
sidering also a dependency on the derivative of the density. This approximation is called generalized
gradient approximation (GGA) [64], which respects the linear term of the change of the density at
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the given position r. The exchange-correlation functional is then of the form

EGGA
xc =

∫
ρ(r)εxc(ρ(r),∇ρ(r)) dr. (2.4.1)

While GGA in practice usually improves on LDA, it still retains its local nature since its non-locality
is restricted only to an infinitesimal area around position r that defines the derivative of the density.

The next improvements are so-called meta GGA’s, which include also the second derivative of
the density [65–67]. A famous version is Perdew’s TPSS functional [68], but the usage of meta
GGA’s in practice not very common.

A slightly different approach is taken by the so-called hybrid functionals [69,70], which include
some portion of the exact exchange from Hartree-Fock theory

EHF
x = −1

2

∑
m,n

fnfm

∫
dr

∫
dr′

φ∗m(r)φn(r)φ∗n(r′)φm(r′)
|r− r′| , (2.4.2)

which is expressed in terms of the Kohn-Sham wave function rather than the density. Therefore, it
only implicitly depends on the density. The different hybrid functionals mostly differ in the amount
of exact exchange that is mixed into the exchange-correlation energy. The weight can be determined
by fitting to experimental data or can also be fixed by so-called adiabatic connection functionals [71,
72].

The PBE0 functional [73] includes the exact exchange with a ratio of 1 : 3, i.e. in combination
with GGA

EPBE0
xc =

1

4
EHF
x +

3

4
EGGA
x +

1

4
EGGA
c . (2.4.3)

Another possibility is the B3LYP functional [70, 74], which is obtained from a parameter fit to
many simple molecules. It has the form

EB3LYP
xc = ELDA

x + a0(EHF
x − ELDA

x ) + ax(EGGA
x − ELDA

x ) + ELDA
c + ac(E

GGA
c − ELDA

c ),
(2.4.4)

where a0 = 0.2, ax = 0.72 and ac = 0.81. The reliance on experimental input and chosen fitting
parameters in principle takes away the ab initio character of DFT.

In general hybrid functionals are found to perform better than the standard LDA or GGA func-
tionals with respect to binding energies or band gaps. For the description of solids the inclusion
of the exact exchange is questionable, since the exact exchange hole in a periodic lattice is much
more extended compared to molecules or single atoms but including interactions in a solid, the long-
ranged tails of the exchange hole are efficiently screened. Therefore, the long-range part of the
exact exchange should be mixed into the exchange-correlation functional with a smaller ratio than
the short-range part, which is taken into account for example in the HSE functionals [75, 76]. As a
result, hybrid functionals are not always more accurate than standard LDA, since in LDA parts of the
underestimated long-ranged contribution of the exchange already cancel with similar overestimated
contributions from correlations that are taken into account in LDA [77].

2.5 LDA+U
The most prominent deficiency of DFT and the local density approximation is the failure to describe
strongly correlated systems and their the famous hallmark of the Mott-insulator transition. In con-
trast to band insulators that originate from closed electronic shells, the insulating ground state in
Mott insulators arises from the strong Coulomb repulsion between the electrons, which forces them
to localize on the atomic sites in atomic-like local orbitals [78]. This state is a true many-body phe-
nomena, which cannot be described by a Slater-determinant of single-particle states, which is the
reason why also standard Hartree-Fock fails to describe the Mott-insulator transition.
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The LDA and GGA functionals are also unable to capture these insulating states by construc-
tion, being based on the exchange-correlation energy of a homogeneous electron gas. In the Mott-
insulator, the electrons are localized on the atomic sites, which renders the electronic density ρ(r)
highly inhomogeneous and almost as Delta function-like, centered on the atomic sites. Similarly,
also the intermediate regime where the electrons show some degree of localizations and a higher
“effective mass” due to the electronic correlations cannot be sufficiently described in a local density
approximation.

Instead of directly improving the DFT functionals, the idea of the LDA+U method utilizes a
completely different approach to include strong electronic correlations. This is done by considering
the so-called Hubbard model [2–4] that explicitly takes into account the competition between the
kinetic and Coulomb energy (the Hubbard model will be discussed in more detail in Chapter 5.2).
In its simplest form, the Hubbard Hamiltonian describes electrons in a single local atomic orbital on
a lattice and is given by

H =
∑
〈i,j〉,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (2.5.1)

where c†iσ, ciσ are the creation/annihilation operators of an electron on site i with spin σ. tij is the
hopping amplitude to the nearest neighbouring sites, indicated by the summation over 〈i, j〉 and U
is the effective Coulomb interaction that raises the energy if two electrons of opposite spin occupy
the same site.

This model is able to describe the metal-insulator transition [79–81] for large values of U/tij ,
i.e. when the Coulomb interaction is much larger than the kinetic contribution. For U/tij � 1, the
ground state corresponds to that of free electrons with the dispersion given by the Fourier transform
of the hopping amplitudes tij . On the other hand, for U/tij � 1 the ground state at half filling
corresponds to each atomic site being occupied by exactly one electron since it minimizes the total
energy. In this case the system is insulating because electrons cannot hop to neighbouring sites due
to the energy barrier U . Such insulating state at half filling is usually impossible to obtain within the
local density approximation and instead would predict the system to be metallic.

Therefore, the case of weak Coulomb interactions U/tij � 1 is usually well described within
the usual approximations to the DFT exchange-correlation potentials, since the electronic wave func-
tions are close to that of free particles and thus create a very homogeneous electronic density. The
opposite case U/tij � 1, leading to a very inhomogeneous density, is the problematic one.

LDA+U is one of the simplest approaches of combing standard DFT with a more sophisticated
treatment of the correlation part of the exchange-correlation potential [63, 82–84]. It is based on the
mapping of the system under consideration onto an effective Hubbard model, solving the model and
adding the correlation terms back into the DFT functional.

Within LDA+U the total energy functional is given as

ELDA+U[ρ] = ELDA[ρ] + EHub[niσmm′ ]− EDC[niσ], (2.5.2)

where EHub includes the correlation effects from the electron-electron interactions in the Hubbard
model. EDC is a so-called Hubbard term, that is needed to subtract the contributions that are both
accounted for in DFT and the solution of the Hubbard model (for a more detailed discussion see
Chapter 6.4). The Hubbard correction is only applied to a set of localized orbitals like d- or f -shells,
which are the most affected by electronic correlations due to the short electron-electron distance in
these narrow orbitals. The Hubbard term EHub is a functional of the occupation numbers of these
orbitals that are given by a projection from the occupied Kohn-Sham wave function onto the set of
localized orbitals |χim〉

niσmm′ =
∑
kv

fσkv 〈φσkv|χim′〉 〈χim|φσkv〉 , (2.5.3)

where fσkv is the Fermi-Dirac occupation of the Kohn-Sham states and i labels the atomic sites. In the
basis-set independent generalization of LDA+U [85], the contribution to the DFT energy functional
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was shown to be in first order (we focus only on a single site for simplicity)

EHub[nσmm′ ] =
1

2

∑
mm′σ

Umm′nmσnm′σ̄ +
∑

m>m′σ

(Umm′ − Jmm′)nmσnm′σ, (2.5.4)

where Umm′ = 〈mm′|VCoulomb|mm′〉 and Jmm′ = 〈mm′|VCoulomb|m′m〉 are the matrix elements
of the screened Coulomb interaction in the local orbital basis (see Chapter 6.6). The second term is
a result of the Hund’s coupling which energetically favours parallel spin orientations.

In this form the LDA+U correction consists basically of the Hartree term only applied to
the correlated orbitals, with the Coulomb interaction approximated by a screened constant value
Umm′ , Jmm′ . Though, the difference to static mean-field theory is that it is determined self-
consistently within the DFT calculation. The correction penalizes the double occupation of the
local orbitals and will thus modify the occupations of the correlated sector with respect to standard
LDA. The (assumed to be) uncorrelated sector is reasonably well described within LDA, so the total
charge ρ that minimizes the energy is found self-consistently within the Kohn-Sham Hamiltonian
under the constraint of the energy penalty given by Eq. (2.5.4).

LDA+U is capable of describing the magnetic ground state of Mott-insulators, since it can open a
gap by forming long-range magnetic or orbital order. As an example let us consider the most simple
case of a system with only one correlated orbital at half filling. Since the second term in Eq. (2.5.4)
vanishes for one orbital and using n↑ + n↓ = 1, we can write the Hubbard correction as

EHub[nσ] =
U

2

∑
σ

nσnσ̄ (2.5.5)

= Un↑(1− n↑). (2.5.6)

The resulting EHub as a function of n↑ has a maximum of 1
4U at n↑ = 0.5 and two minima of

EHub = 0 for n↑ = 0, 1. This means that LDA+U favours the magnetic polarization of the system,
where the spin occupations are as different as possible to minimize the energy. From the potential
difference of the two spin species we see that

δEHub[nσ]

δn↑
− δEHub[nσ]

δn↓
= U(n↓ − n↑), (2.5.7)

which shows that the two states are separated by U in the polarized case, which gives a measure-
ment of the energy gap between them. Thus, in agreement with the metal-insulator transition in the
Hubbard model, LDA+U is able to open a gap of the order of U in the Kohn-Sham spectrum of the
system.

Although this result is a huge improvement upon standard LDA, we have to keep in mind that
the opening of the gap is only possible if degeneracies between the orbital and spin occupations are
lifted already in LDA. If there were no spin differentiation in our example of the one-orbital system,
the potentials for the two spin species would be exactly identical and no gap would open for any
value of U . Therefore, LDA+U cannot describe a gap opening in a paramagnetic one-band system
and one often artificially imposes or breaks certain symmetries within a crystal in order to push the
system in the right direction of possible insulating instabilities.

In the language of Green’s functions, which will be discussed in Chapter 3, the LDA+U formal-
ism corresponds to a zeroth-order approximation of the Selfenergy which has no frequency depen-
dence and no imaginary part. As a result the modified Kohn-Sham energies are shifted by a constant
regardless of their distance to the Fermi level, which excludes effects like bandwidth renormalization
and increase of the effective electron masses. Due to the absent imaginary part of the Selfenergy,
the new Kohn-Sham energies are still real, which means excitations have infinite lifetime even in the
presence of interactions.

This is in stark contrast to the “true” metal-insulator transition induced by electronic interactions,
which is related to the divergence of the imaginary part of the Selfenergy at the Fermi level [80,81].
Here, the gap opens because quasiparticle excitations of the ground state are immediately suppressed
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and have zero lifetime due to the strong electronic interactions. Especially in the paramagnetic half-
filled case electrons can localize on the atomic sites and open a gap due to electronic correlations
without any spin polarization of the system. Therefore, the gap in LDA+U is usually of a completely
different nature than the one found in more sophisticated treatments.

To capture these effects one has to go beyond the zeroth-order approximation of LDA+U and
include the full frequency dependence and imaginary parts of the Selfenergy. One option is the
dynamical mean-field theory (DMFT), which is the main tool we are going to use in this thesis to
study correlation effects in systems where the local Coulomb interactions become significant and
cannot be adequately described by DFT and its extensions like hybrid functionals or LDA+U.



Chapter 3

The Green’s function formalism

3.1 Introduction
In order to introduce the dynamical mean-field theory (DMFT) to improve existing density functional
theory calculations, we will first take an excursion and introduce the language in which DMFT is
formulated: The language of Green’s functions. In this review we will follow the outline of the
beautiful script by Tremblay [86] on this subject, and use atomic units (~ = kB = 1).

We will see that Green’s functions themselves possess useful mathematical properties and are a
very natural tool for comparing theoretical results to experiment. They are versatile in describing
properties of a quantum system in the sense that they separate the contribution of the non-interacting
system, given by the solution of the non-interacting Hamiltonian

H0,

and the contribution of the interacting system

H0 +Hint.

In this contextHint is the Coulomb interaction, but can in general be any arbitrary Operator, which is
not a one-particle Operator. This allows for a plethora of methods and approximations to treat these
two contributions separately: First, the usually simpler, but not necessarily simple task of solving the
non-interacting partH0 is performed, and then the interaction can be “switched on”, in the sense that
in practice different kinds of approximations are employed to perturbatively or non-perturbatively
add the contribution of Hint to the Hamiltonian.

This property of a Green’s function can be put more clearly mathematically: For a given linear
differential operator L the Green’s function G : RN ×RN 7→ C, (x, x′) 7→ G(x, x′) is the so-called
“fundamental solution”, i.e. it has the property

LG = δ0, (3.1.1)

where δ0 is defined as the Dirac function δ(x− 0). This can be also seen as G being the solution to
a homogeneous initial value problem {

Lu(x) = 0

u(0) = δ0
. (3.1.2)

Having obtained the solution G for the homogeneous differential equation, it can be used to
obtain the solution for the inhomogeneous differential equation

Lu(x) = f(x), (3.1.3)

15
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by convolution of the Green’s function and f(x) via

u(x) =

∫
G(x− s)f(s) ds. (3.1.4)

The proof is straightforward: We want to show that Lu(x) = f(x) ∀x for u(x) given by Eq. (3.1.4).
Applying L(x) to u(x) we obtain

Lu(x) = L

∫
G(x− s)f(s) ds (3.1.5)

=

∫
[LG(x− s)]f(s) ds (3.1.6)

=

∫
δ(x− s)f(s) ds (3.1.7)

= f(x). (3.1.8)

Therefore, in the mathematical sense the Green’s function is considered as a fundamental solution,
because it allows one to obtain the solution to the inhomogeneous differential equation from solving
an initial value problem of the homogeneous differential equation.

For a physical example we can consider the problem of solving the Poisson equation in electro-
statics

∆φ = −ρ/ε. (3.1.9)

If we want to find the Green’s function for the linear differential Operator ∆, we have to solve

LG(x, x′) = ∆G(x, x′) = δ(x− x′), (3.1.10)

which corresponds to finding the solution for the electric potential for a point charge located at x.
The solution is given by

G(x, x′) = − 1

4π|x− x′| , (3.1.11)

since

∆G(x, x′) = − 1

4π
∆

(
1

|x− x′|

)
(3.1.12)

= δ(x− x′). (3.1.13)

With the Green’s function we can now solve the general Poisson equation of electrostatics, resulting
in the well known formula

φ(x) = −
∫
G(x, x′)

ρ(x′)
ε

dx′ (3.1.14)

=

∫
ρ(x′)

4πε|x− x′| dx
′. (3.1.15)

The Green’s function in many-body physics shares similar features as the Green’s function we
introduced so far, but it is used in a slightly different fashion.

3.2 Perturbation theory for the time evolution operator and lin-
ear response

The main motivation in many-body physics for the introduction of Green’s functions is its application
in linear-response theory. Starting from a system in thermal equilibrium, we are interested in the
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response to a weak perturbation by some external field f(r, t). This can be for example the electrical
conductivity as a response to a small electric field, or the thermal conductivity as a response to
a temperature gradient, the magnetic susceptibility, etc. The procedure is very similar to the one
we used above: We first consider the full Hamiltonian as the unperturbed and time-independent
Hamiltonian H0, and then add a small perturbation V (t), which is switched on at some point in
time. So in total we have the time-dependent Hamiltonian

H(t) = H0 + V (t), (3.2.1)

where the perturbation is given by

V (t) =

∫
O(r, t)f(r, t) dr. (3.2.2)

In Eq. (3.2.2),O(r, t) corresponds to the Operator of some local observable of the system, excluding
the perturbation, and f(r, t) is as already mentioned the external field which couples to the observ-
able O(r). For example, an external magnetic field in z-direction f(r, t) = hz(r, t) can couple to
the magnetization O(r) = Mz(r).

Since we now have introduced a perturbation that will modify very likely the observables of the
system, we are interested how the expectation value of operators

〈A(r, t)〉, (3.2.3)

changes over time as the perturbation is switched on. This we will do now in the interaction or Dirac
picture instead of the usual Schrödinger picture, which especially helpful when the Hamiltonian
can be separated into a form like H(t) = H0 + V (t). In this picture, both the operators and wave
functions acquire a time dependence, but the time evolution is split between the unperturbed part and
the perturbation. This means we define the operators and wave functions in the interacting picture as

|ψI(t)〉 = eiH0t |ψS(t)〉 (3.2.4)

AI(t) = eiH0tASe−iH0t, (3.2.5)

where the subscript S indicates the definition in terms of the Schrödinger picture, where H0 is time-
independent. As a result, the unperturbed H0 in the Dirac picture stays also time-independent

H0,I(t) = eiH0tH0,Se−iH0t = H0,S . (3.2.6)

With the perturbation in the Dirac picture VI(t), it can be shown right away that this results in the
time evolution for the wave function being governed by VI(t), while for operators A it is governed
by H0

i
d

dt
|ψI(t)〉 = VI(t) |ψI(t)〉 (3.2.7)

i
d

dt
AI(t) = [AI(t), H0], (3.2.8)

where we considered no explicit time dependence of the operators in the Schrödinger picture. We
will use this framework to develop a perturbation expansion of the time evolution operator UI(t, t0)
in the Dirac picture in powers of the perturbation VI(t). The very foundation is the important ob-
servation that the time evolution of U in the interaction picture can be obtained in another way. The
explicit form of UI(t, t0) can be deduced via

|ψI(t)〉 = UI(t, t0) |ψI(t0)〉 (3.2.9)

= UI(t, t0)eiH0t0 |ψS(t0)〉 , (3.2.10)

while the left side is given as

|ψI(t)〉 = eiH0t |ψS(t)〉 (3.2.11)

= eiH0tUS(t, t0) |ψS(t0)〉 , (3.2.12)
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where t > t0. So we have(
UI(t, t0)eiH0t0 − eiH0tUS(t, t0)

)
|ψS(t0)〉 = 0 ∀ |ψS(t0)〉 (3.2.13)

⇒ UI(t, t0) = eiH0tUS(t, t0)e−iH0t0 . (3.2.14)

This leads to a time evolution which is different from the standard operators in the interaction picture
and actually has the same form as the wave function

i
d

dt
UI(t, t0) = i

d

dt

(
eiH0tUS(t, t0)e−iH0t0

)
(3.2.15)

= i
(
iH0UI(t, t0) + eiH0t(−iH)US(t, t0)e−iH0t0

)
(3.2.16)

= i
(
iH0UI(t, t0)− iHI(t)UI(t, t0)

)
(3.2.17)

= VI(t)UI(t, t0), (3.2.18)

where we have used that

d

dt
US(t, t0) =

d

dt
e
−i

∫ t
t0
H(t′) dt′ (3.2.19)

= −iH(t)e
−i

∫ t
t0
H(t′) dt′

. (3.2.20)

Please note that this relation only applies to the time evolution operator and only in the interaction
picture, which is not generally the case for normal operatorsAI(t). Using the fact that U(t0, t0) = 1

in any picture, we can integrate Eq. (3.2.18) to obtain∫ t

t0

d

dt′
UI(t

′, t0) dt′ = −i
∫ t

t0

VI(t
′)UI(t

′, t0) dt′ (3.2.21)

⇒ UI(t, t0) = 1− i
∫ t

t0

VI(t
′)UI(t

′, t0) dt′, (3.2.22)

which defines a recurrence relation, that can for instance be solved by iteration. Inserting UI(t, t0)
into the right side of Eq. (3.2.22) again, we get

UI(t, t0) = 1− i
∫ t

t0

VI(t
′)

(
1− i

∫ t′

t0

VI(t
′′)UI(t

′′, t0) dt′′
)

dt′ (3.2.23)

= 1− i
∫ t

t0

VI(t
′) dt′ + (−i)2

∫ t

t0

VI(t
′)
∫ t′

t0

VI(t
′′)UI(t

′′, t0) dt′′ dt′ (3.2.24)

= 1− i
∫ t

t0

VI(t
′) dt′ + (−i)2

∫ t

t0

VI(t
′)
∫ t′

t0

VI(t
′′) dt′′ dt′ + . . . , (3.2.25)

which creates an infinite sum of nested integrals. Consider for example the second order term and
let us approximate the integrals by a sum, where we chop the interval [t0, t] into N pieces with a
separation ∆t = (t− t0)/N∫ t

t0

VI(t
′)
∫ t′

t0

VI(t
′′) dt′′ dt′ = lim

N→∞
∆t

N∑
n=0

VI(t0 + n∆t)

(
∆t

n∑
m=0

VI(t0 +m∆t)

)
. (3.2.26)

So we get sums of terms of the form VI(t0 + n∆t)VI(t0 + m∆t), where always n ≥ m, which
means we have a time-ordered product of the operators. In order to simplify the calculation, we are
tempted to increase the upper limit of the sum overm in Eq. (3.2.26) also toN and divide by a factor
of two in order not to count any term twice. But this in turn of course destroys the time order of the



3.2 Perturbation theory for the time evolution operator and linear response 19

operators. For this, we introduce the time-ordering operator T+, which acts on any time-dependent
operators A(t), B(t) in the following way

T+ [ A(t)B(t′) ] =

{
A(t)B(t′) for t ≥ t′
B(t′)A(t) for t < t′

(3.2.27)

and T+ [A(t1)B(t2) +A(t3)B(t4)] = T+ [A(t1)B(t2)] + T+ [A(t3)B(t4)] . (3.2.28)

With the index “+” we indicate that there is no additional sign involved when commuting the opera-
tors A(t) and B(t) (later on we will encounter cases where this is necessary in fermionic systems).
With this, we can rewrite the sum in Eq. (3.2.26) as∫ t

t0

VI(t
′)
∫ t′

t0

VI(t
′′) dt′′ dt′ = lim

N→∞
∆t

N∑
n=0

VI(t0 + n∆t)

(
∆t

N∑
m=0

VI(t0 +m∆t)

)
(3.2.29)

= lim
N→∞

(∆t)2

2!
T+

[
N∑

n,m=0

VI(t0 + n∆t)VI(t0 +m∆t)

]
(3.2.30)

=
1

2!
T+

[∫ t

t0

VI(t
′) dt′

∫ t

t0

VI(t
′′) dt′′

]
(3.2.31)

=
1

2!
T+

[(∫ t

t0

VI(t
′) dt′

)2
]
, (3.2.32)

where the factor 1/2! ensures that we do not count any term V (t)V (t′) twice since T+ [V (t′)V (t)]
gives the same contribution. This result now allows us to rewrite each term in the integral series in
Eq. (3.2.25) in the following way

UI(t, t0) = 1− i
∫ t

t0

VI(t
′) dt′ + (−i)2

∫ t

t0

VI(t
′)
∫ t′

t0

VI(t
′′) dt′′ dt′ + . . . (3.2.33)

= 1+ T+

[ ∞∑
n=1

(−i)n
n!

(∫ t

t0

VI(t
′) dt′

)n]
(3.2.34)

= T+exp

{
−i
∫ t

t0

VI(t
′) dt′

}
(3.2.35)

With this form of the time evolution operator we now come back to our original task of obtaining
the expectation value of some operatorA under the influence of the perturbation V . The perturbation
in the interaction picture was given by

VI(t) =

∫
O0
I (r, t)f(r, t) dr, (3.2.36)

where O0
I (r, t) denotes the unperturbed observable the perturbation couples to

O0
I (r, t) = eiH0tA(r)e−iH0t. (3.2.37)

We now would like to calculate the expectation value of some operator A(r) in the presence of the
perturbation at time t

〈A(r, t)〉. (3.2.38)

If we switch on the perturbation at time t0, we start in some equilibrium state and evolve the system
with the full time evolution operator including the perturbation up to time t

〈A(r, t)〉 = 〈U†(t, t0)A(r)U(t, t0)〉, (3.2.39)
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or in the interaction picture

〈A(r, t)〉 = 〈U†I (t, t0)A0
I(r, t)UI(t, t0)〉, (3.2.40)

where A0
I(r, t) corresponds to the unperturbed operator evolution. We now make use of the pertur-

bation series for UI(t, t0) we have just developed. Using the expansion up to linear order in the
perturbation

UI(t, t0) ≈ 1− i
∫ t

t0

VI(t
′) dt′ + . . . , (3.2.41)

we obtain for the modified expectation value

〈A(r, t)〉 = 〈U†I (t, t0)A0
I(r, t)UI(t, t0)〉 (3.2.42)

≈
〈
A0
I(r, t) + i

∫ t

t0

VI(t
′)A0

I(r, t) dt′ − i
∫ t

t0

A0
I(r, t)VI(t

′) dt′
〉

(3.2.43)

= 〈A0
I(r, t)〉+ i

∫ t

t0

〈[VI(t′), A0
I(r, t)]〉dt′. (3.2.44)

So we obtain for the change of the expectation value up to first order

δ 〈A(r, t)〉 = i

∫ t

t0

〈[VI(t′), A0
I(r, t)]〉dt′ (3.2.45)

= i

∫ t

t0

∫
〈[O0

I (r
′, t′), A0

I(r, t)]〉f(r′, t′) dr′ dt′. (3.2.46)

To make this result more general, we extend the integration to t′ = ±∞ and consider the perturbation
to be “switched on” adiabatically slowly. Via the Heaviside function we then cut off the integration
at t. In this way we can obtain the following form

δ 〈A(r, t)〉 =

∫ ∞
−∞

χROA(r, t, r′, t′)f(r′, t′) dr′dt′, (3.2.47)

where we defined the “retarded” response function χROA(r, t, r′, t′) as

χROA(r, t, r′, t′) = iθ(t− t′) 〈|[O0
I (r
′, t′), A0

I(r, t)]|〉 . (3.2.48)

We call this response function retarded, because the response, i.e. the change we measure in the
expectation value 〈A(r, t)〉 comes after the perturbation via θ(t − t′), which ensures physical time
causality. It is important to note that both operators in 〈[O0

I (r
′, t′), A0

I(r, t)]〉 are defined as the un-
perturbed operators, i.e. their time evolution up to time t is defined via the unperturbed system H0.
From this result we see that in linear response the correlation function χROA(r, t, r′, t′) of the unper-
turbed system provides the information of how strongly the system reacts to an external perturbation.
The perturbation f(r, t) itself then acts as a proper weighting factor when calculating expectation
values of observables.

Please note that the correlation function χROA(r, t, r′, t′) is formally identical to the Green’s
function introduced in the previous chapter as a fundamental solution. Therefore, χROA(r, t, r′, t′)
can be interpreted as the fundamental solution or the Green’s function of the unperturbed system.
This notion will be made more rigorous in the next chapters.

3.3 Zero temperature Green’s functions

3.3.1 Real time formulation
The main idea of the last section was to prepare a system in some equilibrium state corresponding
to the Hamiltonian H and then perturb the system to see how the observables of the system change
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over time. In the same manner we will now use this formalism to prepare an initial state ψ(r) and
see that the evolution of a state ψ(r, t) is given by a similar form as an integration over a correlation
function times the unperturbed state. This correlation function we will then identify with a Green’s
function.

To start with an introduction to Green’s functions we first will discuss the formalism in the
context of the one-body Schrödinger equation. Let us assume we prepare a state |ψ0〉 at a given time
t′. The evolution of this state to a later time t > t′ is given as

|ψ(t)〉 = e−iH(t−t′) |ψ0(t′)〉 , (3.3.1)

where we consider the one-body Hamiltonian H to be time-independent. In terms of the position
representation we have

ψ(r, t) = 〈r|e−iH(t−t′)|ψ0(t′)〉 (3.3.2)

=

∫
〈r|e−iH(t−t′)|r′〉 〈r′|ψ0(t′)〉dr′ (3.3.3)

=

∫
〈r|e−iH(t−t′)|r′〉ψ0(t′, r′) dr′ (3.3.4)

In order to implicitly enforce causality where t > t′, we multiply on both sides with the Heaviside
function θ(t− t′)

ψ(r, t)θ(t− t′) =

∫
θ(t− t′) 〈r|e−iH(t−t′)|r′〉ψ0(t′, r′) dr′ (3.3.5)

= i

∫
GR(r, t, r′, t′)ψ0(t′, r′) dr′, (3.3.6)

and we introduce the definition of the so-called retarded Green’s function

GR(r, t, r′, t′) = −iθ(t− t′) 〈r|e−iH(t−t′)|r′〉 . (3.3.7)

In the same way we also can define the advanced Green’s function, which describes the evolution to
a state at time t < t′

GA(r, t, r′, t′) = iθ(t′ − t) 〈r|e−iH(t−t′)|r′〉 . (3.3.8)

Since we assumed H to be time-independent in the beginning, we can also write the Green’s
function in terms of the time difference s = t− t′ > 0

GR(r, s, r′, 0) = −iθ(s) 〈r|e−iHs|r′〉 . (3.3.9)

So the time invariance of the system, namely H , makes the Green’s function time translationally in-
variant, as expected. If the Hamiltonian is time-dependent, H cannot be pulled out of the integration
over time, so we have the more general form

GR(r, t, r′, t′) = −iθ(t− t′) 〈r|e−i
∫ t′
t
H(s) ds|r′〉 , (3.3.10)

which in general is not time translationally invariant due to the explicit dependence on t and t′. At
first glance we have not gained anything, but this representation will turn out very useful. For the
time evolution of the wave functions it has exactly the same form that we have seen in the discussion
of the Green’s function in the examples about electrostatics and the correlation function in linear
response theory. In this picture, the initial wave function couples to the Green’s function, which
itself does not depend on the wave function but only on H , namely the properties of the system. The
perturbation, i.e. time evolution sets in at t′ and the response at some time t > t′ is given by the
time-evolved wave function ψ(r, t). Therefore, the Green’s function GR(r, t, r′, t′) is also called a
propagator, since it propagates the initial wave function ψ(r, t′) at time t′ to the final wave function
ψ(r, t) at time t > t′.
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3.3.2 Real frequency formulation
We will see later that the Green’s function as a function of frequency ω, resp. energy ~ω is a very
useful quantity. The time translational invariant Green’s function defined in Eq. (3.3.9) allows us to
define the Fourier transform of GR : R3 ⊗ R3 ⊗ R→ C, with s ∈ R being a continuous parameter
for the time, as follows

GR(r, r′, w) =

∫ ∞
−∞

eiωsGR(r, s, r′, 0) ds (3.3.11)

= −i
∫ ∞

0

eiωs 〈r|e−iHs|r′〉ds. (3.3.12)

To evaluate this equation, we insert the Eigenstates {|n〉} of the Hamiltonian H , i.e. H |n〉 =
En |n〉 ∀n as a complete set of basis states, where

〈r|e−iHs|r′〉 =
∑
n,m

〈r|m〉 〈m|e−iHs|n〉 〈n|r′〉 (3.3.13)

=
∑
n

〈r|n〉 e−iEns 〈n|r′〉 , (3.3.14)

so we get

GR(r, r′, w) = −i
∫ ∞

0

eiωs

(∑
n

〈r|n〉 e−iEns 〈n|r′〉
)

ds. (3.3.15)

In general we would like to exchange the sum and integral in Eq. (3.3.15) and perform the integration
over s, but this is not allowed since

∫∞
0

eiωse−iEns ds does not converge, which can be easily seen
from ∫ ∞

0

ei(ω−En)s ds =
1

i(ω − En)

[
ei(ω−En)s

]∞
0
. (3.3.16)

To define a meaningful Fourier transform, we have to lift the restriction of ω ∈ R and relax it to
ω ∈ R ⊗ {iη}, with η > 0 small, i.e. we shift the domain of the real frequencies slightly upwards
into the complex plane by the imaginary part η. We will later more rigorously show that expanding
the domain of general Green’s functions to the complex plane is reasonable and that GR(r, r′, w) is
actually well defined in the whole complex plane except for the real axis ω ∈ C \ (R⊗ {i0}). Note
the important requirement of η > 0, which allows us to evaluate the Fourier transform

GR(r, r′, w) = −i
∫ ∞

0

∑
n

〈r|n〉 ei(ω+iη−En)s 〈n|r′〉ds (3.3.17)

= −i
∑
n

〈r|n〉
(∫ ∞

0

ei(ω+iη−En)s ds

)
〈n|r′〉 (3.3.18)

= −i
∑
n

〈r|n〉
[

ei(ω+iη−En)s

i(ω + iη − En)

]∞
0

〈n|r′〉 (3.3.19)

=
∑
n

〈r|n〉 〈n|r′〉
ω + iη − En

(3.3.20)

= 〈r| 1

(ω + iη)1−H |r
′〉 . (3.3.21)

The physical Green’s function is then set as the limit when η goes to zero

GR(r, r′, w) := lim
η→0+

GR(r, r′, w + iη). (3.3.22)
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In the following we will always regard the Green’s function as the limit of η → 0+, unless noted
otherwise. In most cases when writing the form of the Green’s function explicitly, we will also
include the iη term, but η is considered to be very small and positive.

From this we see that the Green’s function in frequency representation has poles at the Eigenen-
ergies En of H , which are responsible for the non-convergence of Eq. (3.3.15). Everywhere else
the function is indeed well defined for ω ∈ C \ {En}. In the same way we can obtain the Fourier
transform of the advanced Green’s function defined in Eq. (3.3.8), where we have to choose ω − iη,
η > 0 for the integral to converge, which leads to

GA(r, r′, w) =
∑
n

〈r|n〉 〈n|r′〉
ω − iη − En

(3.3.23)

= 〈r| 1

(ω − iη)1−H |r
′〉 . (3.3.24)

So far we have defined the Green’s function in terms of the position representation but of course any
complete basis suffices. We have already written down the operator representation of the Green’s
function in Eq. (3.3.21), which is also called resolved operator. For the sake of completeness we list
the real time and real frequency Green’s function operators we have encountered so far

GR(t) = −iθ(t)e−iHt, (3.3.25)

GA(t) = iθ(−t)e−iHt, (3.3.26)

GR(w) =
1

(ω + iη)1−H , (3.3.27)

GA(w) =
1

(ω − iη)1−H . (3.3.28)

In frequency space we see that the advanced Green’s function is actually the retarded Green’s func-
tion evaluated in the lower half of the complex plane instead of the upper. The two limits of GR(ω)
and GA(ω) for η → 0 do not coincide, so the operator G(z) = 1

z1−H is discontinuous at the real
frequency axis

lim
η→0+

(
GR(ω)−GA(ω)

)
= lim
η→0+

(G(ω + iη)−G(ω − iη)) (3.3.29)

= lim
η→0+

(
(ω − iη)1−H − (ω + iη)1+H

(ω1−H)2 + η21

)
(3.3.30)

= lim
η→0+

2i

( −η1
(ω1−H)2 + η21

)
(3.3.31)

= −2πi δ(w1−H), (3.3.32)

where δ is the Dirac delta function. In the last step we have used the representation of δ in terms of
a Lorentzian

lim
η→0+

1

π

η

(x− x0)2 + η2
= δ(x− x0). (3.3.33)

This result we have already seen; the Green’s function is basically a sum of poles at the Eigenen-
ergies of H . This already indicates a close relation to the density of states (DOS), which we can
formulate in a more rigorous way since we now know the exact functional dependence. We first note
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that

lim
η→0+

G(r, r, ω ± iη) = lim
η→0+

∑
n

〈r|n〉 〈n|r〉
ω ± iη − En

(3.3.34)

= lim
η→0+

∑
n

| 〈r|n〉 |2 ω − En ∓ iη
(ω − En)2 + η2

(3.3.35)

= lim
η→0+

∑
n

(ω − En)| 〈r|n〉 |2
(ω − En)2 + η2

+ lim
η→0+

∑
n

∓iη| 〈r|n〉 |2
(ω − En)2 + η2

(3.3.36)

=
∑
n

| 〈r|n〉 |2
ω − En

∓ iπ
∑
n

δ(ω − En)| 〈r|n〉 |2 (3.3.37)

If we compare this to the DOS, given by ρ(E) =
∑
n δ(E − En), then we see that

ρ(E) =
∑
n

δ(E − En) (3.3.38)

=

∫ ∑
n

〈r|n〉 δ(E − En) 〈n|r〉dr (3.3.39)

= ∓ 1

π
lim
η→0+

∫
ImG(r, r, ω ± iη) dr (3.3.40)

= ∓ 1

π
lim
η→0+

Tr [ImG(ω ± iη)] . (3.3.41)

Eq. (3.3.41) basically proves our intuitive picture of the Green’s function encoding the spectral infor-
mation for a system described by the Hamiltonian H . It is very important since it will allow us later
to relate our results obtained in the language of Green’s functions to experimental observables. We
will also see that this relation is still valid when we introduce finite temperature Green’s function,
but has a slightly different interpretation.

3.3.3 Dyson equation and Selfenergy
So far we have only considered a general one-body Hamiltonian H that builds up the Green’s func-
tion. For example, the retarded Green’s function in frequency space was given by

GR(ω) = [(ω + iη)1−H]
−1
. (3.3.42)

In practice we often face problems where the Hamiltonian can be separated in the following form

H = H0 + V, (3.3.43)

where H0 usually corresponds to a simple time-independent one-body part, e.g. a free particle,
and V is a time-independent one-body potential. In general H0 is easier to diagonalize, while V
does not commute with H0, so it is not diagonal in the basis of H0. We now want to develop a
perturbative expression that allows us to obtain the full Green’s function given by H0 + V starting
from the Green’s function given by H0. This will lead us to objects like the Selfenergy and the
Dyson equation.

Let us assume we can diagonalize H0, then we know the expression of the Green’s function
given by H0, labeled by GR0

GR0 (ω) = [(ω + iη)1−H0]
−1 (3.3.44)

=
∑
n

|n〉 〈n|
ω + iη − εn

, (3.3.45)
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Figure 3.1: Illustration of the diagrammatic evaluation of the full Green’s function GR(ω) =

[(ω + iη)1−H0 − V ]
−1 in terms of a perturbative expansion in orders of V in momentum space.

The full Green’s function is expanded in a sum of Green’s functions GR0 (ω) = [(ω + iη)1−H0]
−1,

indicated by the arrows, and multiple powers of V , indicated by the wiggly line. All internal degrees
of freedom are integrated out.
a) shows the zeroth order contribution, which equals to the unperturbed result GR0 (ω). b) shows all
contributions of the first order in V .

where |n〉 are the Eigenstates ofH0 with the EigenenergiesH0 |n〉 = εn |n〉. Including the one-body
potential V we can write the full Green’s function as follows

GR(ω) = [(ω + iη)1−H0 − V ]
−1 (3.3.46)

=
[(
GR0
)−1

(ω)− V
]−1

. (3.3.47)

Multiplication by the term on the right and rearranging the resulting terms we get

GR(ω) = GR0 (ω) +GR0 (ω)V GR(ω). (3.3.48)

This equation is also called the Lippman-Schwinger equation in scattering theory. Since this is a
recursive relation similar to the perturbation series we obtained for the time evolution operator in
Chapter 3.2, we can also iterate this equation to obtain a perturbation series for GR(ω) in powers of
V . Inserting GR(ω) into the right hand side of Eq. 3.3.48 we obtain the series

GR(ω) = GR0 (ω) +GR0 (ω)V GR0 (ω) +GR0 (ω)V GR0 (ω)V GR0 (ω) + . . . (3.3.49)

The infinite can be diagrammatically represented in terms of Feynman diagrams [87]. The n-th term
in the sum corresponds to the n-th order in the perturbation series and includes V to the power n.
The first two terms evaluated diagrammatically are shown in Fig. 3.1.

Choosing the Eigenbasis of the Hamiltonian H0 in which the unperturbed Green’s function
GR0 (ω) is diagonal, the series for the full Green’s function takes the form

〈n|GR(ω)|n′〉 = GR0 (n, ω) +GR0 (n, ω) 〈n|V |n′〉GR0 (n′ω) (3.3.50)

+

∫
dmGR0 (n, ω) 〈n|V |m〉GR0 (m,ω) 〈m|V |n′〉GR0 (n′ω) + . . . (3.3.51)

We now define the irreducible Selfenergy ΣR(ω) that contains all the contribution of V and terms
arising from the integration over internal indices via

〈n|GR(ω)|n′〉 = GR0 (n, ω) +GR0 (n, ω) 〈n|ΣR(ω)|n′〉 〈n|GR(ω)|n′〉 . (3.3.52)

Solving this equation for GR(ω) we obtain the so-called Dyson equation

〈n|
(
GR(ω)

)−1 |n′〉 =
(
GR0 (n, ω)

)−1 − 〈n|ΣR(ω)|n′〉 . (3.3.53)

In the diagrammatic form the Selfenergy ΣR(ω) now corresponds to the same diagrams generated
by Eq. 3.3.49 that are shown in Fig. 3.1 just with the outer “legs” of the unperturbed Green’s function
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GR0 (ω) removed. This equation is very helpful since it allows us to relate the unperturbed Green’s
function, which is usually much more simple to obtain, with the full Green’s function via the Self-
energy, that can be calculated by perturbative methods. Since this still results to solving the full
problem including the potential V , in practice either truncations of the infinite series or other ap-
proximative schemes have to be applied. In Chapter 5.2 we will discuss the dynamical mean-field
theory as powerful tool to obtain the Selfenergy in an approximative but controlled way.

3.4 Finite temperature Green’s function
It is important to note that the previously defined Green’s function do not incorporate any effects of
temperature. They are defined in terms of the Eigenstates of the Hamiltonian and do not consider any
temperature-induced finite lifetime or broadening effects. The main observable that can be extracted
from the Green’s function is the density of states, which is just a sum of Dirac Delta functions at the
Eigenenergies of the Hamiltonian.

In this section we will deal with the subject of how to include finite temperature effects directly in
the propagator, namely the Green’s function, by defining it as the average within the grand canonical
ensemble, where all energy states contribute with a weight given by the Boltzmann factor e−βE .

Reminder from second quantization:

Since we want to describe many particle systems at finite temperature, we will use the second
quantization representation. For this, let us restate the most important aspects of second quantization,
that will be relevant further on.

We define the Fock states as a basis of our Hilbert space in the usual way, where a quantum wave
function is represented by the occupation numbers ni of single particle states |i〉

|ψ〉 = |n0, n1, n2, ...〉 , (3.4.1)

with the vacuum state

|0〉 = |0, 0, 0, ...〉 . (3.4.2)

The creation and annihilation operators

Fermionic: Bosonic:

{ci, cj} = {c†i , c†j} = 0 [bi, bj ] = [b†i , b
†
j ] = 0 (3.4.3)

{ci, c†j} = δij [bi, b
†
j ] = δij , (3.4.4)

which can raise or lower the occupation of a given state

Fermionic: Bosonic:

c†i |..., ni, ...〉 = (1− ni) |..., ni + 1, ...〉 b†i |..., ni, ...〉 =
√
ni + 1 |..., ni + 1, ...〉 (3.4.5)

ci |..., ni, ...〉 = ni |..., ni − 1, ...〉 bi |..., ni, ...〉 =
√
ni |..., ni − 1, ...〉 . (3.4.6)

We defined the many particle states in terms of the basis states {|i〉}, but we can change into any
other appropriate basis {|α〉} by

c†α =
∑
i

〈i|α〉 c†i , (3.4.7)

cα =
∑
i

〈α|i〉 ci. (3.4.8)
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For the special case of the position states {|r〉}, the new operators are called quantum field operators,
and create or annihilate a particle at position r

Ψ†(r) =
∑
i

〈i|r〉 c†i =
∑
i

φ∗i (r)c†i (3.4.9)

Ψ(r) =
∑
i

〈r|i〉 ci =
∑
i

φi(r)ci. (3.4.10)

One particle operators in second quantization have the form

A =
∑
ij

aijc
†
i cj , with aij = 〈i|A|j〉 , (3.4.11)

and for two particle operators we have the form

V =
1

2

∑
ijkm

vijkmc
†
i c
†
jcmck, with vijkm = 〈ij|V |km〉 . (3.4.12)

Since we will make further use of it, we also revisit the definition of the Heisenberg picture,
where the wave functions are constant in time but the operators evolve

A(t) := eiHtAe−iHt (3.4.13)
|ψ(t)〉 := |ψ(0)〉 (3.4.14)
d

dt
A(t) = i[H,A(t)] +

∂A

∂t
, (3.4.15)

where the Hamiltonian H has no explicit time-dependence in the Schrödinger picture. For the mo-
ment, this short listing of the most important points of second quantization will suffice for introduc-
ing the finite temperature many particle Green’s function.

Recall the definition of the retarded Green’s function given in Eq. (3.3.7)

GR(r, t, r′, t′) = −iθ(t− t′) 〈r|e−iH(t−t′)|r′〉 , (3.4.16)

but what role do we assign to |r〉 in second quantization? In the single-particle case this state rep-
resents a particle located at position r. In second quantization we can create an additional particle
at point r by acting the field operator from Eq. (3.4.9) on a given state. Let us assume we are given
a many-body ground state wave function |ψ0〉, which for a fermionic system we consider here is in
general a linear combination of Slater determinants. In this case, the symbolic replacement of |r〉 by
Ψ†(r) |ψ0〉, which creates an additional particle at point r, seems natural, so we define the retarded
Green’s function in second quantization by

GR(r, t, r′, t′) = −iθ(t− t′) 〈ψ0|Ψ(r)e−iH(t−t′)Ψ†(r′)|ψ0〉 (3.4.17)

= −iθ(t− t′) 〈ψ0|e−iHt eiHtΨ(r)e−iHt eiHt
′
Ψ†(r′)e−iHt

′
eiHt

′ |ψ0〉 (3.4.18)

= −iθ(t− t′) 〈ψ0|e−iHt Ψ(r, t)Ψ†(r′, t′) eiHt
′ |ψ0〉 . (3.4.19)

If we set the energy of the ground state to zero, which can always be done since we are free to specify
a reference energy, we obtain the form

GR(r, t, r′, t′) = −iθ(t− t′) 〈ψ0|Ψ(r, t)Ψ†(r′, t′)|ψ0〉 . (3.4.20)

This form of the Green’s function now allows for another interpretation of its properties, with the
nuance more focussed on the “propagating” properties: Starting from the ground state |ψ0〉, we first
create a particle at position r′ at time t′, then annihilate a particle at r at time t and compare the
resulting state with the initial ground state. A more illustrative interpretation is, that the Green’s
function in Eq. (3.4.20) prepares a state where a particle has been created at r′ at time t′ above the
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Figure 3.2: Illustration of the Green’s function as its role as a propagator. First we create an
excitation of the ground state |ψk〉 = c†k |ψ0〉 at time t = 0. Then we let the state propagate in
time up to t > 0, which is done by the multiplication of the operator e−iHt. This yields the state
|ψk(t)〉 = e−iHt |ψk〉.
After that, we measure how much of the original state |ψk〉 is left in the final state by taking the
overlap 〈ψk|ψk(t)〉. This is (up to a phase factor) exactly the property that defines the Green’s
function GRk,k(t, 0) = −iθ(t) 〈ψ0|Ψ(k, t)Ψ†(k, 0)|ψ0〉.

ground state, then propagated to time t, and then takes the overlap with a state with a particle at
position r. In general terms, we excite the ground state, let it propagate in time and then check how
much is left in this state of a specific final state we are interested in. Such interpretation is illustrated
in Fig. 3.2. This further indicates that the Green’s function is a response function with regard to the
perturbation being an excitation of the ground state.

Note that this is in strong contrast to the density functional theory Kohn-Sham formulation,
which is a ground state theory. As discussed in Chapter 2, the Kohn-Sham Eigenenergies obtained
as a solution to the Kohn-Sham Hamiltonian do not correspond to the true excitation energies of the
real system, even though they are interpreted like this. In the Green’s function formalism the concept
of excitations of the ground state is incorporated correctly from the very beginning, allowing for a
proper investigation of the excitation spectrum and electronic structure of a system.

But what happens when the state we are trying to create a particle in is already occupied in a
fermionic system? Then it is clear that the Green’s function will be identical to zero for all times
t > t′. This motivates a more general form, in which we do not restrict ourselves to the creation of
particles but excitations of the ground state, which means we create a particle if the state is empty
and we annihilate a particle if the state is already occupied. This has no other meaning than just
taking into account that either particles or holes can propagate. With this, we redefine the Green’s
function in the following way

GR(r, t, r′, t′) = −iθ(t− t′) 〈ψ0|{Ψ(r, t),Ψ†(r′, t′)}|ψ0〉 . (3.4.21)

Here {A,B} is the fermionic anticommutator. From this definition it is clear that excitations, be it
particles or holes, are propagated in time. This form also recovers the following identity

lim
t↘t′

GR(r, t, r′, t′) = −iδ(r− r′), (3.4.22)

which simply means that the excitation does not propagate when there is no time evolution of the
system. Without the commutator, this property would not be fulfilled. We now define Eq. (3.4.21)
as the proper many body zero temperature Green’s function. Finite temperature is not yet considered
since we only measure excitations of the ground state. The ground state expectation value is just the
zero temperature limit of the thermodynamic average of the finite temperature case, which leads us
to the definition of the many body finite temperature Green’s function

GR(r, t, r′, t′) = −iθ(t− t′) 〈{Ψ(r, t),Ψ†(r′, t′)}〉 , (3.4.23)
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with

〈A〉 =
1

Z
Tr
{
e−β(H−µN)A

}
. (3.4.24)

The Green’s function is still written in the position basis, but of course it can be written in any
basis. The following form has the general property of exciting a state |b〉 and then comparing it with
a state |a〉 after the time t− t′

GRa,b(t, t
′) = −iθ(t− t′) 〈{ca(t), c†b(t

′)}〉 . (3.4.25)

For the sake of completeness, we relist our final definition of the real-time retarded and advanced
Green’s function

GRa,b(t) = −iθ(t) 〈 {ca(t), c†b(0)} 〉 (3.4.26)

GAa,b(t) = +iθ(−t) 〈 {ca(t), c†b(0)} 〉 (3.4.27)

Example: Non-interacting particle:

We now calculate the real-time Green’s function for non-interacting particles in k-space. The
Hamiltonian is just given by the free-particle dispersion

H =
∑
a

ξac
†
aca (3.4.28)

where a = (k, σ) is the combined k- and Spin-Index, and ξa = εa − µ, with the chemical potential
µ. By using the BKH-formula one can show that the time-dependent operators can be rewritten as

ca(t) = e−iξatca (3.4.29)

c†a(t) = eiξatc†a. (3.4.30)

With this we can evaluate the expectation values for the operator products by performing the
trace over the eigenstates of the Hamiltonian. This yields

〈 ca(t)c†b(0) 〉 = e−iξat 〈 cac†b 〉 (3.4.31)

= e−iξat(δab − 〈 c†bca 〉) (3.4.32)

= e−iξat(1− nF (ξa))δab, (3.4.33)

where we have used the Fermi-Dirac distribution

〈 c†aca 〉 = nF (ξa) =
1

eβξa + 1
. (3.4.34)

The other term evaluates to

〈 c†b(0)ca(t) 〉 = e−iξat 〈 c†bca 〉 (3.4.35)

= e−iξatnF (ξa)δab. (3.4.36)

The retarded and advanced Green’s function are obtained by adding up these two terms, so with this,
we obtain

GRa,b(t) = −iθ(t)e−iξatδab (3.4.37)

GAa,b(t) = +iθ(−t)e−iξatδab. (3.4.38)
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3.4.1 Finite-temperature perturbation theory
So far we have investigated the propagation of the time evolution operator U(t, t′) = e−iH(t−t′)

with time-independent H . In evaluating the Green’s function we encounter terms of the form∑
i

〈i|e−βHca(t)c†b(t
′)|i〉 . (3.4.39)

In the same way as we have treated the time evolution operator, we need to treat the density matrix
e−βH perturbatively. We can easily transfer the previous results by realizing that actually the density
matrix is nothing but the time evolution operator evaluated at t = −iβ

e−βH = e−iH(−iβ) = U(−iβ, 0). (3.4.40)

In the interaction picture, this means we have

UI(−iβ, 0) = eiH0(−iβ)U(−iβ, 0)e−iH0·0 (3.4.41)

= eH0βU(−iβ, 0) (3.4.42)

= eH0βe−βH (3.4.43)

This expression turns out to be actually simpler than for a real time argument t, since UI(−iβ, 0) is
purely real. We will now see, that it will be indeed worthwhile to further investigate the properties
for imaginary arguments in more detail.

In order to define imaginary time, we introduce a new variable τ , so that the density matrix is
given as the time evolution operator evaluated at τ = −iβ, which leads to

U(τ, 0) = e−βH = e−iH(−iβ) = e−iHτ . (3.4.44)

So we see that we can define τ as the negative imaginary part of the old time variable t extended into
the whole complex plane

t→ ztime := t− iτ, τ ∈ R, (3.4.45)

where t is the usual real time variable we have considered before. If τ > 0, this means we are
working in the lower half of the complex plane. When we encounter a function given by f(τ), what
we actually mean is

f(τ) := f(0− iτ). (3.4.46)

For example, the time evolution operator in the complex plane is then

U(ztime, 0) = e−iHz = e−iH(t−iτ) (3.4.47)

⇒ U(t, 0) = e−iHt (3.4.48)

and U(τ, 0) = e−iH(−iτ) = eHτ . (3.4.49)

For now, this looks just like a substitution of variables, but mathematically, we continued the time
evolution operator into the whole complex plane and found, that at z = −iβ it equals the density
matrix e−βH . We note that

z 7→ e−iHz, (3.4.50)

is a holomorphic function, because the exponential function has a complex derivative in the whole
complex plane. This allows us to write down a time evolution equation for U(z, 0) for general z ∈ C
like Eq. (3.2.18) for z on the imaginary axis, since U in the interaction picture

UI(z, 0) = eiH0ze−iHz, (3.4.51)
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as a product of holomorphic functions is also holomorphic for all z ∈ C. Therefore, we can calculate
the complex derivative, which indeed gives the result as expected

i
d

dz
UI(z, 0) = i

(
iH0UI(z, 0) + eiH0z(−iH)e−iHz

)
(3.4.52)

= i
(
iH0UI(z, 0)− iHI(z)UI(z, 0)

)
(3.4.53)

= VI(z)UI(z, 0), (3.4.54)

⇒ i
d

dz
UI(z, 0)

∣∣∣∣
z=iy

= VI(iy)UI(iy, 0), (3.4.55)

for any y ∈ R. Integration of Eq. 3.4.55 yields

UI(z, 0) = 1− i
∫
γ

VI(z
′)UI(z

′, 0) dz′, (3.4.56)

where γ is the integration contour starting at z′ = 0 and ending at z′ = z. Assuming that VI(z) is
holomorphic, the value of the integral is independent of the explicit choice of the contour γ. For the
case of the density matrix UI(−iβ, 0), we choose a parametrization just along the imaginary axis
with

γ(s) := −is, s ∈ [0, β], (3.4.57)

which leads to

UI(−iβ, 0) = 1−
∫ β

0

VI(−is)UI(−is, 0) ds (3.4.58)

= 1−
∫ β

0

VI(−is) ds+

∫ β

0

VI(−is)
∫ s

0

VI(−ir)UI(−ir, 0) dr ds, (3.4.59)

which forms an infinite series of nested integrals like we have seen on the real axis. Since we have
restricted the contour to the imaginary axis, we could rewrite the integral as a standard integral over
the real variable s of a complex function. This allows us to introduce the time ordering operator T+,
which sorts operators on the imaginary axis in the following way

T+ [ VI(−is)VI(−ir) ] =

{
VI(−is)VI(−ir) for s ≥ r
VI(−ir)VI(−is) for s < r

. (3.4.60)

Note that this would not be possible for arbitrary integration contours γ, since there is no linear order
for complex numbers. Since we restricted ourselves to the imaginary axis, we have basically used
the order of real numbers on the imaginary part of γ(s). With the time ordering operator, we can
rewrite the infinite series as usual

UI(−iβ, 0) = T+exp

{
−
∫ β

0

VI(−is) ds

}
. (3.4.61)

This result is an interesting generalization of the time evolution operator, since application of the
density matrix operator corresponds to an evolution along the imaginary time axis.

To summarize, we have seen that propagating a state from time t0 to t > t0 by application of
UI(t, t0) can be evaluated by an integration of VI(z) along the straight line contour t0 → t along the
real axis, while the application of the density matrix UI(−iβ, 0) can be evaluated by an integration
of VI(z) along the straight line contour 0→ −iβ.

Coming back to the matrix elements of the Green’s function from the beginning of this chapter∑
i

〈i|e−βHca(t)c†b(t
′)|i〉 , (3.4.62)
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we now use the obtained results for the time evolution operator to rewrite it in another way. We
consider the state |i〉 to be given by some state at time t0, at which the system is in equilibrium and
evolved to the current state at hand at t = 0

|i〉 = UI(0, t0) |ψI(t0)〉 , (3.4.63)

where in most arguments we will send t0 to −∞ later. Remember that the creation and annihilation
operators c(t), c†(t) were given in the Heisenberg picture. To transform them into the interaction
picture we use

c(t) = eiHtce−iHt (3.4.64)

= eiHte−iH0tcI(t)e
iH0te−iHt (3.4.65)

= UI(0, t)cI(t)UI(t, 0) (3.4.66)

and c†(t) = UI(0, t)c
†
I(t)UI(t, 0). (3.4.67)

For the density matrix we can use

e−βH = e−iH0(−iβ)eiH0(−iβ)e−iH(−iβ−0) (3.4.68)

= e−βH0UI(−iβ, 0), (3.4.69)

which leads us to

〈i|e−βHca(t)c†b(t
′)|i〉

= 〈i(t0)|UI(t0, 0)e−βH0UI(−iβ, 0)UI(0, t)cI(t)UI(t, 0)UI(0, t
′)c†I(t

′)UI(t
′, 0)UI(0, t0)|i(t0)〉

(3.4.70)

= 〈i(t0)|UI(t0, 0)e−βH0UI(−iβ, t)cI(t)UI(t, t′)c†I(t′)UI(t′, t0)|i(t0)〉 . (3.4.71)

Let us consider the three leftmost operators

UI(t0, 0)e−βH0UI(−iβ, t) = e−βH0eβH0 UI(t0, 0)e−βH0UI(−iβ, t0)UI(t0, t) (3.4.72)

= e−βH0UI(t0 − iβ,−iβ)UI(−iβ, t0)UI(t0, t) (3.4.73)

= e−βH0UI(t0 − iβ, t0)UI(t0, t), (3.4.74)

so that we finally obtain

〈i|e−βHca(t)c†b(t
′)|i〉

= 〈i(t0)|e−βH0 UI(t0 − iβ, t0) UI(t0, t) cI(t) UI(t, t
′) c†I(t

′) UI(t
′, t0) |i(t0)〉 . (3.4.75)

This result is in many ways insightful: We see that in the interaction picture the thermodynamic
expectation value is obtained effectively via the non-perturbed density matrix e−βH0 . Each matrix
element contributing to the thermodynamic average is evaluated by propagating each basis state
|i(t0))〉 from the system in equilibrium to time t′ > t0 and create an excitation by application of
c†I(t

′). Then the resulting state is further propagated to t > t′, where the annihilation operator cI(t)
is applied, and then propagated back to t0. Then the state is propagated along the imaginary time
axis up to t0 − iβ, where the density matrix e−βH0 is multiplied for the corresponding weighting
factor, and finally we calculate the overlap with the initial state |i(t0)〉. Such a contour is called
Kadanoff-Baym contour and is illustrated in Fig. 3.3.

This shows us that the interpretation of the Green’s function is still the same as for the zero tem-
perature Green’s function in the previous chapter, namely measuring what excitations are possible
and how well they survive over time. The main difference at finite temperature is the fact that we
have to propagate the state also into the lower complex plane and evaluate the non-perturbed den-
sity matrix to get the correct Boltzmann weighting factor. Therefore, the finite temperature Green’s
function naturally leads to the concept of imaginary time, which we will make use of shortly.
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Figure 3.3: The Kadanoff-Baym contour illustrating the integration in the complex plane to evaluate
the matrix element 〈|e−βHca(t)c†b(t

′)|〉 of the finite temperature Green’s function. The dots on the
contour indicate the time when each operator is evaluated. The path has a slight offset from the real
axis for clarity.

To evaluate such matrix elements in practice, we only need to tread the time evolution operators
perturbatively, since we usually assume we were able to solve the non-perturbed system H0. Since
we have derived the explicit form of the time evolution operator as an exponential of VI(t), we can
expand them as a power series in VI(t) and calculate the integration along the right contour with
appropriate methods.

3.5 Imaginary time Green’s functions
In the previous section we have seen that in order to evaluate the finite-temperature Green’s function
we need to calculate the time-ordered products of operators along an integration contour in the
complex plane which is far from a trivial task. Therefore, we would like to simplify this contour
to one which is easier to handle mathematically. Still, we are supposed to apply the creation and
annihilation operators at time t, respectively t′ on the real axis. Otherwise, since the functions we
encounter are holomorphic, we are free to choose the integration path as long as we visit the proper
points t′, t and t0 − iβ along the way.

Since in the finite temperature Green’s function we have to at some point make the transition from
the real axis into the complex plane to reach t0 − iβ, we are pretty much limited to the Kadanoff-
Baym contour, which is the easiest integration path since it consists only of straight lines connecting
the points t′, t and t0 − iβ etc. Any deviation from these points results in a Green’s function which
is different from G(r, t, r′, t′), so in order to simplify the contour, we have to move away from the
usual real time Green’s function we know and allow for points t, t′ that are not located on the real
axis.

Actually, this is not a big step since in the previous section we have already seen that we have
to evaluate the real frequency Green’s function at points shifted slightly away from the real axis by
η > 0. Additionally, the form of operators in the interaction picture becomes easier for complex
time arguments, as we have seen in the discussion of the density matrix in the previous section. At
some point we have to perform the integration up to a point with imaginary part −iβ, otherwise we
would evaluate the Green’s function at a different temperature, which is a strong argument that any
simplified contour should include these points in the complex plane.

We will now see that we can obtain an expression that is much easier to handle by making the
transition towards imaginary time, i.e. we consider the time variables of G(r, t, r′, t′) to lie only
on the imaginary axis. Such analytic continuation of a general function from the real axis into
the whole complex plane is a well studied subject in mathematical functional analysis, but in case
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of a physical interpretation using something like imaginary time is at first sight slightly counter-
intuitive. We will see that this continuation is indeed well defined and will simplify the handling
and computation of Green’s functions significantly, and that we mathematically are able to uniquely
reconstruct the retarded or advanced Green’s function from the imaginary time Green’s function. In
actual calculations this step will usually turn out to be a bit more cumbersome.

We will now again make use of the variable τ , which was defined as the negative imaginary part
of a general complex number

ztime = t− iτ, t, τ ∈ R. (3.5.1)

With this, we define the imaginary time Green’s function Gab(τ, τ ′) as

Ga,b(τ, τ
′) = −〈 Tτ ca(τ)c†b(τ

′) 〉 (3.5.2)

= −〈 ca(τ)c†b(τ
′) 〉 θ(τ − τ ′) + 〈 c†b(τ ′)ca(τ) 〉 θ(τ ′ − τ), (3.5.3)

where the time ordering operator Tτ sorts all operators with larger argument τ to the left. As can
be seen from the definition, the commutation of the fermionic creation and annihilation operators by
the time ordering operator involves a sign change. From now on we will establish the convention
that the interchange of two operators by Tτ involves a sign change for fermionic and no sign change
for bosonic operators. The annihilation and creation operators are given as before in the Heisenberg
picture but with imaginary time argument

ca(τ) = eiH(−iτ)cae−iH(−iτ) (3.5.4)

= eHτ cae−Hτ (3.5.5)

and c†a(τ) = eHτ c†ae−Hτ . (3.5.6)

Please remember that we should in principle writeGa,b(−iτ,−iτ ′) and ca(−iτ), but as stated in the
previous sections, we define

f(τ) := f(0− iτ), (3.5.7)

without introducing further notation for better readability.
For the moment let us assume that β > τ > τ ′ > 0. If we set the time t0 for the system to be at

equilibrium to zero, we can write the matrix element of the imaginary time Green’s function via the
formula from Eq. (3.4.75) as

〈i|e−βHca(τ)c†b(τ
′)|i〉

= 〈i(0)|e−βH0 UI(−iβ, τ) cI(τ) UI(τ, τ
′) c†I(τ

′) UI(τ
′, 0) |i(0)〉 . (3.5.8)

The integration contour is now only along the imaginary axis, and even for τ < τ ′, the time ordering
operator ensures that we always integrate from the smallest imaginary time to the larger time value
and then finally until −iβ, i.e. the contour is a straight line going from 0 to −iβ, as shown in
Fig. 3.4. But what happens if for example τ > β? Intuitively, this sounds a bit strange since we
integrate further than the imaginary time point that corresponds to the density matrix, and then back,
which in principle should be reordered by the time ordering operator. If we interpret the density
matrix e−βH0 as the operator at τ = β, it would be put in between c(τ) and c†(τ ′), which would
actually mean we calculate the Boltzmann weight for the intermediate state or at the wrong time. At
least our physical intuition tells us that cases where τ > β might be a bit strange. We will indeed
show in the next chapters that |τ | > β does not contain any additional physical information.

Before we continue, we show a few important properties of G(τ).

1. Ga,b(τ, τ
′) = Ga,b(τ − τ, 0) ∀τ, τ ′
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Figure 3.4: The Matsubara contour illustrating the integration in the complex plane to evaluate
the matrix element 〈|e−βHca(τ)c†b(τ

′)|〉 of the finite temperature Green’s function on the imaginary
time axis. The dots on the contour indicate the time when each operator is evaluated.

Proof: First we consider the case τ > τ ′ and use the cyclic property of the trace

Ga,b(τ, τ
′) = −〈 ca(τ)c†b(τ

′) 〉 (3.5.9)

= − 1

Z
Tr
{

e−βHeHτ cae−HτeHτ
′
c†be
−Hτ ′

}
(3.5.10)

= − 1

Z
Tr
{

e−βHeH(τ−τ ′)cae−H(τ−τ ′)c†b

}
(3.5.11)

= Ga,b(τ − τ ′, 0). (3.5.12)

This means the imaginary time Green’s function is time translationally invariant and only
depends on the time difference τ − τ ′. Therefore, from now on we will use the abbreviation

Ga,b(τ) := Ga,b(τ, 0). (3.5.13)

The proof for τ < τ ′ can be obtained in the same way, just with interchanged order of the
operators.

2. (Ga,b)
†(τ) = Gb,a(τ) ∀τ

Proof: We start with τ > 0 and again use the cyclic properties of the trace:

(Ga,b)
†(τ) = −

(
〈 ca(τ)c†b(0) 〉

)†
(3.5.14)

= − 1

Z
Tr

{ (
e−βHeτHcae−τHc†b

)† }
(3.5.15)

= − 1

Z
Tr
{
cbe
−τHc†aeτHe−βH

}
(3.5.16)

= − 1

Z
Tr
{

e−βHeτHcbe
−τHc†a

}
(3.5.17)

= −〈 cb(τ)c†a(0) 〉 (3.5.18)
= Gb,a(τ). (3.5.19)

From this it follows directly that the diagonal Green’s functions Ga,a(τ) are real, since

(Ga,a)†(τ) = Ga,a(τ). (3.5.20)

The proof for τ < 0 is completely analogous.
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3. Ga,b(−τ) = −Ga,b(−τ + β) ∀τ ∈ (0, β)

Proof: Again, we only need the cyclic properties of the trace. Assuming that τ ∈ (0, β) we
get

Ga,b(−τ) = −〈 Tτ ca(−τ)c†b(0) 〉 (3.5.21)

= 〈 c†b(0)ca(−τ) 〉 (3.5.22)

=
1

Z
Tr
{

e−βHc†be
(−τ)Hcae−(−τ)H

}
(3.5.23)

=
1

Z
Tr
{

e(−τ)Hcae−(−τ)He−βHc†b

}
(3.5.24)

=
1

Z
Tr
{

e−βHe(β−τ)Hcae−(β−τ)Hc†b

}
(3.5.25)

= 〈 ca(β − τ)c†b(0) 〉 (3.5.26)

= 〈 Tτ ca(β − τ)c†b(0) 〉 (3.5.27)
= −Ga,b(−τ + β) (3.5.28)

In Eq. (3.5.27) we were able to put in the Tτ operator without any change since we choose
τ ∈ (0, β), and thus β − τ > 0. It is important to note that this relation only holds for
τ ∈ (0, β), i.e. the Green’s function in the interval (−β, 0) is identical to the one in (0, β)
except for a minus sign. Outside this interval this is not true, because for the proof the sign
change between −τ and β − τ is necessary.

4. lim
τ→0+

(Ga,b(τ)−Ga,b(−τ)) = −δab

Proof:

lim
τ→0+

(Ga,b(τ)−Ga,b(−τ)) = lim
τ→0+

(
−〈 ca(τ)c†b(0) 〉 − 〈 c†b(0)ca(−τ) 〉

)
(3.5.29)

= −〈 cac†b + c†bca 〉 (3.5.30)

= −〈 {ca, c†b} 〉 (3.5.31)
= −δab. (3.5.32)

This result shows us that the diagonal imaginary time Green’s function is discontinuous at
τ = 0. This is due to the fact that we actually regain the real time Green’s function from
Ga,b(τ) − Ga,b(−τ) at τ = t = 0 where the real and imaginary axis intersect, except for a
prefactor of i (compare Eq. 3.4.25).

Example: Non-interacting particle:

At this point let us again have a look at non-interacting particles to see an example of the prop-
erties of the imaginary time Green’s function. The Hamiltonian is again given by the free particle
dispersion

H =
∑
p

ξpc
†
pcp. (3.5.33)

By using the Baker-Campbell-Hausdorff formula we get

ca(τ) = e−ξaτ ca (3.5.34)

c†a(τ) = e−ξaτ c†a, (3.5.35)
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Figure 3.5: The diagonal component of the non-interacting imaginary time Green’s function
Ga,b(τ) for different values of the single particle energy ξ = ε− µ:
a) below the Fermi level ξ < 0, b) at the Fermi level ξ = 0 and c) above the Fermi level ξ > 0.
The imaginary time τ is given in units of the inverse temperature β. Only the diagonal component is
purely real.

which leads to

〈 ca(τ)c†b(0) 〉 = e−ξaτ 〈 cac†b 〉 (3.5.36)

= e−ξaτ 〈 δab − c†bca 〉 (3.5.37)

= e−ξaτ (1− nF (ξa))δab, (3.5.38)

and

〈 c†b(0)ca(τ) 〉 = e−ξaτ 〈 c†bca 〉 (3.5.39)

= e−ξaτnF (ξa)δab. (3.5.40)

So adding up these terms we finally obtain

Ga,b(τ) = −e−ξaτ (1− nF (ξa))δabθ(τ) + e−ξaτnF (ξa)δabθ(−τ) (3.5.41)

= δab e−ξaτ
(
nF (ξa)θ(−τ)− (1− nF (ξa))θ(τ)

)
(3.5.42)

= −δab e−ξaτ ( θ(τ)− nF (ξa) ) . (3.5.43)

It is easy to check that all the four properties of a Green’s function from above are fulfilled. Fig. 3.5
shows a plot of the diagonal component for different values of ξa, where the jump of height 1 at
τ = 0 is clearly visible. From Eq. 3.5.43 we see that the non-interacting Green’s function on the
imaginary axis is basically a real exponential, originating from the factor eiξat that we have found on
the real axis. As a result, the non-interacting Green’s function diverges for large τ in one direction
and converges to 0 in the other, depending on the sign of ξa. Therefore, the problem arises that we
cannot define a Fourier transform of such Green’s function, since∫ ∞

−∞
eiντGa,b(τ) dτ, (3.5.44)

does not exist. The integral does not converge, it even diverges at ν = 0 for the non-interacting parti-
cle. In the previous section we already established the notion that |τ | > β is physically questionable,
since it would correspond to evaluate operators at times after the natural limit of τ = β, given by
the density matrix U(−iβ, 0) = e−βH . We will see soon that the restriction to the interval (−β, β)
can be mathematically justified and suffices to evaluate the Green’s function on the real axis when
we want to go back to observable quantities like the spectral function. This we will discuss now in
the next section.
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3.6 Matsubara Green’s function
As just discussed, similar to the real frequency Green’s function we would also like to define the
spectral representation of Ga,b(τ) via a Fourier transform. Let us assume we were able to find a
representation of Ga,b(τ) in the form of

Ga,b(τ) =

∫
e−iντGa,b(ν) dν, (3.6.1)

where Ga,b(ν) are the coefficients left to be determined. Here, the variable ν refers to the imaginary
part of a complex frequency that lies on the imaginary axis, since it corresponds to the imaginary
frequencies of the Fourier transform from imaginary time. For the lack of a good alternative and
also to use the same notation as most existing literature about Matsubara Green’s functions, we will
continue to use the symbol ω in a slightly modified form to indicate the frequency on the imaginary
axis. We will write f(iωn) when we refer to a function on the imaginary frequency axis, where iωn
means we have to evaluate f on the imaginary axis at the value ωn. The index n has no special
meaning yet but it will acquire one shortly.

This notation is a bit inconsistent compared to the case of imaginary time, since there we explic-
itly decided to drop the i from iτ . Since most other textbooks and publications use this notation, we
will also stick to it. In hope to avoid further confusion, we explicitly list the relations between the
real and imaginary cases here

Real axis: Imaginary axis/Matsubara: Complex plane:
t → τ ztime = t− iτ
ω → ωn zfrequency = ω + iωn

In summary, if we write f(t), f(ω) it means that the function f should be evaluated on the real
time or frequency axis, while f(τ), f(iωn) means that f should be evaluated on the imaginary axis
with the argument z = −iτ , or z = iωn, respectively.

Coming back to the problem of how to define the Fourier transform: in case it exists, we have to
fulfil the requirement from Eq. 3.5.28, namely Ga,b(−τ) = −Ga,b(−τ + β) for τ ∈ (0, β). This
gives the following constraint

0 = Ga,b(−τ) +Ga,b(−τ + β) (3.6.2)

=

∫ (
e−iωn(−τ) + e−iωn(β−τ)

)
Ga,b(iωn) dωn (3.6.3)

=

∫ (
1 + e−iωnβ

)
e−iωn(−τ)Ga,b(iωn) dωn. (3.6.4)

There is no reason why this relation should be satisfied for arbitrary Green’s functions. Actually
this integral does not exist since no “usual” Fourier transform of Ga,b(τ) does exist. Therefore, one
possible solution to this issue, which does not seem to be mathematically justified at first sight, is to
require

1 + e−iωnβ = 0, (3.6.5)

which poses a constraint onto the frequencies ωn we consider

e−iωnβ = −1 (3.6.6)

⇒ ωn = (2n+ 1)
π

β
, n ∈ Z. (3.6.7)
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Therefore, if we consider discrete frequencies and finally give a meaning to the index n, we can
actually define the imaginary frequency Green’s function Ga,b(iωn) by

GFT
a,b(τ) =

1

β

∞∑
n=−∞

e−iωnτGa,b(iωn), ωn = (2n+ 1)
π

β
(3.6.8)

Ga,b(iωn) =

∫ β

0

eiωnτGa,b(τ) dτ, (3.6.9)

where GFT
a,b(τ) indicates the Green’s function obtained by the inverse Fourier transform of Ga,b(ω),

which is not identical to the initial Ga,b(τ), since this representation causes GFT
a,b(τ) to be antiperi-

odic for all τ

GFT
a,b(τ +mβ) =

1

β

∞∑
n=−∞

e−iωn(τ+mβ)Ga,b(iωn) (3.6.10)

= e−iωnmβ
1

β

∞∑
n=−∞

e−iωnτGa,b(iωn) (3.6.11)

= (−1)mGFT
a,b(τ), where m ∈ Z, (3.6.12)

whereas the true Ga,b(τ) has this property only in (−β, β). From the inverse Fourier transform we
see that

GFT
a,b(τ) =

1

β

∞∑
n=−∞

e−iωnτGa,b(iωn) (3.6.13)

=
1

β

∞∑
n=−∞

e−iωnτ
(∫ β

0

eiωnτ
′
Ga,b(τ

′) dτ ′
)

(3.6.14)

=

∫ β

0

Ga,b(τ
′)

(
1

β

∞∑
n=−∞

e−iωn(τ−τ ′)
)

︸ ︷︷ ︸
=δ(τ−τ ′)

dτ ′ (3.6.15)

= Ga,b(τ), if τ ∈ (0, β). (3.6.16)

This property holds only for τ ∈ (0, β), but due to the antiperiodicity by construction GFT
a,b(τ) =

−GFT
a,b(τ − β), which is correct for the true imaginary time Green’s function, we get the agreement

also for τ ∈ (−β, β). To recapitulate what we have done by this, we restrictedGa,b(τ) to the interval
(−β, β), throwing away the information outside of this interval and replacing it antiperiodically with
the data in (0, β). This in turn allowed us to define the Fourier transform Ga,b(iωn), since it does
exist for (anti)periodic form of GFT

a,b(τ). We will see shortly that this loss of information is actually
irrelevant, and that we will be able to fully and uniquely reconstruct the real time/frequency Green’s
function from the imaginary time/frequency Green’s function which information is confined only to
that interval. Therefore, from now on we will redefine the imaginary time Green’s function as the
inverse Fourier transform and drop the label FT

Ga,b(τ) := GFT
a,b(τ), (3.6.17)

and restrict all further investigations to the interval (−β, β).
Before we come to the point of how to do the continuation from the restricted imaginary axis

information to the full real axis, let us investigate the properties of the imaginary frequency Green’s
function:

1. (Ga,b)
†(iωn) = Gb,a(−iωn) ∀iωn
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Proof:

(Ga,b)
†(iωn) =

∫ β

0

e−iωnτ (Ga,b)
†(τ) dτ (3.6.18)

=

∫ β

0

ei(−ωn)τGb,a(τ) dτ (3.6.19)

= Gb,a(−iωn). (3.6.20)

From this it directly follows that for the diagonal Green’s function Ga,a(iωn) the negative
frequency terms can be obtained by complex conjugation

G∗a,a(iωn) = Ga,a(−iωn). (3.6.21)

3.7 Validity of the periodic imaginary time Green’s function
In this intermission we will give a proof that the restriction of the imaginary time Green’s function
on the interval (0, β) is mathematically justified. Since this issue is usually brushed over in most
textbooks about the Green’s function formalism, let us spent a few sentences on recapitulating the
actual problem.

In Eq. (3.6.9) we have defined the imaginary Green’s function as

G(iωn) =

∫ β

0

eiωnτG(τ) dτ, (3.7.1)

where we have dropped the indices of the states a, b for convenience, since they have no effect on
what we are interested in right now. This form of the Fourier transform was in principle chosen
arbitrarily and so far there is no justification why we should choose especially the interval (0, β)
for the integration, because the imaginary time Green’s function is not periodic in τ . The standard
Fourier transform ∫ ∞

−∞
eiωnτG(τ) dτ, (3.7.2)

does not even exist in the general case, as we have seen at the example of the non-interacting particle
from Eq. (3.5.43)

−
∫ ∞
−∞

eiωnτe−ξτ ( θ(τ)− nF (ξa) ) dτ = −
∫ ∞

0

e(iωn−ξ)τ dτ + nF (ξ)

∫ ∞
−∞

e(iωn−ξ)τ dτ︸ ︷︷ ︸
→±∞

.

(3.7.3)

So why should the Fourier transform when restricted to (0, β) in Eq. (3.7.1) give any meaningful
result at all?

The advantage we have is that we can actually check whether it is meaningful and consistent
with the Fourier transform on the real axis. Defining G(iωn) by the Fourier transform in Eq. (3.7.1)
is only one way but we have additional possibility of extending the real frequency variable ω into the
complex plane just as we have done with t when we introduced the imaginary time Green’s function
G(τ). To have a consistent unique definition of the imaginary frequency Green’s function, we thus
need to have the following equality∫ β

0

eiωnτG(τ) dτ =: G(iωn)
?
= G(iωn) := G(ω)

∣∣∣
ω→iωn

(3.7.4)

These two different ways of obtaining G(iωn) and the corresponding problem are illustrated in
Fig. 3.6. The path A corresponds to the case where we first obtain the Fourier transform on the real
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Figure 3.6: Diagram for the proof that the Fourier transform on the finite (0, β) interval of the
imaginary time Green’s function is consistent with the continuation of the real frequency Green’s
function G(ω) extended onto the imaginary axis. Here, F represents the Fourier transform between
time and frequency. What one has to show is that the two paths A and B commute and give a unique
relationship between the functions on the real and imaginary axis. In the general case the existence
of the Fourier transform G(ω) does not imply the existence of the Fourier transform G(iωn). If it
does exist, in general the two paths A and B will each yield a different result.

axis and then extend ω into the complex plane onto the imaginary axis iωn. The other path B first
performs the continuation into the complex plane an then applies the Fourier transform, which has
to be restricted to some finite interval in order to exist.

Even if the Fourier transform in imaginary time were to exist for certain cases, Eq. (3.7.4) would
not hold in the general case. For a counterexample consider the following function

f(z) = (1− t2)θ(1− |t|), (3.7.5)

which is a simple quadratic function centered at the origin and and equals zero outside the interval
[−1, 1]. Other choices are possible but this function is especially easy to work with. Starting with
real time arguments t, it has the Fourier transform

f(ω) =

∫ ∞
−∞

eiωt(1− t2)θ(1− |t|) dt (3.7.6)

=
4

ω3
(sinω − ω cosω) . (3.7.7)

Performing the transformation onto the complex axis by substituting ω → iωn, we obtain

f(iωn) =
4

(iωn)3
(sin iωn − iωn cos iωn) (3.7.8)

= − 4

ω3
n

(sinhωn − ωn coshωn) . (3.7.9)

This is the way to obtain f(iωn) as indicated by path A in Fig. 3.6. Now we can compare the other
way indicated by B by first moving onto the imaginary axis

f(τ) = (1− (−iτ)2)θ(1− | − iτ |) (3.7.10)

= (1 + τ2)θ(1− |τ |). (3.7.11)
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Figure 3.7: The modified integration contour to relate the Fourier transform of the imaginary time
Green’s function Ga,b(τ) to the real frequency Green’s function Ga,b(ω). The original integration
from τ = 0 to τ = β is replaced by an integration along the real axis and then into the lower
complex plane. The rightmost integration path is send to infinity and vanishes.

Since we restricted the function to the interval [−1, 1] the standard Fourier transform does exist∫ ∞
−∞

eiωnτ (1 + τ2)θ(1− |τ |) dτ =
4

ω3
n

(
ω2
n sinωn + ωn cosωn − sinωn

)
, (3.7.12)

which is in no way equal to the result we obtain by using path A in Eq. (3.7.9). Even for special
choices of discretizing the ωn values the two functions cannot be brought into agreement. This
shows us that the definition of G(iωn) by the Fourier transform in Eq. (3.7.1) is actually quite non-
trivial and needs to be justified that it is consistent with the Fourier transform on the real axis, i.e.
that path A and B in Fig. 3.6 do commute.

With this introduction to the problem, we are finally ready to show that the definition of the
imaginary frequency Green’s function via

Ga,b(iωn) =

∫ β

0

Ga,b(τ)eiωnτ dτ, (3.7.13)

and especially the restriction to the interval (0, β) is mathematically justified. For this we will
proceed in two steps: First, we have to show that the imaginary frequency Green’s function as
defined in Eq. (3.6.9) is uniquely determined as the continuation from the retarded Green’s function
GRa,b(ω) by the replacement ω → iωn. This ensures that there is only one imaginary time Green’s
function which can be obtained from the information on the real axis. In the second step we have
to show the reverse, namely that for given Ga,b(iωn), n ∈ Z, there exists a unique continuation
Ga,b(z), that satisfies Ga,b(z)|z=iωn = Ga,b(iωn) and Ga,b(z)|z=ω+iη = GRa,b(ω). If this is done,
we have shown that Ga,b(iωn) and GRa,b(ω) have a one-to-one correspondence, thus one can be
uniquely obtained from the other, so we are free to choose whichever representation is the most
convenient.

First step: We need to show that the imaginary frequency Green’s function is uniquely deter-
mined as the continuation from the retarded Green’s functionGRa,b(ω) via ω → iωn. In the definition
of the imaginary frequency Green’s function in Eq. (3.6.9) the integration contour is a straight line
in the interval τ ∈ (0, β), resp. z = −it′, t′ ∈ (0, β). Since Ga,b(τ) is a holomorphic function
in the lower complex plane, we are free to choose the integration contour as long as the start and
end points are the same. We now modify the contour by first integration along the real axis from
z = (0, 0) to z = (s, 0), s > 0, then into the lower complex plane to z = (s,−iβ), and then finally
back to z = (0,−iβ). Then s will be send to infinity. This path is illustrated in Fig. 3.7. Performing
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the integration along this contour then leads to

Ga,b(iωn) =

∫ β

0

Ga,b(τ)eiωnτ dτ (3.7.14)

= −
∫ β

0

〈Tτ ca(τ)c†b(0)〉 eiωnτ dτ (3.7.15)

= −
∫ β

0

〈eHτ cae−Hτ c†b〉 eiωnτ dτ (3.7.16)

= −
∫ β

0

〈eiH(0−iτ)cae−iH(0−iτ)c†b〉 e−ωn(0−iτ) dτ (3.7.17)

= −i
∫ ∞

0

〈eiHtcae−iHtc†b〉 e−ωnt dt

− lim
s→∞

∫ β

0

〈eiH(s−iy)cae−iH(s−iy)c†b〉 e−ωn(s−iy) dy︸ ︷︷ ︸
→0

− i
∫ 0

∞
〈eiH(t−iβ)cae−iH(t−iβ)c†b〉 e−ωn(t−iβ) dt (3.7.18)

= −i
∫ ∞

0

〈eiHtcae−iHtc†b〉 e−ωnt dt

+ i

∫ ∞
0

〈eiH(t−iβ)cae−iH(t−iβ)c†b〉 (−1)e−ωnt dt (3.7.19)

= −i
∫ ∞

0

〈ca(t)c†b(0)〉 e−ωnt dt− i
∫ ∞

0

1

Z
Tr
{

e−βHeiH(t−iβ)cae−iH(t−iβ)c†b

}
e−ωnt dt

(3.7.20)

= −i
∫ ∞

0

〈ca(t)c†b(0)〉 e−ωnt dt− i
∫ ∞

0

〈c†b(0)ca(t)〉 e−ωnt dt (3.7.21)

= −i
∫ ∞

0

〈{ca(t), c†b(0)}〉 e−ωnt dt (3.7.22)

=

∫ ∞
−∞

GRa,b(t, 0)ei(iωn)t dt (3.7.23)

= GRa,b(ω)
∣∣
ω→iωn . (3.7.24)

For this proof we have considered the following:

1. When performing the integration along the real axis in (3.7.18) we pick up an additional factor
of i due to the change of the integration measure. The parametrization on the imaginary axis
is γ(τ) = −iτ ⇒ dγ = −idτ , while on the real axis it is γ(t) = t → dγ = dt.

2. In (3.7.18) the middle term vanishes because of the real decaying exponential factor
lims→∞ e−ωns = 0.

3. In (3.7.19) we have used that eiωnβ = −1, which is only true for the Matsubara frequencies
ωn = (2n+ 1)πβ . This means that the result we just obtained Ga,b(iωn) = i GRa,b(ω)

∣∣∣
ω→iωn

is true only at the Matsubara frequencies! The proof does not hold for arbitrary values of ωn.

4. In (3.7.21) we have used the cyclic properties of the trace to rearrange the order of the operators
ca and c†b. For this it was crucial that the integration was performed along a contour with
imaginary part −iβ, otherwise the Boltzmann factor would not have been cancelled by the
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Heisenberg exponential operator

Tr
{

e−βHeiH(t−iβ)cae−iH(t−iβ)c†b

}
= Tr

{
eiHtcae−iHte−βHc†b

}
(3.7.25)

= Tr
{

e−βHc†be
iHtcae−iHt

}
. (3.7.26)

This shows that we have to restrict the upper limit of the integration of the Fourier transform
for the imaginary frequency Green’s function to (0, β), otherwise this proof would not hold.

5. When modifying the integration contour in (3.7.18), in principle we would have to include a
factor of iη to shift the integration on the real axis slightly below into the lower complex plane.
In this case it is not necessary since we have restricted us to the lower complex plane τ ∈
(0, β) and thus evaluated the time ordering operator accordingly. As soon as the time ordering
operator is evaluated, we are left with the function 〈ca(τ)c†b(0)〉 eiωnτ , which is continuous on
the real axis.

Second step: We have to show that for givenGa,b(iωn), n ∈ Z, there exists a unique continuation
Ga,b(z), that satisfies Ga,b(z)|z=iωn = Ga,b(iωn) and Ga,b(z)|z=ω+iη = GRa,b(ω). This step is a
bit more involved since in general there exist an infinite number of functions which agree on all
Matsubara points iωn. Consider for example we have found a holomorphic function F (z) which
fulfils F (z)|z=iωn = Ga,b(iωn) ∀iωn. Then the following different function also has the same
values at iωn

Fa,b(z) + eβz + 1, (3.7.27)

since eβiωn = −1. Luckily, the property lim|z|→∞Ga,b(z) = 0 will help us to overcome this issue.
This property follows from the following spectral representation of the Green’s function that we will
derive in Chapter 4

Ga,b(z) =
1

π

∫ ∞
−∞

Im[Ga,b(ω)]

ω − z dω. (3.7.28)

Since the spectral function − 1
π Im[Ga,b(ω)] is normalized to one, Ga,b(z) will always fall off at

least as 1/|z| for large |z|. This will suffice for the proof.
Baym an Mermin [88] showed that a function f(z) that takes on values f(zn), n ∈ Z, zn /∈ R

and fulfils the following properties

1. f is analytic except for the real axis

2. f goes to zero along any straight line for |z| → ∞ in the upper or lower half-plane,

has a unique analytic continuation f c(z) in the lower or upper complex plane that fulfils f c(zn) =
f(zn) . Since we already know from the first step of the proof that GRa,b(ω) has the property that

GRa,b(z)
∣∣∣
z=iωn

= Ga,b(iωn) ∀n ∈ Z, it has to be the only function with this property, i.e. is the

proper analytic continuation and we can formally write

lim
iωn→ω+iη

Ga,b(iωn) = GRa,b(ω). (3.7.29)

This concludes the proof. Therefore, the restriction of the imaginary time Green’s function to the in-
terval (−β, β) is justified and we can work with both real and imaginary frequency Green’s function
without any loss of information; whichever may be more convenient. It should be clear now that the
advanced Green’s function can be obtained by

lim
iωn→ω−iη

Ga,b(iωn) = GAa,b(ω), (3.7.30)
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Figure 3.8: The real and imaginary part of the diagonal component of the non-interacting imaginary
frequency Green’s function Ga,b(iωn) for different values of the single particle energy ξ = ε− µ:
a) below the Fermi level ξ < 0, b) at the Fermi level ξ = 0 and c) above the Fermi level ξ > 0.
Here, the inverse temperature β corresponds to room temperature.

which follows directly if in the previous proof the integration over the imaginary axis is performed
in the upper complex plane (0, iβ) instead of the lower.

For the moment let us reconsider our example of non-interacting particles. The imaginary time
Green’s function is (see Eq. 3.5.43)

Ga,b(τ) = −δab e−ξaτ ( θ(τ)− nF (ξa) ) . (3.7.31)

The imaginary frequency Green’s function as defined in Eq. (3.6.9) then evaluates to

Ga,b(iωn) =

∫ β

0

eiωnτGa,b(τ) dτ (3.7.32)

= −δab
∫ β

0

eiωnτe−ξaτ ( θ(τ)− nF (ξa) ) dτ (3.7.33)

= −δab (1− nF (ξa))

∫ β

0

e(iωn−ξa)τ dτ (3.7.34)

= −δab (1− nF (ξa))
e(iωn−ξa)β − 1

iωn − ξa
(3.7.35)

= −δab (1− nF (ξa))
−e−βξa − 1

iωn − ξa
(3.7.36)

=
δab

iωn − ξa
. (3.7.37)

This is the manifestation of what we just showed in the previous proof: we can indeed obtain the
imaginary frequency Green’s function from the real frequency Green’s function in the last chapter

GRa,b(ω) =
δab

ω + iη − ξa
, (3.7.38)

just by the replacement ω + iη → iωn and the other way round. In Fig. 3.8 we show examples of
the non-interacting Matsubara Green’s function for three different values of ξa.
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3.8 Matsubara frequency summations
When working with the Matsubara Green’s function we will often encounter summations over the
Matsubara frequencies of the form

1

β

∞∑
n=−∞

F (iωn), (3.8.1)

where F (iωn) can be the Matsubara Green’s function or any other function depending on iωn.
Consider for example the inverse Fourier transform to imaginary time

Ga,b(τ) =
1

β

∞∑
n=−∞

e−iωnτGa,b(iωn), ωn = (2n+ 1)
π

β
, (3.8.2)

where F (iωn) = e−iωnτGa,b(iωn). We see that the standard sum over Matsubara frequencies in
Eq. 3.8.1 is a special case of the inverse Fourier transform, namely evaluated at τ = 0

1

β

∞∑
n=−∞

F (iωn) =
1

β

∞∑
n=−∞

e−iωn0F (iωn) (3.8.3)

= F (τ)|τ=0 . (3.8.4)

But from the previous chapter we know that basically all functions we consider, like the Green’s
function, are discontinuous at τ = 0, which makes the Matsubara summation ambiguous. The most
prominent example is the expectation value of the particle number operator 〈ckc†k〉, or the filling or
occupation of the state |k〉. This expression is actually imaginary time Green’s function evaluated at
τ = 0−, since

lim
τ→0−

Gk,k(τ) = lim
τ→0−

−〈Tτ ck(τ)c†k(0)〉 (3.8.5)

= lim
τ→0−

〈c†k(0)ck(τ)〉 , since τ < 0 (3.8.6)

= 〈c†k(0)ck(0)〉 (3.8.7)

= 〈c†kck〉 (3.8.8)
= nk, (3.8.9)

while for τ = 0+ we have

lim
τ→0+

Gk,k(τ) = lim
τ→0+

−〈ck(τ)c†k(0)〉 (3.8.10)

= −〈ckc†k〉 (3.8.11)

= −〈1− c†kck〉 (3.8.12)
= nk − 1. (3.8.13)

If we use the definition of the inverse Fourier transform we can obtain the filling as

nk = lim
τ→0−

Gk,k(τ) (3.8.14)

= lim
τ→0−

1

β

∞∑
n=−∞

e−iωnτGk,k(iωn), (3.8.15)

where we cannot exchange the limit and the summation, since the sum is not continuous in τ = 0,
as we have just seen. Therefore, any summation over Matsubara frequencies that involves functions
that are discontinuous at τ = 0 need to be handled carefully. For example, calculating the filling for



3.8 Matsubara frequency summations 47

a state at the Fermi level with ξk = 0, which should be half filled with nk = 0.5, without the factor
e−iωn0− leads to neither nk nor nk − 1, since the behaviour is undefined

1

β

∞∑
n=−∞

1

iωn
=

1

β

∞∑
n=0

(
1

iωn
+

1

iω−n−1

)
(3.8.16)

= 0, (3.8.17)

since ω−n−1 = (2(−n− 1) + 1)
π

β

= −(2n+ 1)
π

β

= −ωn. (3.8.18)

Including the limit τ → 0− we get the expected result

lim
τ→0−

1

β

∞∑
n=−∞

e−iωnτ

iωn
= lim
τ→0−

1

β

∞∑
n=0

(
e−iωnτ

iωn
+

eiωnτ

−iωn

)
(3.8.19)

= lim
τ→0−

1

β

∞∑
n=0

−2i sin(ωnτ)

iωn
(3.8.20)

= lim
τ→0−

−2

β

∞∑
n=0

sin(ωnτ)

ωn
(3.8.21)

= lim
τ→0−

−2

β

(
β

sgn(τ)

4

)
, see Appendix (3.8.22)

=
1

2
. (3.8.23)

Therefore, a correct treatment of Matsubara sums is absolutely crucial, since the error is completely
uncontrolled.

General summations over Matsubara frequencies will always have the form

1

β

∞∑
n=−∞

F (iωn)e−iωnτ , (3.8.24)

for some function F (iωn) with a finite τ 6= 0. Except for special cases like we have just seen for the
non-interacting Green’s function in Eq. (3.8.23) we will usually not be able to evaluate these sums
analytically. Since in the computer we can only sum up a finite number of values, we not only have
to ensure a correct treatment of the infinite sum but also of the limit τ → 0±. It should be clear that
the more terms in the sum we can analytically evaluate before employing a numerical procedure the
better. In practice, we always need to perform a cut-off of the number of Matsubara frequencies we
can store in the computer

1

β

∞∑
n=−∞

F (iωn)e−iωnτ ≈ 1

β

N∑
n=−N

F (iωn)e−iωnτ , (3.8.25)

so we have to make sure that either the infinite number of terms we miss are indeed negligible or
treat them separately. A possible way is to expand the function F (iω) for large ωn (the data for small
ωn we will store in the computer) and treat these high frequency tails exactly, while summing only
the remaining terms in the computer and then adding the analytic ones at the end. For the general
case we expand F at high frequencies up to some, e.g. fourth order

F (iωn) ≈ c0 +
c1
iωn

+
c2

(iωn)2
+

c3
(iωn)3

+
c4

(iωn)4
for large ωn. (3.8.26)
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The first coefficient c0 has to be zero in order for the Fourier transform to converge. Then we split
up the summation into the firstN terms that we have stored in the computer and the remaining terms
from N + 1 to∞, that can be well approximated by Eq. (3.8.26)

F (τ) =
1

β

N∑
n=−N

F (iωn)e−iωnτ +
1

β

∞∑
n=−∞

n/∈[−N..N]

F (iωn)e−iωnτ (3.8.27)

≈ 1

β

N∑
n=−N

F (iωn)e−iωnτ +
1

β

∞∑
n=−∞

n/∈[−N..N]

e−iωnτ
(
c1
iωn

+
c2

(iωn)2
+

c3
(iωn)3

+
c4

(iωn)4

)
.

(3.8.28)

We now add and subtract the remaining terms to complete the sum in the right term

F (τ) ≈ 1

β

N∑
n=−N

e−iωnτ
(
F (iωn)− c1

iωn
− c2

(iωn)2
− c3

(iωn)3
− c4

(iωn)4

)
(3.8.29)

+
1

β

∞∑
n=−∞

e−iωnτ
(
c1
iωn

+
c2

(iωn)2
+

c3
(iωn)3

+
c4

(iωn)4

)
(3.8.30)

The right term can be evaluated analytically with (see Appendix)

1

β

∞∑
n=−∞

e−iωnτ
c1
iωn

= −c1
2

sgn(τ) (3.8.31)

1

β

∞∑
n=−∞

e−iωnτ
c2

(iωn)2
=
c2
4

(2τ − β) (3.8.32)

1

β

∞∑
n=−∞

e−iωnτ
c3

(iωn)3
=
c3
4
τ (β − τ) sgn(τ) (3.8.33)

1

β

∞∑
n=−∞

e−iωnτ
c4

(iωn)4
=
c4
48

(2τ − β)(2τ2 − 2τβ − β2) (3.8.34)

By using the symmetry F (−iωn) = F ∗(iωn), which holds for the diagonal components of most
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Matsubara functions we consider, and ω−n−1 = −ωn, the first sum can be simplified as

F (τ) =
1

β

N∑
n=−N

(
F (iωn)− c1

iωn
− c2

(iωn)2
− c3

(iωn)3
− c4

(iωn)4

)
e−iωnτ (3.8.35)

=
1

β

[ N∑
n=0

(
F (iωn)− c1

iωn
− c2

(iωn)2
− c3

(iωn)3
− c4

(iωn)4

)
e−iωnτ

+

(
F (−iωn)− c1

−iωn
− c2

(−iωn)2
− c3

(−iωn)3
− c4

(−iωn)4

)
eiωnτ

]
(3.8.36)

=
1

β

N∑
n=0

[(
F (iωn)e−iωnτ +

[
F (iωn)e−iωnτ

]∗)
+ c1

eiωnτ − e−iωnτ

iωn
− c2

eiωnτ + e−iωnτ

(iωn)2
+ c3

eiωnτ − e−iωnτ

(iωn)3
− c4

eiωnτ + e−iωnτ

(iωn)4

]
(3.8.37)

=
1

β

N∑
n=0

[
2 Re

[
F (iωn)e−iωnτ

]
+ c1

2i sin(ωnτ)

iωn
− c2

2 cos(ωnτ)

(iωn)2
+ c3

2i sin(ωnτ)

(iωn)3
− c4

2 cos(ωnτ)

(iωn)4

]
(3.8.38)

=
2

β

N∑
n=0

[
Re
[
F (iωn)e−iωnτ

]
+ c1

sin(ωnτ)

ωn
+ c2

cos(ωnτ)

ω2
n

− c3
sin(ωnτ)

ω3
n

− c4
cos(ωnτ)

ω4
n

]
(3.8.39)

=
2

β

N∑
n=0

[
Re [F (iωn)] cos(ωnτ) + Im [F (iωn)] sin(ωnτ)

+ c1
sin(ωnτ)

ωn
+ c2

cos(ωnτ)

ω2
n

− c3
sin(ωnτ)

ω3
n

− c4
cos(ωnτ)

ω4
n

]
(3.8.40)

Therefore, we obtain in total for the summation

F (τ) =

(
2

β

N∑
n=0

Re [F (iωn)] cos(ωnτ) + Im [F (iωn)] sin(ωnτ)

+ c1
sin(ωnτ)

ωn
+ c2

cos(ωnτ)

ω2
n

− c3
sin(ωnτ)

ω3
n

− c4
cos(ωnτ)

ω4
n

)
.

− c1
2

sgn(τ) +
c2
4

(2τ − β) +
c3
4
τ (β − τ) sgn(τ) +

c4
48

(2τ − β)(2τ2 − 2τβ − β2)

(3.8.41)

This is a general expression for any τ ∈ (−β, β). In many cases like the filling we need the limit of
τ → 0−. Since we now have a finite sum, we can evaluate the limit of (3.8.41) explicitly taking the
limit of every term in the sum

lim
τ→0−

F (τ) =
c1
2
− c2

4
β +

c4
48
β3 +

2

β

N∑
n=0

(
Re[F (iωn)] +

c2
ω2
n

− c4
ω4
n

)
. (3.8.42)

We see that the third order correction vanishes, so considering only the second order terms

lim
τ→0−

F (τ) =
c1
2
− c2

4
β +

2

β

N∑
n=0

(
Re[F (iωn)] +

c2
ω2
n

)
, (3.8.43)
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already corresponds to a high frequency correction up to third order. Higher order terms can be
included, but the analytical evaluation becomes more involved and the subtraction of the correction
terms numerically unstable. This is due to the fact that the factors ck/ωkn become quite large for
the lowest frequencies, especially at low temperature, and have to be subtracted by another large
analytical term, to finally yield a small number like the occupation. This leads to numerical noise
that can grow quite fast with higher order corrections. Therefore, in practice a good compromise is
to use a high frequency correction only up to fourth order.



Chapter 4

Analytic continuation

4.1 Introduction
Since in the Green’s function formalism we will mostly work in the Matsubara representation on
imaginary frequencies we are faced with the problem how to obtain the real frequency data only
from the imaginary frequency information, i.e. how to go from

F (iωn)→ F (ω ± iη), (4.1.1)

for some function F (z), z ∈ C, where ω ∈ R is on the real axis and iωn are the Matsubara frequen-
cies on the imaginary axis. η > 0 is a small convergence parameter since F is usually discontinuous
at the real axis. We restrict our analysis from now on to the open subset U given by

U := {z ∈ C : Im[z] > 0}, (4.1.2)

i.e. the upper complex plane. We assume that F (iωn), which could be the Green’s function, Selfen-
ergy or any other Matsubara function

F : U → C, (4.1.3)

is a holomorphic function. We cannot extend U any further, since F (z), resp. the Green’s function
has a discontinuity at the real axis. For holomorphic functions we have the Chauchy’s integral
formula, which states that

F (a) =
1

2πi

∮
γ

F (z)

z − a dz. (4.1.4)

This formula holds for all functions that are holomorphic (complex differentiable) in a set U ⊂ C
for all a ∈ U . The closed integration contour γ has to enclose the point a with a winding number
of 1. Therefore, for the diagonal components of the Green’s function Ga,a(z), U needs to be either
the lower or upper half of the complex plane and cannot intersect the real axis. For the positive
Matsubara frequencies ωn > 0 on the imaginary axis, we obtain the relation

Ga,a(iωn) =
1

2πi

∮
γ

Ga,a(z)

z − iωn
dz. (4.1.5)

We now choose the integration path where we deform γ into a semicircle along the real axis but
slightly shifted upwards z = ω + iη, ω ∈ R, η > 0 small, and close the circle in the upper complex
plane, as illustrated in Fig. 4.1. By this we do not leave the subset U on which the Green’s function
is holomorphic. Then we extend the integration along the real axis from −∞ to∞ which sends the
radius of the semicircle contour also to∞. Since the Green’s function decays at least as O(1/|z|),
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Figure 4.1: The integration contour to obtain the Green’s function G(iωn) on the Matsubara axis
by an integration along the real frequency axis via Cauchy’s integral formula.

the contribution of the semi circle vanishes and we get

Ga,a(iωn) = lim
η→0+

1

2πi

∫ ∞
−∞

Ga,a(ω + iη)

ω + iη − iωn
dω (4.1.6)

=
1

2πi

∫ ∞
−∞

GRa,a(ω)

ω − iωn
dω, (4.1.7)

where ω ∈ R is the frequency on the real axis. We were able to evaluate the limit of η → 0, since
we defined the retarded Green’s function as

lim
η→0+

Ga,a(ω + iη) = GRa,a(ω), (4.1.8)

and

lim
η→0+

1

ω + iη − iωn
=

1

ω − iωn
, (4.1.9)

since for any real ωn it follows that ω − iωn 6= 0.
One is tempted to simplify the result in Eq. (4.1.7) a little bit more by using the symmetry relation

Ga,a(iωn) = G∗a,a(−iωn). This will actually lead to a wrong result, since we restricted our domain
to the upper complex plane U , while G∗a,a(−iωn) is in the lower complex plane! Since Cauchy’s
integral formula assumes the function to be holomorphic, the function does not have a discontinuity
at the real axis if we were to extend U to the whole complex plane. Therefore, the function obtained
by Cauchy’s integral formula at negative Matsubara frequencies will in general be different from
G∗a,a(i|ωn|). Using this property leads to the following wrong result

0 = Ga,a(iωn)−G∗a,a(−iωn) (4.1.10)

=
1

2πi

∫ ∞
−∞

GRa,a(ω)

ω − iωn
dω − 1

2π(−i)

∫ ∞
−∞

(GR)∗a,a(ω)

ω − (−i)(−ωn)
dω (4.1.11)

=
1

2πi

∫ ∞
−∞

GRa,a(ω) + (GR)∗a,a(ω)

ω − iωn
dω (4.1.12)

=
1

πi

∫ ∞
−∞

Re[GRa,a(ω)]

ω − iωn
dω (4.1.13)

From this it seems when evaluating the integral at the Matsubara frequencies, the contribution of the
real part of Ga,a(ω) drops out and we have

Ga,a(iωn) =
1

2π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − iωn
dω, (4.1.14)
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which is wrong by a factor of 2, as we will see now. To simplify Eq. (4.1.7), we use the same idea of
removing the real part from the integration, but for this we make use of the relations between the real
and imaginary part of a holomorphic function given by the Kramers-Kronig relations. Remember
that we are still restricted to the open subset U above the real axis. For a holomorphic function
F : U → C the Kramers-Kronig relations state

Re[F (ω)] =
1

π
P
∫ ∞
−∞

Im[F (ω′)]
ω′ − ω dω′ (4.1.15)

Im[F (ω)] = − 1

π
P
∫ ∞
−∞

Re[F (ω′)]
ω′ − ω dω′, (4.1.16)

where both ω, ω′ ∈ R. Since we restricted ourselves to U , F (ω) is to be understood as
lim
η→0+

F (ω + iη). The Kramers-Kronig relations are just a special case of Cauchy’s integral for-

mula, which is quite evident due to their similar form. By replacing the real part in the Cauchy
formula in Eq. (4.1.7) with the Kramers-Kronig relations from Eq. (4.1.15), we get

Ga,a(iωn) =
1

2πi

∫ ∞
−∞

GRa,a(ω)

ω − iωn
dω (4.1.17)

=
1

2πi

∫ ∞
−∞

Re[GRa,a(ω)]

ω − iωn
dω +

1

2π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − iωn
dω (4.1.18)

=
1

2π2i

∫ ∞
−∞
P
∫ ∞
−∞

1

ω − iωn
Im[GRa,a(ω′)]

ω′ − ω dω′ dω +
1

2π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − iωn
dω

(4.1.19)

=
1

2π2i

∫ ∞
−∞

πi Im[GRa,a(ω′)]

ω′ − iωn
dω′ +

1

2π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − iωn
dω (4.1.20)

=
1

π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − iωn
dω, (4.1.21)

where we have used that

P
∫ ∞
−∞

1

ω − iωn
1

ω′ − ω dω =
πi

ω′ − iωn
. (4.1.22)

Similarly, if we use the Kramers-Kronig relation to replace the imaginary part we get

Ga,a(iωn) =
1

πi

∫ ∞
−∞

Re[GRa,a(ω)]

ω − iωn
dω. (4.1.23)

Since we have made no restriction for iωn except to lie in the upper complex plane U , this relation
also holds for all points z in U , i.e.

Ga,a(z) =
1

π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − z dω (4.1.24)

=
1

πi

∫ ∞
−∞

Re[GRa,a(ω)]

ω − z dω. (4.1.25)

This result now provides us with a way of how to generate the Matsubara Green’s function from
the retarded Green’s function. In practice the problem of analytic continuation is to go from
Ga,a(iωn)→ GRa,a(ω) , so Cauchy’s integral formula actually does exactly the opposite of what we
need! The most intuitive approach to obtain GRa,a(ω) from Ga,a(iωn) is to discretize Eq. (4.1.21)
on some real frequency interval [ωmin, ωmax] into N bins with ω0 = ωmin, ωN = ωmax where we
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Figure 4.2: a) The negative imaginary part of the retarded Green’s function on the real axis as ob-
tained by direct inversion (see Eq. (4.1.33)) from G(iωn) = 1

iωn
. The correct analytic continuation

is ImGR(ω) = −πδ(ω).
b) − ImGR(ω) for the same input data, but with only 0.001% of random noise added to G(iωn).
Since the problem is ill-conditioned, even very small changes in the input lead to strong modifications
and unphysical features in the output.

assume A(ω) 6= 0 and then invert the resulting Matrix equation

Ga,a(iωn) =
1

π

∫ ∞
−∞

Im[GRa,a(ω)]

ω − iωn
dω (4.1.26)

= lim
N→∞

N∑
m=0

1

π

ωm+1 − ωm
ωm − iωn

Im[GRa,a(ωm)] (4.1.27)

⇒ gn = (AgR)n, (4.1.28)

with

Anm =
1

π

ωm+1 − ωm
ωm − iωn

(4.1.29)

gn = Ga,a(iωn) (4.1.30)

gRm = Im[GRa,a(ωm)] (4.1.31)

(4.1.32)

which leads to

Im[GRa,a(ωm)] =
(
A−1g

)
m
, (4.1.33)

where A−1 is the pseudo inverse of A, which means that A−1 is the matrix which solves the least-
squares problem Ax = b, i.e. it minimizes |Ax − b|2. While being exact, the problem with
Eq. (4.1.33) is that the Matrix elements fall off very quickly for large n,m, which leads to A−1

being almost singular and ill-conditioned. In practice this will lead to large numerical errors that are
extremely sensitive to very small changes in the input data gn = Ga,a(iωn). As an example we have
performed the direct inversion on the Green’s function G(iωn) = 1

iωn
, which corresponds to just a

Delta peak on the real axis Im[GR(ω)] = −πδ(ω), and plotted the result in Fig. 4.2 a). Even though
G(iωn) was generated within double precision, the direct inversion shows an oscillatory behaviour
and only qualitatively resembles the correct result. Since we will later use a Monte Carlo approach to
generate the Matsubara Green’s function, the input data will always contain some numerical noise.
Since the inversion is ill-conditioned, even a very small amount of noise will lead to large fluctuations
on the real axis, rendering the result completely unphysical, as can be seen in Fig. 4.2 b).

This extreme sensitivity to noise is the result of Cauchy’s integral equation (see Eq. (4.1.21)).
which ensures that G(iωn) is a smooth function even if GR(ω) is not smooth, since the integral
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of a continuous function will always be differentiable. But in practice G(iωn) will always contain
some degree of noise, which causes the function to become non-smooth and thus delta function-like
features have to appear in GR(ω) to create the kinks in G(iωn) introduced by the noise. Therefore,
since the true solution does not generate exactly the input data G(iωn), we have to resort to approx-
imate analytic continuation schemes that allow for some deviation and do not “fit” the noise on the
imaginary axis.

4.2 The Padé approximation
One possible way of obtaining a function f(z) in the whole complex plane that approximately re-
sembles G(iωn) on the imaginary axis is the Padé approximation [89, 90]. The Padé approximant
is an approximation of a function by a ratio of two power series of a given order. Its power series
agrees with the power series of the approximated function but due to being a rational function poles
can also be well represented, which makes the Padé approximation in this regard superior to the
Taylor series. The general form of the Padé approximant is the rational function

R(z) :=

∑N
k=0 akz

k

1 +
∑M
m=1 bmz

m
, (4.2.1)

with polynomials in the nominator and denominator of order N ≥ 0, resp. M ≥ 1. While the
coefficients can in general be obtained by solving the equation

f(z)−
∑N
k=0 akz

k

1 +
∑M
m=1 bmz

m
= 0, (4.2.2)

for N + M + 1 points, a more direct way is to make use of Padé tables [90] which coefficients
can be used to express R(z) as a continued fraction. Let us assume that we have a set of N points
zn, n = 0..N −1, where we know the values of fn := f(zn). Then the coefficients of the Padé table
Pn,m are given by

P0,m = fm, for m = 0..N − 1 (4.2.3)

Pn,m =
Pn−1,n−1 − Pn−1,m

Pn−1,m(zm − zn−1)
, for m = 1..N − 1, n = 1..m. (4.2.4)

Note that only the upper triangle of P is needed. The Padé approximant is then given as

R(z) =
P0,0

1 +
P1,1(z − z0)

1 +
P2,2(z − z1)

1 +
P3,3(z − z2)

1 + · · ·

. (4.2.5)

For example, the Padé approximation can exactly represent the function f(z) = 1
z and the expansion

stops at the second coefficient for any points z0, z1, z2, ... 6= 0

P =

1/z0 1/z1 1/z2

1/z0 1/z0

0

 , (4.2.6)

which leads to

R(z) =
1/z0

1 +
1
z0

(z − z0)

1 + 0

=
1

z
. (4.2.7)
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Figure 4.3: a) The negative imaginary part of the retarded Green’s function on the real axis as
obtained by the Padé approximation (red line) compared to the correct spectral function (black
dashed line). If the input on the Matsubara axis is completely free of any numerical noise the Padé
approximation is able to reproduce the original spectra with high accuracy.
b) − ImGR(ω) for the same input data, but with 2% of random noise added to G(iωn). Since
the Padé approximation approximates G(z) by a rational function and no other restrictions like
positivity can be easily imposed, even small numerical noise in the input data can lead to significant
unphysical features on the real axis.

In general the Padé approximation is far superior over the direct inversion method, since it does not
exactly reproduce the noisy data G(iωn) but only approximately, which can filter out most of the
unphysical poles on the real axis that would result from an exact “fit”. In practice, if the quality of
the input is very high, this method can give quite reliable results. Still, it does not respect important
properties like positivity or normalization of the spectral function and is very unreliable for small
amounts of noise as can be seen in Fig. 4.3.

4.3 The maximum entropy method
A famous and widely used approach for filtering out unphysical noise and requiring non-negativity
of the spectral function is the so called maximum entropy method (MEM) [91] based on Bayesian
statistical inference. It is most commonly formulated in imaginary time τ , so we will shortly review
the main ideas for Matsubara Green’s functions in imaginary time G(τ), but will change later to
imaginary frequencies for most parts of the thesis. Recall that the equation we want to solve for
ImGR(ω) was

G(iωn) =
1

π

∫ ∞
−∞

Im[GR(ω)]

ω − iωn
dω, (4.3.1)

where we omit the orbital- and spin degrees of freedom for better readability. When the input data is
given on the imaginary time axis G(τ) instead of Matsubara frequency, we do not have to calculate
the Fourier transform of F (τ), which introduces further numerical errors, but instead we can work
directly in imaginary time. Application of the Fourier transform to Chauchy’s equation (4.1.21)
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yields

G(τ) =
1

β

∞∑
n=−∞

e−iωnτG(iωn) (4.3.2)

=
1

π

∫ ∞
−∞

Im[GR(ω)]

(
1

β

∞∑
n=−∞

e−iωnτ

ω − iωn

)
dω (4.3.3)

=
1

π

∫ ∞
−∞

Im[GR(ω)]
e−τω

e−βω + 1
dω (4.3.4)

=
1

π

∫ ∞
−∞

Im[GR(ω)]

e(τ−β)ω + eτω
dω (4.3.5)

= −
∫ ∞
−∞

A(ω)
e−τω

e−βω + 1
dω, (4.3.6)

where we have defined A(ω) = − 1
π Im[GR(ω)]. Note that this form ensures (the diagonal com-

ponents of) G(τ) to be purely real, as we have found in chapter 3.5 as well as negative semi-
definiteness. Please note that our definition of the Kernel has a negative sign compared to most other
publications. Let us assume we have the input data given as the numerically obtained Gmeas(τ),
which contains some degree of unphysical noise. Proposing a possible function for A(ω), we use
Eq. (4.3.6) to obtain G(τ). How well this function agrees with the measured data Gmeas(τ) can be
characterized with the goodness-of-fit-measure χ2

χ2 =

∫ β

0

1

σ2(τ)
|Gmeas(τ)−G(τ)|2 dτ (4.3.7)

=

∫ β

0

1

σ2(τ)

∣∣∣∣Gmeas(τ)−
∫ ∞
−∞

K(τ, ω)A(ω) dω

∣∣∣∣2 dτ, (4.3.8)

with the integration kernel K(τ, ω) = −e−τω/
(
e−βω + 1

)
. Here, σ(τ) specifies a best-guess es-

timate of the measurement error in the input data Gmeas(τ) at each point τ . Since the search for
the function A(ω) which minimizes χ2 will not yield any physical result due to the numerical noise
contained in Gmeas(τ), the maximum entropy method is based on a different approach that makes
use of Bayesian interference and the principle of maximum entropy. Assume we have given two
events a, b with corresponding probabilities Pr[a] and Pr[b]. Then Baye’s theorem states that

Pr[a|b] =
Pr[b|a] Pr[a]

Pr[b]
(4.3.9)

where Pr[a|b] is the conditional probability of a given knowledge of the result b, and Pr[b|a] vice
versa. For our analytic continuation the event a is the spectral function A(ω) and b is the input
Gmeas(τ). Therefore, Pr[A|Gmeas] corresponds to the probability of A(ω) being the true spectral
function given the knowledge of Gmeas. In the maximum entropy method the criterion for the best
solution is the functionA(ω) that maximizes Pr[A|Gmeas]. For this, a so-called default modelD(ω)
for the spectral function A(ω) is introduced, which is a smooth function that already includes all
prior information known about the true result, like normalization or maxima of the spectral weight.
D(ω) is then used as the reference model that serves as the zero entropy configuration, so we can
define the entropy S[A] relative to the smooth default model as

S[A] = −
∫
A(ω) ln

(
A(ω)

D(ω)

)
dω. (4.3.10)

This entropy has a maximum value of zero when A(ω) equals the default model D(ω) and becomes
more negative the more A(ω) differs from the default model. It can then be shown that the condi-
tional probability can be written as

Pr[A|Gmeas] ∝ eαS−
1
2χ

2

, (4.3.11)
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Figure 4.4: a) The negative imaginary part of the retarded Green’s function on the real axis as
obtained by the maximum entropy method (code provided by Ref. [94]) for a flat (red line) and
Gaussian (blue line) default model, compared to the correct spectral function (black dashed line).
The MEM is able to capture the main features quite well when there is no noise in the input data but
depends quite strongly on the default model.
b) − ImGR(ω) for the same input data, but with 2% of random noise added to G(iωn). The MEM
still obtains the correct qualitative aspects of the spectral function but in general sharp features like
the maximum at negative energies become washed out.

where α is a regularization parameter. Finding the function A(ω) that maximizes Pr[A|Gmeas] is
thus equivalent to maximizing αS− 1

2χ
2. In this sense the parameter α acts like a regulator forA(ω),

defining how much importance is given to either minimizing the deviation χ2 or the difference to the
default model specified by S. Therefore, the result will in general depend on the value of α. Multiple
methods have been suggested (see for example Ref. [91]) of how to determine the best value for α,
like choosing α in a way that it maximizes Pr[α,Gmeas], i.e. the conditional probability for α given
Gmeas, which is called the classic maximum entropy solution. Other methods suggest to use an
average over all Aα(ω), or similar, Bryan [92] proposed an average of all spectral functions but with
a corresponding weight Pr[α|Gmeas, D].

In practice, one employs numerical optimization algorithms like gradient search techniques for
maximization of αS − 1

2χ
2. Nonetheless, a formal solution for the maximizing spectrum Ā(ω) can

be found [93], which takes the self-consistent form

Ā(ω) = eαµD(ω) exp

{
−2α

∫ β

0

1

σ2(τ)

(∫ ∞
−∞

Ā(ω′)K(τ, ω′) dω′ −Gmeas(τ)

)
K(τ, ω) dτ

}
,

(4.3.12)

where µ is a Lagrange multiplier for enforcing the right normalization of the solution Ā(ω). In-
vestigation of the limit α → 0 results in Ā(ω) = eαµD(ω), i.e. the spectrum is equal to the
default model and S[A] is maximized. For the other limit α → ∞, Eq. (4.3.12) demands that∫∞
−∞ Ā(ω′)K(τ, ω′) dω′ − Gmeas(τ) → 0, i.e. the spectrum exactly reproduces the noisy input

data.
In Fig. 4.4 we show an example of Bryan’s maximum entropy method using the code from

Ref. [94] applied to the same spectrum used in the example for the Padé approximation in Fig. 4.3.
A flat and a Gaussian default model was used with variance 2 eV, and we compare the case where the
data on the Matsubara axis was generated exactly and the case where a small amount of noise was
included. We see that the MEM is able to reproduce the original data to very high accuracy with the
Gaussian default model, but does not capture the lower Hubbard band-like feature when using the
flat default model. Otherwise the agreement is quite good and only small deviations can be found in
the width of the quasiparticle peak, which turns out to be more narrow than the correct result.

When adding 2% of random noise to the data on the Matsubara axis, the result of the MEM
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becomes more sensitive to the default model and the error estimate σ. What we generally find is
that the width of the quasiparticle peak becomes even more narrow and the maximum at negative
energies, if captured at all, moves up in energy so that the small dip is almost completely gone.
Directly at the Fermi level small artefacts also appear but qualitatively the result is much more
accurate and controlled than the Padé approximation. Still, the proper choice of the default model
remains an open issue.

4.4 Stochastic analytic continuation
As we have seen, in the process of finding an appropriate function f(z) for analytic continuation in
practice we always have to make a compromise between how well we can represent the noisy input
data on the one hand and the smoothness of f(z) on the other hand . Recall that the equation we
want to solve for ImGR(ω) is

G(iωn) =
1

π

∫ ∞
−∞

Im[GR(ω)]

ω − iωn
dω. (4.4.1)

Since we know the left sideG(iωn) of the integral equation, one can think of numerically generating
physically reasonable functions ImGR(ω) that have the proper sign, normalization, no unphysical
divergences etc., perform the integral and compare the result to G(iωn). Indeed, early on it was
proposed, for example in Ref. [95], to take the average of a large sequence of possible solutions that
approximately generate the right values G(iωn) as the final result. By this, one hopes that spurious
features that are supposed to appear at random average out, while physical and robust features are
reinforced. However, this method does not hold any physical justification and we have no means
of specifying when the procedure is converged or if we actually have included the right functions
in the sequence. Still, in practice one usually observes that the average of possible spectra produce
a better result than the most likely spectrum as obtained from the maximum entropy method. For
example, Sandvik [96] has shown that a “thermal average” of all possible spectra, weighted with
the Boltzmann factor e−αχ

2

, where χ2 is the goodness-of-fit-measure, i.e. the squared deviation
on the imaginary axis and α an artificial inverse sampling temperature, consistently yields results
that are closer to the true spectrum obtained by exact diagonalization. This averaging approach
was made systematic by Beach [93], who showed that the “thermal” sampling of spectral functions
at a fictitious inverse temperature α is a very natural way to analytic continuation and resembles
the simulation of a physical ensemble. In fact, it is the dynamical generalization of the maximum
entropy method, which is realized as the mean-field solution of this fictitious physical system. In
the following we will now show the most important aspects of Stochastic analytic continuation,
following the ideas of the original paper by Beach [93].

Let us assume that we have given the function G(iωn) on N Matsubara points iωn, obtained by
some numerical procedure so that it contains some degree of numerical noise. Then every physical
form of the function ImGR(ω) will not exactly generate G(iωn) on the imaginary axis, which can
be characterized by the goodness-of-fit-measure χ2

χ2 [A] =

N−1∑
n=0

1

σ2(iωn)

∣∣∣∣G(iωn)−
∫ ∞
−∞

A(ω)

iωn − ω
dω

∣∣∣∣2 , (4.4.2)

where we have set A(ω) = − 1
π ImGR(ω). σ(iωn) is the estimate for the stochastic error in G(iωn)

at iωn, i.e. the deviation at each Matsubara frequency is weighted according to the accuracy of the
measured data point (for example as obtained from a Monte Carlo procedure). We now interpret
Eq. (4.4.2) as the Hamiltonian for a system of classical fields A(ω), so they describe a fictitious
system where each “configuration” can be ascribed a fictitious energy

H[A] = χ2 [A] . (4.4.3)
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Then let us assume we keep the system at the artificial inverse temperature α, so that we can define
the usual partition function as

Z =

∫
e−αH[A] dA, (4.4.4)

and the thermal average of A(ω) is then

〈A(ω)〉 =
1

Z

∫
A(ω)e−αH[A] dA. (4.4.5)

For the limiting case of zero temperature α → ∞, 〈A(ω)〉 will be simply the ground-state configu-
ration with the lowest value of χ2 = 0. This corresponds to the spectrum which exactly reproduces
the data on the imaginary axis and thus will contain unphysical features. In other limit of infi-
nite temperature α → 0 all possible spectral functions A(ω) will equally contribute with the same
weight to 〈A(ω)〉 and thus the result will be independent of the input G(iωn) and just a constant(∫∞
−∞A(ω) dω

)−1

. These limits are exactly the limits of the maximum entropy method with a
constant default model, with the fictitious temperature being the regularization parameter.

For further insight we can now turn to approximate solutions of the Hamiltonian in Eq. (4.4.2).
Expanding the square and dropping the constant term that does not depend on A(ω) we obtain

H[A] = H0 +Hint (4.4.6)

=

∫ ∞
−∞

ε(ω)A(ω) dω +
1

2

∫ ∞
−∞

∫ ∞
−∞

A(ω)V (ω, ω′)A(ω′) dω′ dω, (4.4.7)

where the free dispersion is given by

ε(ω) = −2

N−1∑
n=0

1

σ2(iωn)

G(iωn)

iωn − ω
, (4.4.8)

and the interacting potential

V (ω, ω′) = 2

N−1∑
n=0

1

σ2(iωn)

1

(iωn − ω)(iωn − ω′)
. (4.4.9)

As the first test case let us consider the non-interacting systemH = H0. In addition, let us introduce
the requirement that all functions A(ω) should be normalized to some constant C =

∫∞
−∞A(ω) dω.

With this, we can write the partition function as

Z =

∫
δ

(∫ ∞
−∞

A(ω) dω − C
)

e−αH0[A] dA. (4.4.10)

If we use the representation of the delta function given by

δ(X) =

∫ ∞
−∞

eiyX dy, (4.4.11)

we can rewrite the partition function as

Z =

∫ ∞
−∞

e−iyC
∫

e−α
∫∞
−∞ (ε(ω)−iy/α)A(ω) dω dA dy. (4.4.12)

Since the Hamiltonian corresponds to a non-interacting system in thermal equilibrium at temperature
1/α, the distribution of configurations is exactly given by the Maxwell-Boltzmann statistics

Z =

∫ ∞
−∞

e−α(ε(ω)−iy/α) dω, (4.4.13)
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from which the average spectrum follows as

〈A(ω)〉 = − 1

α

∂

∂ε(ω)
lnZ = e−α(ε(ω)−µ), (4.4.14)

which means that the spectra are distributed according to the Maxwell-Boltzmann statistics with
respect to their energy relative to the fictitious chemical potential µ = iy/α. µ is then the controlling
factor for the normalization of 〈A(ω)〉, corresponding to the number of particles in a physical system.

Now let us switch on the interaction V (ω, ω′), but we assume that the fluctuations ofA(ω) about
its mean 〈A(ω)〉 are negligible, i.e.

(A(ω)− 〈A(ω)〉) (A(ω′)− 〈A(ω′)〉) ≈ 0, (4.4.15)

which leads, using the standard mean-field approach, to the following Hamiltonian

HMF =

∫ ∞
−∞

E(ω)A(ω) dω + const., (4.4.16)

where

E(ω) =
δH[A]

δA(ω)

∣∣∣∣
A(ω)=〈A(ω)〉

= ε(ω) +

∫ ∞
−∞

V (ω, ω′)〈A(ω′)〉dω′. (4.4.17)

Since E(ω) does no longer depend explicitly on A(ω) but only on 〈A(ω)〉, the expression for the
partition function and thermal averaged spectrum are identical to the ones in Eq. (4.4.13) and (4.4.14)
with ε(ω) replaced by the effective field E(ω), which leads to the self-consistent equation

〈A(ω)〉MF = eαµ exp

{
−α

(
ε(ω) +

∫ ∞
−∞

V (ω, ω′)〈A(ω′)〉dω′
)}

. (4.4.18)

This is formally completely identical to the expression of the maximum entropy method in
Eq. (4.3.12) for a constant default model, which in turn means that the maximum entropy method
is the mean-field solution of the interacting classical system described by the Hamiltonian H . In
contrast, the thermal averaging method introduced by Sandvik [96] then corresponds to the fully
dynamical solution at the inverse temperature α. This explains the observation that the maximum
entropy method usually prefers smoother solutions with less sharp features than found in the sam-
pling method at low temperature. Furthermore, Beach additionally showed [93] that different default
models in the MEM correspond to a change of the integration measure dω in the stochastic sampling
method. If we were to make a change of variables x = φ(ω), the default model would be equal to
D(x) = Nφ′(x), with N being a normalization factor. Thus, the stochastic sampling approach to
analytic continuation relates in the same way to the maximum entropy method as the well-known
Metropolis sampling relates to the mean-field solution of the Ising model, which as a matter of prin-
ciple makes it superior to the maximum entropy method. It still retains the free parameter α, though,
acting as a fictitious temperature that controls how well the sampled function has to agree with the
noisy Matsubara data. Both Sandvik [96] and Beach [93] noticed that the error χ2(α) shows similar
features of a phase transition from an ordered to a disordered phase which is interpreted as the transi-
tion from the good-fitting to the ill-fitting regime as a function of α. Therefore, Beach suggested the
sum over all average spectral functions Aα(ω) in the ordered regime in combination with a parallel
tempering approach [93, 97] as the final spectral function.

In Fig. 4.5 we show an example of the stochastic analytic continuation applied to the same
input data as in the Padé (Fig. 4.3) and MEM (Fig. 4.4) case, making use of the parallel tempering
algorithm suggested in [93], which removes the necessity of choosing a certain value of α. We
can see that the stochastic approach is very similar to the maximum entropy method for zero noise
and only provides a small improvement for the representation of the dip at lower energies, but the
small maximum at positive energies is not as well represented as in the MEM. Inclusion of 2%
random noise on the input data leads surprisingly to hardly any noticeable difference in the resulting
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Figure 4.5: a) The negative imaginary part of the retarded Green’s function on the real axis as
obtained by stochastic analytic continuation (red line) compared to the correct spectral function
(black dashed line). While the stochastic analytic continuation does a good job of capturing the
main features if there is no noise in the input data, it still does not fully recover the original spectral
function.
b) − ImGR(ω) for the same input data, but with 2% of random noise added to G(iωn). The main
strength of the stochastic analytical continuation is its robustness and its ability to extract the main
features of the original spectral function even in the presence of numerical noise.

spectrum. We attribute this to the fact that the stochastic continuation method samples many spectra
that fit quite well to the noisy input data, and their average still provides a very robust quantity.

Guided by these results, we will from now on use the stochastic approach to analytic continuation
throughout this thesis to obtain the real-frequency data from the Matsubara result, unless otherwise
noted. If we also need the real part Re[GR(ω)], the Kramers-Kronig relations from Eq. (4.1.15) are
applied to obtain Re[GR(ω)] from Im[GR(ω)]. This for example is often the case for the Selfenergy,
which is discussed in the following section.

4.5 Analytic continuation of general Matsubara functions
Until now, we have formulated the analytic continuation procedure for the Matsubara Green’s func-
tion G(iωn) but since the result from Cauchy’s integral formula holds for any holomorphic function
F (z) we have the relation

F (iωn) =
1

π

∫ ∞
−∞

Im[F (ω)]

ω − iωn
dω, (4.5.1)

and we can use the stochastic analytic continuation also for example for the Selfenergy Σ(iωn).
Nonetheless, since the Selfenergy has the constant Hartree term limn→∞Σ(iωn) = Σ0 and a nor-
malization which is different from that of a Green’s function and depends on the strength of the
interaction, we have to adjust our scheme slightly. Since we only want to sample functions with the
right normalization, we need to extract this information from the input F (iωn) and use it in our sam-
pling procedure. It can be obtained in the limit of large ωn as follows: Let us divide the integration
along the real frequency axis into two parts, namely the interval [−a, a], a > 0 and the remaining
R \ [−a, a]. Since we only consider normalizable functions, a finite value of a exists that includes
(almost) all spectral weight so that we will obtain the correct result since the remaining contribution
outside of this interval will be negligible

F (iωn) =
1

π

∫ a

−a

Im(F (ω))

ω − iωn
dω. (4.5.2)
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Now we consider ωn � a, which allows us to get the following

F (iωn) =
1

π
lim
a→∞

∫ a

−a

Im[F (ω)]

ω − iωn
dω (4.5.3)

=
1

π
lim
a→∞

∫ a

−a
Im[F (ω)]

ω + iωn
ω2 + ω2

n

dω (4.5.4)

≈ 1

π
lim
a→∞

∫ a

−a
Im[F (ω)]

ω + iωn
ω2
n

dω (4.5.5)

≈ 1

π
lim
a→∞

∫ a

−a
Im[F (ω)]

i

ωn
dω (4.5.6)

= − 1

iωn

1

π
lim
a→∞

∫ a

−a
Im[F (ω)] dω (4.5.7)

=
c1
iωn

, (4.5.8)

with c1 = − 1
π

∫∞
−∞ Im(F [ω)] dω. Therefore, in the case of a Green’s function with c1 = 1, the

imaginary part is normalized to −π, which is in correspondence with the original definition of the
spectral function

A(ω) = − 1

π
Im[G(ω)]. (4.5.9)

In other cases, e.g. of the Selfenergy Σ(iωn), we have in general c1 6= 1, so we can extract the
normalization N from the high frequency behaviour as

N = −πc1, (4.5.10)

and use only functions obeying this normalization in the sampling process.
We have just seen that for large ωn, the Cauchy formula poses the restriction on F (iωn) to fall

off as c1/iωn, which is not the case for the Selfenergy

Σ(iωn) = c0 +
c1
iωn

+ . . . , (4.5.11)

where c0 is the real constant Hartree term. Therefore, instead of Σ(iωn) the function Σ(iωn) − c0
has the right behaviour at large ωn, so the standard analytic continuation procedure can be applied.
After Σ(ω)− c0 is obtained on the real axis, the constant term c0 can be added back to the result to
finally obtain Σ(ω).

4.6 Practical implementation
We will now present an exemplary procedure of how to implement the stochastic analytic continu-
ation approach. For this we assume that we have given the input data Fmeas(iωn) on N Matsubara
points iωn. The function on the real frequency axis will be discretized and its function values
are updated by a Metropolis-like Monte Carlo algorithm, similar to the Delta function walkers by
Beach [93]. Multiple runs for different values of α are performed at once in order to make use of
the parallel tempering method and generate the final spectral function at the end as discussed in the
previous sections. The procedure is then as follows:

1. Choose an interval [a, b] on the real axis which is large enough to include basically all weight
of Im[F (ω)]. Usually this will be a guess of the same order as the relevant bandwidth in case
of a physical system and then can be optimized during the iterations.

2. Initialize and normalize Im[F (ω)], for example as a constant Im[F (ω)] = −πc1/(b− a).
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3. Calculate F (iωn) by using

F (iωn) =
1

π

∫ ∞
−∞

Im[F (ω)]

ω − iωn
dω. (4.6.1)

4. Calculate deviation

χ2
0 =

N−1∑
n=0

1

σ2(iωn)
|Fmeas(iωn)− F (iωn)|2 . (4.6.2)

5. Modify the values of Im[F (ω)] by a norm-conserving operation, recalculate F (iωn) and cal-
culate the new deviation χ2

new.

6. Accept the modification with probability

p = min
{

1, e−α(χ2
new−χ2

0)
}
, (4.6.3)

and update χ2
0 := χ2

new, otherwise revert the modification.

7. Measure Im[F (ω)], i.e. save the values for calculating the average afterwards.

8. Go back to 5).

This process is iterated many times until Im[F (ω)] is sufficiently converged and reasonably smooth.
Then the Kramers-Kronig relations are used to obtain Re[F (ω)] if needed.



Chapter 5

Electronic correlations

The study of electronic correlations has been and still is one of the main important and interesting
fields of research in condensed matter physics. In general, one refers to electronic correlations
as the collection of all effects in an interacting electronic system that cannot be described by a
Slater determinant of single-particle states, where the interaction is incorporated by the electrons
interacting with an effective field instead of interacting directly with each other, which is the basis
for approximate methods like Hartree-Fock theory. The effects of electronic correlations can be
quite significant, with the Mott-Hubbard metal-insulator transition in lattice systems being the most
famous example. The metal-insulator transition arises from the limit of the Coulomb repulsion
of the electrons becoming dominant over the tendency to delocalize in order to reduce the kinetic
energy. In this chapter, we will first provide a short introduction of what we actually mean with
correlations, and then different approaches of how we can treat them theoretically. One possible way
is to improve the state-of-the-art DFT method by more elaborate functionals, or include Selfenergy
effects perturbatively by the LDA+U approach. Another quite successful approach is the dynamical
mean-field theory,

When we speak of correlations, what we usually mean is that something like an object or event
does depend on something else, another object or event, and is not free. Its actions or behaviour
cannot be understood without taking that of the other into account. Looking up the meaning of
correlation in a dictionary [98], what we usually find is something along the lines of

• “mutual relation of two or more things, parts, etc.”

• “the degree to which two or more attributes or measurements on the same group of elements
show a tendency to vary together.”

These definitions also pronounce the attribute of dependency, i.e. correlated objects “show a ten-
dency to vary together”. Quite similar to that, correlation in mathematics is defined as a property of
two random variables X,Y , where the expectation value of the random variable XY does not fac-
torize into the product of the expectation value of X times the expectation value of Y . The general
expression is given by

E[XY ] = E[X] E[Y ] + cov(X,Y ). (5.0.1)

Thus, in the mathematically sense two random variables X,Y are said to be uncorrelated if
cov(X,Y ) = 0, and vice versa, where cov(X,Y ) = 0 “measures” the degree of correlation be-
tween X and Y

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]. (5.0.2)

For example, in physics we can ask whether the charge density n(r) in an electronic system at two
different points ri, rj is uncorrelated, which in general for an interacting system is not true

〈n(ri)n(rj)〉 6= 〈n(ri)〉〈n(rj)〉. (5.0.3)

65
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This is due to the fact that the electrons interact with each other via the Coulomb interacting and
Pauli principle, which causes n(rj) to be usually small if n(ri) is large when ri and rj are close.
If the expectation value were to separate, this would imply that we can calculate the probability for
one electron to be at position ri independently from where all the other electrons are, which is true
only for a purely non-interacting system.

This factorization is the key property that defines electronic correlations in the physical sense:
correlations are the effects that go beyond approximations based on the factorization of correla-
tion functions, i.e. beyond static mean-field theories like the Weiss mean-field theory for the Ising
model, the Hartree approximation for the Hubbard model or, to some degree, density functional the-
ory. These approximations do not neglect the interactions between the electrons, but they include
them via an effective background potential that has to be determined self-consistently, in which the
non-interacting electrons are embedded. By this, the single-particle picture is preserved, since the
resulting Hamiltonian, after being determined self-consistently, is effectively non-interacting.

Consider as an example the most simple tight-binding model of a one-dimensional atomic chain
with lattice spacing a, with a single s-orbital and σ-bonds between the sites, so the Hamiltonian can
be written as

HTB = −t
∑
〈i,j〉,σ

c†i,σcj,σ, (5.0.4)

where 〈i, j〉 indicates a summation only over the nearest-neighbouring sites i, j. The hopping inte-
gral is given by

t =

∫
〈φσ(r − a)|H|φσ(r)〉dr, (5.0.5)

and thus will usually decrease exponentially as a function of a. This Hamiltonian can be solved by
a Fourier transformation, yielding the dispersion

ε(k) = −2t cos(ka). (5.0.6)

Assuming one electron per site, the system is at half filling with the Fermi level EF = 0, so the
system is metallic, since at k = (n + 1) π2a the single band crosses the Fermi level. Now assume
we increase the lattice spacing a, for example up to the order of one meter. The only thing that will
happen is that the band width will decrease since t is reduced, and the bands will become extremely
flat around the Fermi level but the system will still stay metallic at half filling. This is of course quite
counter-intuitive and unphysical, but what exactly goes wrong with this approach? The reason is
that in the tight-binding model the electrons are assumed to be tightly bound to the individual atoms
and the atomic-like orbitals on one atom do not significantly spread onto the neighbouring atoms but
only have a small overlap with the neighbouring orbitals in the interstitial. Due to this we neglect
the energy cost of U for one electron that delocalizes to another site and interacts with the other
electrons via the Coulomb repulsion, i.e. U/t is assumed to be small. If we now increase the atomic
distance, the value of U is mostly unchanged but t will decrease significantly, so that U/t becomes
large. Since we neglected the contribution of U , i.e. the correlation of electrons on the same site in
the Hamiltonian in Eq. (5.0.4), delocalization will always be favoured in order to reduce the energy,
so the system will not become insulating for any value of a.

In a very simplified picture we can see that a small band width will in general correspond to
strong electronic correlations. Consider similar to the previous tight-binding model that the energy
of the electrons can be described by the dispersion ε(k). From the dispersion we can derive the mean
velocity of the electrons as v(k) = 1

~ |∇kε(k)| ∼ 1
~aW , where W is the band width. For example,

in the tight-binding model we have v(k) = 2ta| sin(ka)|. On the other hand, the typical velocity for
delocalized electrons should be approximately a/t, where t is the average time an electron spends
on an atom. Comparing these two results we get that

t ∼ ~
W
. (5.0.7)
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Figure 5.1: Illustration of the one-band Hubbard model in two dimensions. The model consists
of a lattice of atomic sites occupied by electrons that can hop between neighbouring sites with the
hopping amplitude t. Double occupation of an atomic site with two electrons of the opposite spin
incurs an energy penalty of U to mimic the screened short-range Coulomb interaction. .

In this simple picture, we can interpret the effect of a narrow band width as the electrons staying
longer on an atomic site and thereby feeling the other electrons much more strongly. Thus, a nar-
row band width implies in general strong electronic correlations and the importance of U in the
Hamiltonian.

5.1 The Hubbard model
In order to find a way of appropriately treating electronic correlations we should also consider al-
ternative ways of treating the Coulomb repulsion. Since the Coulomb interaction is a long-range
interaction due to the potential falling off as ∼ 1

r , the problem is notoriously difficult since we need
to take the contribution of many particles into account. However, in real systems the range of the in-
teraction is effectively reduced due to screening effects of the electronic charge. Consider electrons
moving in a positive background potential given by the atomic lattice. Focussing on a specific elec-
tron, one will observe a region of reduced electronic density in the vicinity of said electron due to the
Coulomb repulsion, that creates an effective positively charged cloud that will move around with the
electron. From large distances, the resulting potential seen by other electrons will thus be reduced
by the positive cloud compared to the bare electron. Therefore, the effective potential will fall off
much faster than the bare Coulomb repulsion, making it an effective short-range interaction. This is
why approximative models like the Hubbard model [2–4], which assume the Coulomb repulsion to
be completely local, can be quite appropriate to describe correlated lattice systems.

The most simple variant is the one-band fermionic Hubbard model, given by the Hamiltonian

H =
∑
〈i,j〉,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (5.1.1)

with the hopping amplitudes tij between neighbouring sites i, j. The Coulomb interaction is repre-
sented by a local on-site interaction U , that has to be paid if two electrons of opposite spin occupy
the same site. Fig. 5.1 shows an example of the two-dimensional Hubbard model. It can encom-
pass basically all types of lattice systems by appropriately choosing the hopping integrals tij . Even
though this model appears to be very simple, it is not only impossible to be solved analytically in
more than one dimensions [5], but also includes the main effects of the competition between the ki-
netic energy and Coulomb interaction. Considering for example the limit U/t→ 0, the Hamiltonian
corresponds to that of free particles with a dispersion corresponding to the Fourier transform of tij
For the linear chain we already had as an example ε(k) = −2t cos(ka) and, since the Hamiltonian
separates into a sum of single-particle terms, all expectation values can be calculated independently.
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Thus, all correlation functions factorize, e.g.

〈ni↑ni↓〉 = 〈ni↑〉〈ni↓〉. (5.1.2)

Considering the other limit of U/t → ∞, the Hamiltonian becomes just the sum of the double
occupations times U . At half filling the ground state which minimizes the energy thus corresponds
to each electron being localized on an atomic site with zero probability on all other sites. As a
result, the system is now in an insulating state due to the electronic correlations and the correlation
functions no longer factorize

〈ni↑ni↓〉︸ ︷︷ ︸
=0

6= 〈ni↑〉︸ ︷︷ ︸
=0.5

〈ni↓〉︸ ︷︷ ︸
=0.5

. (5.1.3)

Thus, even though the Hubbard model is quite simple, it can show the non-trivial effect of a metal-
insulator transition as U/t is increased. Approximations like Hartree-Fock mean-field theories that
are based on the separation of correlation functions are, therefore, also insufficient to correctly de-
scribe the physics in the Hubbard model for strong interactions.

5.2 Dynamical mean-field theory
In the previous section we have seen that standard Hartree-Fock mean-field theories based on the
factorization of correlation functions are insufficient to describe electronic systems like the Hubbard
model in the presence of strong electronic interactions. Still, good and controlled approximative
techniques are needed since analytic solutions are mostly restricted to special limiting cases, and
most too often to one dimensional systems. Lots of approximations are of perturbative nature, in the
sense that they focus on special cases where a certain parameter becomes very large or very small.
Most of the time, even when said parameter is in the intermediate range, these approximations can
give valuable insight into the physics and trends of the system. dynamical mean-field theory itself
corresponds to a mean-field theory in the limit of large coordination number 1/Z → 0, i.e. the
number of nearest-neighbours is large, but as we will see it still retains the full dynamics of the
system. By this, it is different from, for example the well known Weiss molecular-field theory
for the Ising model [99], which becomes exact also for the limit of infinite coordination number
Z. It contains no other approximation or restriction of the values of the physical parameters like
interactions or temperature, and is diagrammatically controlled [87], which makes it already a very
good starting point for further improvements.

In most of physically interesting systems the parameters like temperature and interaction are
in the intermediate range, and especially in the relevant case of three dimensions the coordination
number Z can be very large. Consider for example the cubic lattice Z = 6, the body-centered cubic
(bcc) lattice Z = 8 or the face-centered cubic (fcc) lattice Z = 12, which already have quite a small
value of 1/Z, so an expansion in 1/Z is quite attractive if other limits of small U or large T are not
applicable.

5.2.1 Weiss mean-field theory
In this sense, and in order to pave the way for introducing the variant the dynamical mean-field
theory, it is instructional to revisit the concept of the Weiss mean-field theory as a precursor at the
example of the Ising model. Its Hamiltonian with nearest-neighbour coupling J > 0 is given by

H = −J
2

∑
〈i,j〉

SiSj , (5.2.1)

where Si corresponds to only the z-component of the spin. Focussing on a specific site i, the energy
contribution is given by a multiplication with a local field

hi = J
∑
〈j〉 of i

Sj , (5.2.2)
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surrounding site i, so we can also write Eq. (5.2.1) as

H = −1

2

∑
i

Sihi. (5.2.3)

The local field hi is in general different for each site i and changes dynamically due to quantum
fluctuations. Let us assume the system has an average magnetization 〈M〉 = 1

N

∑
i〈Si〉, where 〈·〉

is the quantum mechanical thermal average and N the number of lattice sites. By the very definition
of the average magnetization we know that each spin 〈Si〉 will on average be equal to M , especially
if the standard deviation, or resp., the fluctuations around the mean value are small. This means,
each value 〈Si〉 can be interpreted as a random variable that can take values between [−|S|, |S|]
(usually ±~/2 for the Ising model), and the distribution has a mean of 〈M〉. Since the local field hi
is a sum over the Z nearest-neighbouring random variables, on average we usually would expect the
local field to be equal to

〈hi〉 = J
∑
〈j〉 of i

〈Sj〉 (5.2.4)

≈ JZ〈M〉. (5.2.5)

In general the local field will be different, since we only draw Z random variables from the distri-
bution, which average value is in general not equal to the true mean value of the distribution. For
example, consider the system to be in the paramagnetic unordered phase where 〈M〉 = 0. For a spe-
cific configuration at a given point in time the local field 〈hi〉 will fluctuate significantly from site to
site and will in general be not equal to 〈M〉, since at high temperature the probability for the system
to be in high energy states is similar to that of the low energy states. For example, for a specific
site all neighbouring spins could be polarized, while for a different site the average polarization of
the neighbouring spins is zero. Only the average over many sites and configurations over time will
approach the true value of 〈M〉.

This motivates the following limit: consider the case of Z → ∞, i.e. the number of nearest-
neighbours goes to infinity. This means the local field is a sum over infinitely many random variables
from a distribution with mean 〈M〉. From the central limit theorem we know that the average of an
infinite number of random variables becomes equal to its mean (the deviation from the mean decays
as 1/

√
Z), so the replacement of 〈hi〉 by JZ〈M〉 actually becomes exact [100, 101]. For now, in

order to keep 〈hi〉 finite, we will rescale J as

J =
J∗

Z
, (5.2.6)

so that the limit Z →∞ of 〈hi〉 exists. In this limit we have the true equality of

lim
Z→∞

〈hi〉 = J∗〈M〉, (5.2.7)

which is independent of the lattice site i. This simplified picture is illustrated in Fig. 5.2.
This notion can be made rigorous and one arrives at the mean-field Hamiltonian [99]

HMF = −hMF

∑
i

Si +
1

2
NJ∗〈M〉2 (5.2.8)

with hMF = J∗〈M〉. (5.2.9)

Obtaining a solution to the mean-field Hamiltonian now has to be done self-consistently, since the
effective field hMF depends on the spin configuration, which we simply do not know for given input
parameters J , T etc., otherwise we would have solved the system right away. The important aspect
of Eq. (5.2.8) is that the Hamiltonian has become a purely local quantity

HMF =
∑
i

Hi + const. (5.2.10)

with Hi = −hMFSi, (5.2.11)
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Figure 5.2: Illustration of the local field hi surrounding a single atom in a crystal environment.
In three dimensions the number of nearest-neighbours can be quite high, like Z = 12 for the fcc
lattice. In the limit of infinite dimensions this local field can be described by an effective field hMF

with no spatial but only temporal fluctuations. Static mean-field theories also neglect the temporal
fluctuations of the effective field and replace it by an average effective field that has to be determined
self-consistently.

i.e. it has reduced to an effective single-site problem, where the interaction with the neighbouring
sites has been replaced by an effective field.

5.2.2 The Hubbard model in infinite dimensions
Motivated by the investigations of d→∞ in the Ising model we will now study the behaviour of the
Hubbard model in this limit, following the ideas of Metzner and Vollhardt [6,102]. The Hamiltonian
for the one-band model is given by

H =
∑
〈i,j〉,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓. (5.2.12)

As we have already pointed out, the Coulomb interaction is assumed to be purely local and thus
the last term in Eq. (5.2.12) is independent of the number of nearest-neighbours or resp., the spatial
dimension d. Only the kinetic term, which has a similar structure as the interaction term in the Ising
model (5.2.1), is non-local and depends on d. Considering a d-dimensional hypercubic lattice with
lattice spacing a, the dispersion of the non-interacting system, obtained by a Fourier transform of
the kinetic term, is given by

εk = −2t

d∑
i=1

cos(kia). (5.2.13)

Taking a different point of view on this relations, the sum over dimensions can also be interpreted as
a summation of d random variables Xi = −2t cos(kia). They are drawn from the same distribution,
corresponding to choosing a certain k-vector and can take on the values ε ∈ [−2t, 2t]. In mathemat-
ical terms we have the random variable X : Ω → E, where the the probability space Ω is the set of
all k-vectors and the measurable space E = [−2t, 2t].

In this context we now make use of the central limit theorem: It states that as the number of
random variables in the sum, or resp., the dimension d, approaches infinity, the probability of the
sum to take on a certain value converges to a normal distribution with the corresponding mean and
variance of the random variables. But this probability of the sum assuming a certain value (=energy)
is just what is measured by the local density of states, given by

D(ω) =
∑
k

δ(ω − εk). (5.2.14)
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Figure 5.3: The density of states of the hypercubic lattice with dispersion εk = −2t
∑d
i=1 cos(kia)

for increasing dimension d. The hopping parameter has been rescaled as t → t∗/
√

2d with t∗ = 1
constant. For large dimensions the DOS converges to a Gaussian distribution with mean 〈εk〉 = 0
and variance σ = t

√
2d = t∗.

Therefore, the DOS for large d is approximately given by

Dd(ω) =
1√

2πt
√

2d
exp

{
−1

2

(
ω

t
√

2d

)2
}

(5.2.15)

with variance σ = t
√

2d = t
√
Z. Similar to the Ising model, we have to rescale the hopping

amplitude t in order to define the DOS in the limit of d→∞. Choosing the scaling

t→ t∗√
Z
, (5.2.16)

we obtain the DOS in the limit of infinite dimensions as [6]

D(ω) =
1√

2πt∗
exp

{
−1

2

( ω
t∗

)2
}
. (5.2.17)

The resulting DOS at the example of the hypercubic lattice in different dimensions is shown in
Fig. 5.3. We observe that the DOS converges quite quickly to the d = ∞ result. Already at d = 3,
where Z = 6, the shape is very similar to the Gaussian limit, which is a promising result for possible
approximate approaches of the d→∞ also to finite dimensions.

Hence, we have just seen that the Hubbard Hamiltonian scaled as

H =
1√
Z

∑
〈i,j〉,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (5.2.18)

has a non-trivial limit in infinite dimensions, with a non-interacting DOS given by the Gaussian in
Eq. (5.2.17). Choosing the scaling as t → t∗/

√
Z is not obvious at first glance. Another possible

option is to use t→ t∗/Z, which would suppress the kinetic energy to zero in the d→∞ limit. This
yields a model which is not unphysical by itself, but usually infeasible to describe realistic systems
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where the competition between the kinetic energy and local interaction U is finite. A more detailed
discussion about the scaling can be found in Ref. [103].

As we have seen the convergence to this limit can be quite fast, so that possible simplifications
that arise in the d→∞ limit are quite promising candidates for approximations for realistic systems
in d = 3. In the next section we will investigate what kind of simplifications follow in infinite
dimensions.

5.2.3 Simplifications in infinite dimensions - dynamical mean-field theory
Considering the limit of infinite dimensions, we will now again turn on the interactions perturbatively
and investigate possible simplifications in this limit. One important aspect of the Hubbard model
was that we had to rescale the hopping amplitude by a factor of 1/

√
Z. Thus, certain terms in a

perturbative expansion that scale with the hopping amplitude are expected to vanish for d → ∞,
reducing the terms that we have to calculate when we want to solve the interacting system.

In order to see what kind of terms are effected, let us consider the kinetic energy term for the
non-interacting system in the Green’s function language. For simplicity, we also assume that the
hopping is identical for different sites tij = t. The kinetic energy is given by the non-interacting
Green’s function via (see also chapter 3)

〈Tkin〉 = −t
∑
〈i,j〉,σ

〈c†iσcjσ〉 (5.2.19)

= −t
∑
〈i,j〉,σ

G0
ij,σ(τ → 0−). (5.2.20)

Since the one-particle density matrix 〈c†iσcjσ〉 = G0
ij,σ(τ → 0−) describes the amplitude for an

electron hopping from site j to site i, the probability for this process is given by |G0
ij,σ(0−)|2.

Summation for a given site j over all neighbouring sites and j itself must equal to probability one,
since the electron has to go to some other site or remain on the present site. For Z nearest-neighbours
we thus have

1 = |G0
ii,σ(0−)|2 +

∑
〈j〉 of i

|G0
ij,σ(0−)|2

︸ ︷︷ ︸
∼O(Z) terms

. (5.2.21)

This not only shows that we have to scale the hopping as t → t∗/
√
Z as we have found in the

previous section, but also that each term in the sum has to fall off as

G0
ij,σ(0−) ∼ O

(
1√
Z

)
, for i 6= j and large Z, (5.2.22)

in order to yield a normalized probability. The diagonal term G0
ii,σ(0−) = 〈niσ〉 is in general

allowed to stay finite, since its contribution to the total probability does not scale as O(Z). This
scaling has to hold also for the general case τ 6= 0−, since this property does not depend on whether
there is a finite time τ 6= 0 between the annihilation and creation of an electron at site j and i. Also
the Fourier transform does not change this behaviour, since G(iωn) depends linearly on G(τ). This
leads to the general result

G0
ij,σ(τ) ∼ O

(
1√
Z

)
(5.2.23)

G0
ij,σ(iωn) ∼ O

(
1√
Z

)
, for i 6= j and large Z. (5.2.24)

Thus, the off-diagonal terms of the non-interacting Green’s function vanish in the limit of Z →∞.
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Figure 5.4: A diagram for the irreducible Selfenergy Σij from second-order perturbation theory in
real space. For infinite dimension or Z → ∞, all diagrams collapse and become local since each
process connecting different sites i 6= j scales as O(1/

√
Z).

It is important to note that this does not imply that the electrons automatically become localized
in infinite dimensions. The kinetic energy is still finite and can compete with the interaction U
because we have introduced the appropriate scaling t∗/

√
Z, which causes Tkin to be finite. Since the

number of nearest-neighbours becomes infinite, the hopping probability for a given process j → i
becomes arbitrarily small, but the total probability integrated over the whole surrounding is of the
order of one. This gives us the impression that in this limit a single site i sees its surrounding
as a continuous bath, where electrons can hop from the bath to the site i and back. Since the
bath is continuous, the probability to hop into a specific “bath site” is arbitrarily small but the total
probability to hop into the bath is finite. We will see later that indeed this picture will be the key step
to solving the Hubbard model in the d→∞ limit.

For the general sites i,j one can show [104,105] that the non-interacting Green’s function obeys
the following scaling

G0
ij,σ ∼ O

(
d−‖ri−rj‖/2

)
, (5.2.25)

where ‖ ·‖ is the Manhattan metric (the distance is the shortest connection between two sites, always
along connecting bonds). This special property of the non-interacting Green’s function is responsible
for far-reaching simplifications for perturbation theory. For example, in the language of Feynman
diagrams when we construct the interacting Green’s function or the irreducible Selfenergy in real
space, we draw the non-interacting propagator as lines connecting different sites i and j. Since in
the limit d→∞, the non-interacting propagator lines scale asO(1/

√
d) for i 6= j, all connected di-

agrams collapse to local diagrams and do not contribute to off-diagonal i, j components [6,104,106].
This behaviour is shown in Fig. 5.4 for the example of a second-order diagram for the irreducible
Selfenergy Σij . In second order the three non-interacting Green’s function lines will contribute a
factor of the order of O(1/d3/2) and summation over all neighbouring sites gives only a factor of
O(d). Therefore, this contribution to Σij will vanish asO(1/

√
d) and only the diagonal components

Σij will survive. This can be illustrated by the collapsed diagram in Fig. 5.4. Any two vertices that
are connected by more than three separate Green’s function lines will thus collapse onto a single
vertex, and the diagram becomes local. As a result, in the limit of d→∞ the irreducible Selfenergy
becomes a purely local quantity [6, 106]

lim
d→∞

Σij(iωn) = δijΣii(iωn). (5.2.26)

Correspondingly, taking the Fourier transform of a local Selfenergy in real-space we get the
momentum-independent Selfenergy

lim
d→∞

Σk(iωn) = Σ(iωn). (5.2.27)

This results in tremendous simplifications in the perturbative treatment for the Hubbard model. Re-
call that the non-interacting Green’s function in momentum-space is given by

G0
k(iωn) =

1

iωn + µ− εk
. (5.2.28)
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Due to the collapse of all diagrams to local diagrams, the momentum summations in the diagram-
matic calculation of the interacting Green’s function or Selfenergy over the inner momentum degrees
of freedom simplify and can be substituted by an integration over the non-interacting density of states
(DOS) [6, 102, 106] due to the momentum-independence of the Selfenergy. At the example of the
local interacting Green’s function

G(iωn) =
1

Nk

∑
k

1

iωn + µ− εk − Σ(iωn)
(5.2.29)

=

∫
D(ε)

iωn + µ− ε− Σ(iωn)
dε, (5.2.30)

where D(ε) is the non-interacting DOS. For simplicity we have suppressed further orbital- or spin-
indices and used the representation of the Green’s function on the Matsubara axis, but of course
these simplifications in d → ∞ are independent of whether we use real or imaginary time, or work
in frequency space. It is important to note that nowhere a simplification or approximation was made
to the dynamics of the system, i.e. the time or frequency dependence is not affected and there is no
“collapse” in the diagrams with respect to these variables. Thus, even if the d → ∞ limit is used
as an approximation to systems in finite dimension, the problem retains its full dynamics, which
is in contrast to the standard Weiss mean-field theories. This property coined the term dynamical
mean-field theory, because the local dynamics are fully preserved. Only the non-local fluctuations
are not considered, which is still exact in infinite dimensions but an approximation for real systems
in, e.g. d = 3.

5.2.4 Derivation of the DMFT equations - effective Anderson impurity model
Dynamical mean-field theory has provided an important contribution to the understanding and possi-
ble approximative solutions of the Hubbard model. The collapse of all connected diagrams into local
ones is a significant simplification towards obtaining, for example, the Selfenergy of the interacting
system. Still, even though the problem has been simplified to a great extend, it remains challenging
and in general cannot be solved analytically. Perturbatively summing up local diagrams up to a cer-
tain order is much simpler compared to non-local diagrams but will not provide valuable insight into
the physically interesting regimes at low temperature and moderate to strong interactions.

The major breakthrough which made the numerical treatment of the Hubbard model in d → ∞
possible was the insight by Ohkawa [107] and Georges and Kotliar [7], who showed that the func-
tional equations of the Hubbard model in this limit can be made equivalent to that of an Anderson
impurity model (AIM) [108] with an effective bath that has to be determined self-consistently. They
show that a direct extension from the classical mean-field to the dynamical quantum case can be
made, where the classical Weiss-field becomes a dynamical quantum bath in which a single lattice
site is embedded. Like in the classical case the single site only interacts with the effective bath,
which is in contrast a time-dependent quantity and thus retains the temporal quantum fluctuations
present in the DMFT.

This correspondence to the Anderson impurity model is extremely helpful, since a plethora of
numerical methods exist for solving the AIM that can be applied right away to treat the DMFT equa-
tions. Examples are the Hirsch-Fye quantum Monte Carlo solver [109, 110], continuous-time quan-
tum Monte Carlo [8,9], exact diagonalization [111,112] or renormalization group approaches [113].

The derivation of the DMFT equations for the Hubbard model follow the same idea as for the
Ising model but with formal differences. In the limit d → ∞ the surrounding of a single lattice site
can be described by an effective field similar to the Ising case, but in the quantum case it retains
its time or frequency dependence, resembling the dynamical quantum fluctuations. This can be
achieved by a generalized coherent potential approximation [114, 115], or by the so-called “cavity”
method [7, 116]. The derivation we present here will be based on the latter. One proceeds by
focussing on a specific site i, usually by convention set to i = 0, and integrate out all other degrees
of freedom for the lattice site. By this, one obtains an effective dynamical Weiss field in which the
lattice site i is embedded (see Fig. 5.5 for an illustration). At the same time one can write down
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Figure 5.5: Illustration of the cavity method to derive the DMFT equations. The idea of this method
is to focus on a particular site i and separate the total action S into a sum of the contributions
arising from the lattice without the site S(0), the hybridization between the site and the lattice ∆S
and the action S0 of the site itself. In the limit d→∞ all other degrees of freedom of the lattice are
integrated out in order to obtain an effective dynamical field in which site i is embedded.

the equations defining the effective bath of an Anderson impurity model, which describes a single
impurity site in a non-interacting bath. This model can be used for example to describe an isolated
magnetic impurity in a metal, in which the impurity orbitals hybridize with the conduction states
of the surrounding. Investigating these equations one observes that the equations of the AIM and
the Hubbard lattice site embedded in the effective Weiss field become equivalent if one chooses a
specific form of the hybridization between impurity site and the effective bath in the AIM. This
finding then allows us to obtain the solution of the Hubbard model in d→∞ by solving an effective
AIM after we have chosen the correct form of the hybridization. Since the effective field and thus the
hybridization is unknown at the beginning, it has to be found by a self-consistent procedure. After
convergence, we have obtained a hybridization function of the impurity site that exactly represents
the effective field surrounding the single site in the Hubbard model. The solution of the AIM, the
impurity Green’s function, will then correspond to the solution of the Hubbard model with the correct
effective field.

For the derivation of the DMFT equations we will start with the formulation of the effective
action of the Hubbard model, and identify it with the action of the Anderson impurity model to
obtain a relation with the hybridization and effective field.

In the grand canonical ensemble the partition function Z is sufficient to fully describe a thermo-
dynamic system

Z =

∫ ∏
i

Dc∗iσDciσ e−S , (5.2.31)

where c∗iσ, ciσ are anticommuting Grassmann variables [117], and the action S [87], which is given
for the Hubbard model as

S =

∫ β

0

dτ

(∑
iσ

c∗iσ(τ)

[
∂

∂τ
− µ

]
ciσ(τ) −

∑
ijσ

tijc
∗
iσ(τ)cjσ(τ)

+U
∑
i

c∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ)

)
. (5.2.32)

Now we split the lattice system into three parts, namely the “impurity” site i = 0, the remaining
lattice without site i = 0 and the part that connects the two. The action correspondingly is separated
into three parts

S = S0 + ∆S + S(0), (5.2.33)
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where S0 is the action only on site i = 0

S0 =

∫ β

0

dτ

(∑
σ

c∗0σ(τ)

[
∂

∂τ
− µ

]
c0σ(τ) + Uc∗0↑(τ)c0↑(τ)c∗0↓(τ)c0↓(τ)

)
, (5.2.34)

∆S contains the hopping processes or hybridization between site 0 and the other sites

∆S = −
∫ β

0

dτ
∑
iσ

(ti0c
∗
iσ(τ)c0σ(τ) + t0ic

∗
0σ(τ)ciσ(τ)) , (5.2.35)

and finally S(0) is the action of the lattice with site 0 and the bonds connecting to it are removed

S(0) =

∫ β

0

dτ

∑
i 6=0,σ

c∗iσ(τ)

[
∂

∂τ
− µ

]
ciσ(τ) −

∑
ij 6=0,σ

tijc
∗
iσ(τ)cjσ(τ)

+U
∑
i 6=0

c∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ)

 . (5.2.36)

We now define the thermodynamic average 〈·〉(0) as the trace over the system with the impurity
removed

〈A〉(0) =
1

Z(0)

∫ ∏
i

Dc∗iσDciσ Ae−S
(0)

, (5.2.37)

where Z(0) is the corresponding partition function. Expanding the full partition function Z with
respect to ∆S, one obtains

Z = Z(0)

∫ ∏
σ

Dc∗0σDc0σ e−S0

(
1−
∫ β

0

〈∆S(τ)〉(0) dτ

+
1

2!

∫ β

0

∫ β

0

〈∆S(τ1)∆S(τ2)〉(0) dτ2 dτ1 + . . .

)
, (5.2.38)

where ∆S = ∆S(β). For fermionic systems only the correlation functions 〈∆S(τ1) . . .∆S(τn)〉(0)

with equal number of c∗ and c are non-zero. Using the definition of the one-particle correlation
function, namely the Green’s function of the lattice without the site 0

G
(0)
jkσ(τ1 − τ2) = −〈Tτ cjσ(τ1)c∗kσ(τ2)〉(0), (5.2.39)

for example the second order term can be written as

1

2!

∫ β

0

∫ β

0

〈∆S(τ1)∆S(τ2)〉(0) dτ2 dτ1

= −
∑

jk 6=0,σ

tj0tk0

∫ β

0

∫ β

0

G
(0)
jkσ(τ1 − τ2)c∗0σ(τ1)c0σ(τ2) dτ2 dτ1. (5.2.40)

The next terms of higher order can be written in a similar way by using the expressions for n-particle
correlation functions. The important property of the terms in the expansion of Z in Eq. (5.2.38) is
that terms of n-th order contain n factors of hopping amplitudes tj0. In the limit of d→∞ we know
that each hopping amplitude has to be rescaled by a factor of Z‖r0−rj‖/2 since the one-particle
correlation function scales as Z−‖r0−rj‖/2, as discussed before. Therefore, the first term is of order
1, while all other terms of higher order scale at least as O(1/Z), so in the limit d → ∞ only
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contributions of G(0)
jkσ remain. This leads to the effective local DMFT action

Sloc =

∫ β

0

dτ
∑
σ

c∗0σ(τ)

[
∂

∂τ
− µ

]
c0σ(τ) + U

∫ β

0

dτ c∗0↑(τ)c0↑(τ)c∗0↓(τ)c0↓(τ)

+
∑

jk 6=0,σ

t∗j0t
∗
k0

∫ β

0

dτ1

∫ β

0

dτ2G
(0)
jkσ(τ1 − τ2)c∗0σ(τ1)c0σ(τ2), (5.2.41)

where the rescaled hopping amplitudes are indicated by t∗j0. We introduce the hybridization function
∆σ as

∆σ(τ1 − τ2) =
∑
jk 6=0

t∗j0t
∗
k0G

(0)
jkσ(τ1 − τ2), (5.2.42)

and define the so-called effective Weiss field Gσ for the Hubbard model in the d→∞ limit as

G−1
σ (τ1 − τ2) = −δ(τ1 − τ2)

[
∂

∂τ1
− µ

]
−∆σ(τ1 − τ2), (5.2.43)

which allows us to write the local action in the following form

Sloc = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1
σ (τ1 − τ2)cσ(τ2)

+U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ), (5.2.44)

where we have omitted the index i = 0 for readability (the choice of i = 0 is, after all, arbitrary).
This is an important result, since it shows that the action of the Hubbard model in the d → ∞
limit becomes identical to the action of a single site embedded in an effective field G−1

σ plus the
local Coulomb interaction on this site. The definition of the Weiss field in Eq. (5.2.43) shows some
resemblance to the classical case, since it relates the effective field, which defines the full partition
function and thus all information of the system, with the Green’s function G

(0)
jkσ of the original

Hubbard model with one site removed. If we were to relate G(0)
jkσ to the Green’s function of the

original full lattice Gjkσ , Eq. (5.2.44) would form a self-consistent relation, since the calculation of
Z now requires knowledge of the Green’s function and vice versa.

The Fourier transform of the Weiss field in Eq. (5.2.43) takes on a slightly simpler form

G−1
σ (iωn) = iωn + µ−∆σ(iωn) (5.2.45)

with ∆σ(iωn) =
∑
jk 6=0

t∗j0t
∗
k0G

(0)
jkσ(iωn). (5.2.46)

To make the connection back to the original lattice, one can expand the Green’s functions in terms
of the hopping matrix elements, leading to [116]

G
(0)
jkσ = Gjkσ −Gj0σG−1

00σG0kσ, (5.2.47)

whereGjkσ corresponds to the Green’s function of the full lattice. This relation allows one to express
the local Green’s function G00σ = Gσ by the dynamical Weiss field in the form of a Dyson equation

G−1
σ (iωn) = G−1

σ (iωn)− Σσ(iωn) (5.2.48)
= iωn + µ−∆σ(iωn)− Σσ(iωn). (5.2.49)

The original momentum-dependent lattice Green’s function in the DMFT limit is given by

Gσ(k, iωn) =
1

iωn + µ− εk − Σσ(iωn)
, (5.2.50)
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which finally leads to the equation for the effective Weiss field

G−1
σ (iωn) = Σσ(iωn) +G−1

σ (iωn) (5.2.51)

= Σσ(iωn) +

[∫
D(ε)

iωn + µ− ε− Σσ(iωn)
dε

]−1

, (5.2.52)

where D(ε) is the non-interacting density of states of the original lattice. The equations for the
effective action (5.2.44), for the Weiss field (5.2.45), the Dyson equation for the local Green’s func-
tion (5.2.49) and the relation of the Weiss field with the non-interacting DOS (5.2.52) form a set
of self-consistent equations that can in principle be solved iteratively. The only unknown property
in these relations is the Selfenergy Σσ(iωn). Starting with an initial guess for Σσ(iωn), one uses
Eq. (5.2.52) to obtain the Weiss field, then solve the corresponding local problem defined by the ac-
tion Sloc in Eq. (5.2.44), and then obtain a new Selfenergy from the Dyson equation in Eq. (5.2.49).
After convergence, one has found the correct Weiss field G−1

σ , that parametrizes the effective field
surrounding a lattice site of the Hubbard model in d → ∞, with the corresponding interacting
Green’s function Gσ and Selfenergy Σσ . The local interacting Green’s function is then equal to the
momentum-averaged interacting lattice Green’s function. Solving the local system is still a difficult
interacting many-body problem, which in general cannot be done analytically.

It is important to note that the interacting Green’s function of the original lattice in Eq. (5.2.50)
is still a momentum-dependent quantity. In the DMFT limit the Selfenergy Σσ becomes a local
quantity, but the lattice Green’s function retains its momentum-dependence via the non-interacting
lattice dispersion εk, with no additional dependence on momentum by the Selfenergy.

Having established the DMFT equations and the local problem to be solved, we can finally
compare them to the Anderson impurity model. Recall that the AIM consists of an impurity site
embedded in a non-interacting bath, from which electrons can hop into the impurity site, interact via
the local Coulomb repulsion, get dressed by the Selfenergy, and eventually hop back into the bath.
The Hamiltonian of the AIM is given by

HAIM =
∑
kσ

ε̃ka
†
kσakσ +

∑
kσ

Vk

(
a†kσcσ + c†σakσ

)
− µ̃

∑
σ

c†σcσ + Uc†↑c↑c
†
↓c↓, (5.2.53)

where akσ, a
†
kσ are the annihilation and creation operators for the bath states with dispersion ε̃k, and

cσ, c
†
σ are the annihilation and creation operators for an electron on the impurity site. The impurity

hybridizes with the bath via the amplitude Vk, which corresponds to the annihilation of one electron
in the bath and creation of one electron on the impurity site, and vice versa. µ̃ corresponds to the
chemical potential on the impurity and U to the Coulomb interaction term. It can be shown [7, 116]
that this model generates an action SAIM of exactly the same functional form as the effective action
Sloc of the Hubbard model in Eq. (5.2.44)

SAIM = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1
σ (τ1 − τ2)cσ(τ2)

+U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ), (5.2.54)

with the Weiss field given by

G−1
σ (τ1 − τ2) = −δ(τ1 − τ2)

[
∂

∂τ1
− µ̃

]
+
∑
k

|Vk|2(θ(τ1 − τ2)− nF (ε̃k)), (5.2.55)

or with Matsubara frequencies

G−1
σ (iωn) = iωn + µ̃−

∑
k

|Vk|2
iωn − ε̃k

. (5.2.56)
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The equivalence of the action SAIM and Sloc tells us that indeed the solution of the Hubbard model
in d → ∞ can be obtained by solving an Anderson impurity model with the special choice of the
Weiss field given by Eq. 5.2.52. The solution for a given Weiss field will consist in general of the
interacting local Green’s function and the Selfenergy, so that we have to iterate the mapping and
solving procedure self-consistently until convergence as explained above.

This concludes the derivation of the DMFT equations and the ways to solve them by relating
the effective field in d → ∞ to the bath of an Anderson impurity model. This method can now be
applied to all kinds of lattice systems for the Hubbard model for which the non-interacting dispersion
or density of states is known. The DMFT itself is non-perturbative in the sense that it is valid for
the complete range of U/t and temperature T . It only relies on the approximation that 1/Z is small,
which we assume is quite a good approximation for realistic systems, like the cubic lattice (Z = 6),
the body-centered cubic (bcc) lattice (Z = 8) or the face-centered cubic (fcc) lattice (Z = 12).
However, DMFT as it is right now is only applied to a “toy model”-like approximation of a real
lattice, namely the Hubbard model, where the hopping parameters tij are basically free parameters.
In the next section we will now discuss how we can extend the DMFT method to realistic systems.
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Chapter 6

The LDA+DMFT approach

6.1 Making the transition to realistic systems
In the previous section we have discussed the DMFT self-consistency cycle for solving the Hubbard
model in the d→∞ limit. The parameters that define the type of lattice we are dealing with are the
hopping parameters tij . By appropriately choosing these parameters, in principle any lattice can be
realized. Though, in practice this is not an easy task if one wants to construct a lattice for a realistic
system, since a realistic model for a multiorbital system will usually consist of thousands or ten
thousands of hopping parameters.

One of the most promising approaches for applying the DMFT equations to realistic systems
is the so-called LDA+DMFT approach [118–121], which employs density functional theory for the
extraction of the non-interacting dispersion εk, which is used to construct the lattice Green’s function
and then solving the corresponding lattice model within dynamical mean-field theory. This way of
extending DMFT to realistic systems is very valuable, since it makes the LDA+DMFT method in
principle an ab initio approach.

One drawback is obviously the fact that using the DFT Hamiltonian HDFT for the non-
interacting Hamiltonian H0 is not correct but only an approximation. DFT itself, though being
based by an exact mapping onto a non-interacting system, is by no means a non-interacting theory
and includes electronic correlation to the extend given by the quality of the approximation to the
exchange-correlation potential, for example on the level of the local density approximation. This
gives rise to the so-called double counting problem, discussed in chapter 6.4, since we partially add
electronic correlations via DMFT which have already been treated within density functional theory.

Furthermore, DFT is usually formulated in the Bloch basis |Ψn(k)〉, in contrast to the lattice
model in DMFT, which is formulated in terms of electronic wave functions localized on a specific
lattice site, which will make a proper change of basis a necessity. We will now review the DMFT
self-consistency cycle and discuss the adoption of basically any general Hamiltonian H0 into the
framework of DMFT.

In DMFT the starting point for the self-consistency cycle is the Green’s function of the original
lattice

Gσ(k, iωn) =
1

iωn + µ− εk − Σσ(iωn)
, (6.1.1)

with the non-interacting dispersion and a first guess for the Selfenergy Σσ(iωn), that is going to be
determined self-consistently. Recall the more general form of the interacting Green’s function from
chapter 3 given in terms of operators

Gσ(iωn) = [(iωn + µ)1−H0 − Σσ(iωn)]
−1
, (6.1.2)

where H0 is the Hamiltonian of the non-interacting system that generates the dispersion εk in the
momentum basis. Since the Selfenergy is connected to the interacting and non-interacting Green’s
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function via the Dyson equation, Σσ(iωn) lives in the same Hilbert space as H0 and will have the
same dimension in terms of a matrix representation of operators. As we know, we can in general
choose any basis we deem appropriate for the system at hand, for example in chapter 3 we also
encountered the position basis

Gσ(r, r′, iωn) = 〈r| [(iωn + µ)1−H0 − Σσ(iωn)]
−1 |r′〉 . (6.1.3)

If we want to apply the DMFT method to a realistic system for which we can construct the non-
interacting Hamiltonian H0, we can work in the orthonormal basis |φk〉 that diagonalizes H0, i.e.

〈φk|φk′〉 = δkk′ ,
∑
k

|φk〉 〈φk| = 1 (6.1.4)

H0 |φk〉 = εk |φk〉 , (6.1.5)

which then determines the Green’s function as

Gσ(k, k′, iωn) = 〈φk| [(iωn + µ)1−H0 − Σσ(iωn)]
−1 |φk′〉 (6.1.6)

=
δkk′

iωn + µ− εk − Σkσ(iωn)
, (6.1.7)

here Σkσ(iωn) is again just a first guess, for example Σkσ(iωn) ≡ 0, and will be determined self-
consistently.

While the representation of the Green’s function is of course possible in any basis, most choices
will not be appropriate in practice. To see why, reconsider that we have to solve an effective An-
derson impurity model that generates the solution for the Hubbard model in the DMFT limit. The
action of the Anderson impurity model is given by

SAIM = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1
σ (τ1 − τ2)cσ(τ2)

+U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ), (6.1.8)

where the Grassman variables c∗σ(τ), cσ(τ) correspond to creation and annihilation operators on
the impurity site, which is obviously a very localized basis. In a local basis for a single orbital
corresponding to electronic states localized on the lattice sites i the Coulomb interaction term takes
on the simple diagonal form Un↑n↓. But if we were to change to a delocalized basis that in turn
diagonalizes H0, the Coulomb interaction term would be much more complicated. Of course this
is a possible choice but since the AIM is naturally formulated in a basis where the electronic wave
functions are localized on the lattice sites, the Weiss field G−1

σ and thus the Green’s function used to
construct the effective AIM should be given in a localized basis. On the other hand, a non-interacting
Hamiltonian H0 of the form

H0 =
∑
〈ij〉σ

tijc
†
iσcjσ, (6.1.9)

can usually be diagonalized only in a delocalized basis, e.g. by a Fourier transform. Thus, at some
point we will be forced to perform a change of basis from a delocalized to a localized basis.

6.2 Localized basis for the Green’s function
The choice of a localized basis set for realistic systems is in principle arbitrary, but most of the
time corresponds to atomic orbital-like wave functions on a specific atomic site. One example are
the orbital wave functions |sσi〉, |pkσi〉, |dmσi〉 for the atomic s, p, d orbitals with spin σ on site
i, assuming they retain a similar shape in the solid compared to an isolated atom. In the context
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of LDA+DMFT many choices of a localized basis have been explored, like linear muffin-tin or-
bitals (LMTO) [118, 119, 122], N -th order muffin-tin orbitals (NMTO) [123], Wannier functions
constructed by a projection onto a subset of Bloch wave functions [124, 125], maximally localized
Wannier functions [53] or projection onto local orbitals in the full-potential linear augmented plane-
wave (FLAPW) method [36, 126].

In the following we will present the method of projection onto local orbitals as proposed by
Aichhorn et al. [36]. It is based on the construction of a projection operator that projects the lattice
Green’s function from the Bloch basis onto localized orbitals in the “correlated subspace”, in which
the impurity problem is formulated.

The starting point to construct a local Green’s function for defining an effective Anderson impu-
rity model is the lattice Green’s function

Gσ(iωn) = [(iωn + µ)1−H0 − Σσ(iωn)]
−1
, (6.2.1)

where H0 corresponds to the DFT Hamiltonian. Please note that this equation corresponds to the
full interacting Green’s function of the lattice in the DMFT approximation by the inclusion of the
Selfenergy Σσ(iωn). In the beginning Σσ(iωn) is not known, so for starting the self-consistency
cycle we will use a reasonable guess, like Σσ(iωn) ≡ 0, which means our best estimate to the
interacting Green’s function will be the non-interacting Green’s function.

In DFT our main basis is usually the set of Bloch states |Ψn(k)〉 that diagonalizes the DFT
Hamiltonian H0 and forms a complete orthonormal basis set at each k-point

〈Ψν(k)|Ψν′(k)〉 = δνν′ ,
∑
ν

|Ψν(k)〉 〈Ψν(k)| = 1 (6.2.2)

H0 |Ψν(k)〉 = εν(k) |Ψν(k)〉 , (6.2.3)

where ν, ν′ are the band indices. Since this basis is orthonormal and complete, the lattice Green’s
function takes the form

(G−1)νν′,σ(iωn) = 〈Ψν(k)|G−1
σ (iωn)|Ψν′(k)〉 (6.2.4)

= (iωn + µ− εν(k))δνν′ − Σνν′,σ(iωn). (6.2.5)

Please note that Gνν′σ(iωn) has to be obtained by a matrix inversion of the matrix G−1
σ (iωn) which

entries are given by Eq. (6.2.5), and not by inverting each entry separately. In general we have

(G−1)νν′,σ(iωn) 6= [Gνν′,σ(iωn)]
−1
. (6.2.6)

We now want to project Gσ(iωn) from the Bloch basis onto localized orbital states |χ̃m〉. For a
realistic system these states would correspond for example to the atomic s, p, d, ... orbitals but can
in general be any set of Wannier function-like localized wave functions. In this context we introduce
the projection operator P̃ (k), defined by

P̃mν(k) = 〈χ̃m|Ψν(k)〉 , (6.2.7)

which corresponds to the overlap of the Bloch wave function and the localized orbital (spin indices
are suppressed). Note that this operator has the general form of a unitary matrix for a basis change
from the Bloch to the local orbital basis, as long as both basis sets are complete and orthonormal. In
practice this is not the case.

First, the number of bands ν will be restricted to some finite number Nν , since the construction
of the Green’s function in Eq. (6.2.5) involves the exact inversion of an Nν × Nν matrix, which
cannot be made arbitrarily large.

Second, the number of local orbitals m will usually be between 1 to 7 and involve only complete
shells like the 3d orbitals, because more orbitals become numerically infeasible and one usually
assumes that correlation effects are mostly restricted to a specific set of orbitals. This is of course an
approximation and has to be carefully checked, if possible, or based on a sound physical reasoning.
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As a result, the projection operator is neither unitary because the basis sets are not complete, nor
is it a square matrix since the number of Bloch states will usually be different than the number of
local orbitals

1 6= P̃ †(k)P̃ (k) 6= P̃ (k)P̃ †(k) 6= 1. (6.2.8)

As a result, the local orbital set will also not be orthonormal

(
P̃ (k)P̃ †(k)

)
mm′

=

Nν∑
ν=1

〈χ̃m|Ψν(k)〉 〈Ψν(k)|χ̃′m〉 6= δmm′ . (6.2.9)

In order to restore the orthonormality of the local basis set, which is needed to define the local
impurity problem, we define the overlap matrix as

Omm′(k) =
[
P̃ (k)P̃ †(k)

]
mm′

(6.2.10)

=
∑
ν

〈χ̃m|Ψν(k)〉 〈Ψν(k)|χ̃m′〉 . (6.2.11)

Orthonormalized local orbitals are then obtained by

|χm〉 =
∑
m′

[O(k)]
−1/2
mm′ |χ̃m〉 , (6.2.12)

and correspondingly the orthonormalized projectors

P (k) = [O(k)]
−1/2

P̃ (k). (6.2.13)

The proof of the orthonormality is straightforward

(
P (k)P †(k)

)
mm′

=

(
P̃ (k)P̃ †(k)

P̃ (k)P̃ †(k)

)
mm′

= δmm′ . (6.2.14)

Nevertheless, the projectors do not form a complete orthonormal basis in Bloch space(
P †(k)P (k)

)
νν′

= δνν′ , (6.2.15)

which simply corresponds to the fact that some local orbitals only have very small overlap with other
Bloch wave functions or none at all, rendering parts of the diagonal entries of P †(k)P (k) smaller
than one. This is the reason why this method is a projection instead of a unitary transformation, since
we project from the Bloch space to a (usually smaller) local orbital space, so we loose information
about the bands that do not have any overlap with our choice of local orbitals. The influence of the
choice of bands and orbitals to take into account will be discussed shortly in Chapter 6.3.

With the orthonormalized projectors P (k) the lattice Green’s function can be projected onto the
local orbitals via

Gmm′(k, iωn) =
∑
νν′

〈χm|Ψν(k)〉Gνν′(k, iωn) 〈Ψν′(k)|χm′〉 (6.2.16)

=
[
P (k)G(k, iωn)P †(k)

]
mm′

, (6.2.17)

from which the local Green’s function follows as

Gmm′(iωn) =
∑
k

Gmm′(k, iωn). (6.2.18)

Please note that exchanging the sum over k by an integration over the energy and density of states
as in Eq. (5.2.52) cannot be used since the projections also depend on the momentum. From now on
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we can proceed via the standard DMFT cycle and obtain the effective Weiss field Gmm′(iωn) from
the local Green’s function by Eq. (5.2.51).

From the solution of the effective impurity model, we obtain either directly the Selfenergy
Σ(iωn) or the interacting impurity Green’s function Gimp(iωn). If the latter is the case, the Dyson
equation (5.2.49) is used to obtain the Selfenergy.

In the next step we have to construct the interacting lattice Green’s function. One can think
of “upfolding” the local impurity Green’s function Gimp(iωn) to the Bloch basis, but this is not
appropriate since the local orbitals do not form a complete basis set in the large Bloch space, which
would lead to loss of information in the bands that cannot be fully represented as a linear combination
of the local basis. Thus, we promote the Selfenergy which contains the full information of the
correlated subspace into the larger Bloch space via the inverse projection

Σνν′(k, iωn) =
∑
mm′

[P (k)]
†
νm (Σmm′(iωn) − ΣDC)P (k)m′ν′ , (6.2.19)

where ΣDC is a correction of the double counting, which we will discuss in chapter 6.4. This
object is also called the lattice Selfenergy. It is important to note that the resulting Selfenergy is a
momentum-dependent object even though the Selfenergy of the effective impurity model is local.
The additional k-dependence originates only from the momentum-dependence of the hybridization,
causing the Bloch bands to be composed of different orbital character that changes as a function
of k. This can be understood in the illustrative way that the Selfenergy is only distributed to these
bands and k-points that have significant weight of the correlated orbitals.

The lattice Selfenergy (6.2.19) can then be used to update the lattice Green’s function in
Eq. (6.2.5), and thus closes the DMFT cycle.

6.3 The choice of the energy window
In the construction of the projection operator P (k) we restricted the number of bands taken into
account for the projection to some number Nν . The choice of bands is guided by the principle that
we want to represent the local orbitals |χm〉 as accurate as possible, i.e. we have to choose these
bands |Ψν(k)〉 so that

|χm〉 ≈
Nν∑
ν=1

|Ψν(k)〉 〈Ψν(k)|χm〉 , (6.3.1)

is fulfilled as best as possible. The relation becomes an equality only if all bands are taken into ac-
count, so that the Bloch basis is complete. This sets a lower bound for Nν , because the dimension of
the restricted Bloch space need needs to be at least as large as the dimension of the local orbital space
in order to construct Nlo (approximately) orthogonal wave function |χm〉 as a linear combination of
the Bloch states |Ψν(k)〉.

The choice of the bands or energy window should also include basically all of the weight of the
local orbitals in order to maximize the overlap of a specific local orbital with the set of Bloch wave
functions. For example, if a local orbital has almost all of its weight inside a small energy window
of [Emin, Emax], the natural choice is to select all bands inside this window for use in the projection
scheme.

This is illustrated at the example of the cubic perovskite SrVO3 in Fig. 6.1. This material features
three-fold degenerate t2g and two-fold degenerate eg states of the vanadium 3d orbitals close to the
Fermi level. The vanadium states hybridize partially with the oxygen p states, as can be seen by
residual weight of oxygen at the Fermi level and vanadium 3d states at negative energies in the
position of the bonding oxygen p-states. For the local orbitals |χm〉 to project on we choose the set
of the vanadium t2g and eg orbitals.

Let us consider the first case of an energy window which is as small as possible, shown by the
window A in Fig. 6.1, that includes all the weight around the Fermi level but neglects the contribution
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Figure 6.1: The DOS for the cubic perovskite SrVO3. Two different choices A,B for the energy
window used for the projection from the Bloch bands onto the local vanadium t2g and eg states are
shown. The smaller window A encompasses only the ∼ 6 Bloch bands close to the Fermi level,
leading to more spatially extended local orbitals. The larger window B contains ∼ 20 bands that
contain also the vanadium t2g and eg weight at low energies originating from the hybridization with
oxygen, leading to local orbitals that are more localized in real space.

of the hybridization with oxygen. Choosing the window as [−1.5, 6] eV we obtain∼ 6 Bloch bands,
of which 5 correspond to bands with mostly vanadium 3d character and one band with mostly O-p
character. Since the O-p character contained in the V-t2g band around EF claims a certain amount
of weight, while at the same time we neglect the V-t2g at lower energies, the total weight of the
V-t2g orbital in this window does not sum up to one so we cannot recover the original shape of the
atomic orbital. By the orthonormalization procedure the local orbitals will show some leakage to
the oxygen site in real space, the remnant of the hybridization with the O-p states, creating more
extended and less localized wave function.

On the other hand we can consider the opposite case of a larger energy window like the one
indicated by B in Fig. 6.1. This energy range of [−8, 9] eV encompasses ∼ 20 Bloch bands, in-
cluding the bands corresponding the hybridization of the V-d states with O-p. This results in a very
accurate representation of the atomic wave function since the Bloch basis is more complete. Thus,
the resulting local orbitals are more localized in space with almost no leakage to the neighbouring
oxygen sites. The information about the hybridization in this large window is now encoded in the
off-diagonal entries of the lattice Green’s function.

When calculating the effective matrix elements of the Coulomb interaction, less localized orbitals
lead to smaller values of the interaction parameters U , while for localized orbitals the parameters
will be larger. Additionally, by restricting the number of bands in the Bloch basis the Coulomb
interaction is reduced by screening processes [36,56,127–129]. When the chosen energy window is
small, the remaining large subset of Bloch bands not considered for the projection effectively screens
the interaction to a small value. For a larger energy window the screening is less effective because
more states are excluded from the screening process, resulting in a larger effective U . As a result, a
smaller value of U has to be used in the effective impurity model for a small window, while a larger
value of U has to be used for a larger window.

For fixed interaction parameters, the degree of correlation is thus reduced if the energy window
is enlarged. This is illustrated in Fig. 6.2 at the example of SrVO3, using the same energy windows
as in Fig. 6.1 for the interaction values of U = 4 eV, JH = 0.65 eV. While keeping these parameters
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Figure 6.2: The spectral function of SrVO3 as obtained from LDA+DMFT for a small and large
energy window corresponding to the windows A and B in Fig. 6.1. The small inset shows the projec-
tion on the degenerate V-t2g orbitals. The weight at lower energies that can be found in the larger
window is of oxygen p-character and not included in the smaller window.
a) shows the resulting spectral function for fixed interaction parameters U = 4 eV, JH = 0.65 eV,
which clearly results in a decrease of correlation in the larger window. No Hubbard bands are
present in the case of the larger window and the renormalization factor reduces by about 40%.
b) shows the result for the same windows, but the interaction parameters are increased to U = 11 eV,
JH = 1.78 eV for the larger window to account for the less effective screening. This leads to a better
qualitative agreement, where the renormalization factor in the large window is now even 16% higher
compared to the small window. Still, no clear signs of upper and lower Hubbard band are present.

fixed and enlarging the energy window, correlations are significantly reduced, as can be seen from
the enlarged width of the quasiparticle peak. Correspondingly, the mass enhancement of the V-t2g
orbital drops from ∼ 2.4 in the small window to ∼ 1.4 in the larger window. Also, there is no upper
and lower t2g Hubbard band present in the case of the larger window. This is the result from the
inclusion of the hybridizing states at negative energies which increase the kinetic energy of the V-t2g
orbitals significantly and thus increase the effective t/U ratio.

When increasing the interaction parameters almost by a factor of three up to U = 11 eV, JH =
1.78 eV to account for the reduced screening in the larger window, we can only qualitatively regain
the results and strength of correlations found for the smaller window. While the mass enhancement
of the V-t2g orbital is now even larger with ∼ 2.8, we do not observe any emergence of a lower
Hubbard band.

The larger window includes significant weight of the O-p states hybridizing with the V-3d states,
but these states are not considered for the local orbital projection and the impurity problem. For a
consistent treatment of correlations these states should also be subject to correlations but interactions
between two distinct atoms is out of the scope of DMFT, which is an effective single-site theory. A
possible approximative way of treating more than one atom within LDA+DMFT is discussed in
chapter 6.5.

Therefore, a proper choice of the energy window in combination with the proper interaction
parameters is of crucial importance and can have significant effects on the degree of electronic
correlations. In practice one will usually use a compromise between, on the one hand, an energy
window that is large enough in order to capture as much weight of the correlated orbitals as possible,
while on the other hand keeping the window small enough so that weight from other orbitals that
are not treated in the impurity problem is as small as possible. A way of determining effective
screened interaction parameters depending on the energy window is for example the constrained
random-phase approximation (cRPA) [127, 130, 131], which uses the non-interacting polarization
arising only from the excluded states to screen the bare Coulomb interaction. More discussion of the
effects of different energy windows can also be found in the literature, for example in Ref. [36, 53].
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6.4 The double counting problem
Let us now discuss the aspect of the double counting problem already mentioned in Chapter 6.2. It
arises every time we combine two or more approaches of solving an interacting many-body problem
where the same interaction term in the Hamiltonian is treated by more than one of them. In the
case of LDA+DMFT the interaction term is the Coulomb term in the electronic Hamiltonian, and
the double counting problem arises because both density functional theory and DMFT treat the
electronic interactions in their own way. This leads to the effect that some terms of the interaction
are “counted twice”.

DFT itself is based on an exact mapping of the interacting electronic system onto a non-
interacting one, with the Coulomb interaction incorporated by an effective potential that is deter-
mined self-consistently. The only approximation is done to the exchange-correlation potential, e.g.
by assuming a homogeneous electron gas in the local density approximation. Therefore, the dis-
persion εDFT(k) obtained in DFT corresponds to the (approximate) Eigenvalues of the interacting
electronic system. In contrast to that, within the DMFT Hamiltonian ε(k) is regarded as the disper-
sion of the non-interacting system. Still, in the combination of LDA+DMFT we assume that

ε(k) ≈ εDFT(k), (6.4.1)

and replace ε(k) in the non-interacting Green’s function by εDFT(k). By this we have already in-
corporated the effects of correlation on the level of LDA in the non-interacting Green’s function,
which leads to the double counting of correlation effects when solving the effective interacting im-
purity model. We are also faced with the exceptional situation that the more accurate the exchange-
correlation part is treated in DFT, for example by using improved functionals like the generalized
gradient approximation [64] or hybrid functionals [69,70,73,75,76,132,133] (see Chapter 2.4), the
more severe the double counting becomes.

In order to prevent this double counting effect, we have to correct the correlations added by
DMFT by a double counting correction term ΣDC. Deriving such a term is inherently difficult in
the framework of DFT combined with DMFT, since the two approaches are based on fundamentally
different formalism. DFT itself is based on periodic Kohn-Sham wave functions and is not an orbital
resolved theory in its usual form (though, orbital resolved quantities can be obtained by projection)
and based on total energy functionals that do not have a diagrammatic representation, so one cannot
identify and subtract terms that correspond solely to a local Coulomb interaction. On the other hand,
DMFT is a diagrammatic theory based on Green’s functions with a clear separation between the
non-interacting and interacting case.

Multiple approximative expressions for ΣDC have been derived and used in practice. Many
of them were originally derived for use in the LDA+U framework, like the “around mean-field”
(AMF) [63] approximation, which is based on the conjecture that the local density approximation
corresponds to an approximative mean-field solution of the interacting many-body problem. In this
case the modified LDA+U potential that includes the subtraction of the contribution from the average
mean-field occupations can be written as a fluctuation around these values

EAMF
LDA+U =

1

2

∑
mm′σ

Umm′(nmσ − n̄σ)(nmσ̄ − n̄σ̄)

+
∑

m>m′σ

(Umm′ − Jmm′)(nmσ − n̄σ)(nm′σ − n̄σ), (6.4.2)

where n̄σ = 1
2l+1

∑
m nmσ = 1

2l+1Nσ are the orbitally averaged occupations. If we compare this
effective form of the LDA+U with the explicit interaction term that was given as in Eq. (2.5.4)

EHub[nσmm′ ] =
1

2

∑
mm′σ

Umm′nmσnm′σ̄ +
∑

m>m′σ

(Umm′ − Jmm′)nmσnm′σ, (6.4.3)
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we can derive the double counting functional term as

EAMF
DC =

1

2

∑
mm′σ

Umm′(nmσn̄σ̄ + nmσ̄nmσ − n̄σn̄σ̄)

+
∑

m>m′σ

(Umm′ − Jmm′)(nmσn̄σ + nm′σn̄σ − n̄σn̄σ) (6.4.4)

= UavgN↑N↓ +
1

2

2l

2l + 1
(Uavg − Javg)

∑
σ

N2
σ , (6.4.5)

where we have used the summation rules for a spherically symmetric potential
∑
m′ Umm′ = Uavg

and
∑
m′(Umm′ − Jmm′) = 2l(Uavg − Javg) (see Chapter 6.6).

Another approach is the “fully-localized limit” (FLL) [118, 134], which starts from the atomic
limit of an ensemble of N =

∑
mσ nmσ electrons where the total Coulomb energy is given by

EFLL
DC =

1

2
UavgN(N − 1)− 1

2
Javg

∑
σ

Nσ(Nσ − 1). (6.4.6)

This form of the FLL functional has the property of the exact density functional which shows a
discontinuity at integer filling, which is not observed in LDA or GGA [82].

To derive the orbital potentials of the AMF and FLL double counting correction we evaluate the
derivative with respect to nmσ

ΣAMF
DC,σ = Uavg

(
N − Nσ

2l + 1

)
− Javg

(
Nσ −

Nσ
2l + 1

)
(6.4.7)

ΣFLL
DC,σ = Uavg

(
N − 1

2

)
− Javg

(
Nσ −

1

2

)
. (6.4.8)

We see that in general the FLL double counting will give a larger correction than the AMF double
counting. The resulting effects on the LDA+DMFT calculation will be discussed shortly.

Other methods have been proposed [135], like subtracting the average Hartree term from the
impurity Selfenergy so that

ΣDC = lim
ωn→∞

∑
mσ

Σmσ(iωn). (6.4.9)

By this construction, the orbital levels experience no static shift on average but still allow for orbital
differentiation and insulating solutions. This is motivated by the idea that the orbitals treated as
correlated are not shifted relative to the other orbitals on average.

Another similar approach is to constrain the total charge of the impurity Green’s function to be
equal to that of the non-interacting local Green’s function [126]. By this, no net charge is pushed
out of the correlated orbitals but only redistributed. This method can work well for metals but not
for materials that become insulators due to correlations since this double counting pushes the system
away from half-filling unless the non-interacting system is half filled.

Others have proposed small modifications to existing schemes [136], like the so-called nominal
double counting, which is based on the FLL variant of the double counting correction but replaces
the orbital fillings by the nominal valence [137,138]. This scheme usually yields a smaller correction
than the standard FLL method and an improved agreement with experiment.

Recently, another highly-sophisticated double counting was presented [139], which promoted
the DMFT functionals into a real-space continuum representation, in which the LDA is defined,
and calculating the overlap of the two methods by solving an effective LDA impurity model, i.e. a
uniform electron gas with a charge density being equal to the local impurity filling and a screened
Coulomb interaction. This method was shown to give encouraging results similar to the nominal
double counting [139]. Still, the contribution of other orbitals that hybridize with the impurity
orbitals, thus are included in the energy window but are not treated as correlated is not clear.
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All these different methods have in common that they use a real constant ΣDC for the double
counting correction which can be spin-resolved for magnetic systems but is orbitally and frequency
independent, since the Hartree and exchange terms included in DFT are static. All the methods only
differ by the value of this constant and the way how it is obtained. Therefore, it is very insightful
to investigate the qualitative effect of such correction independent of the method by which it is
obtained, and quantify the changes due to larger or smaller values of ΣDC in order to be able to
properly judge the effects of different double counting schemes.

In LDA+DMFT all orbitals and the corresponding bands that are not treated as correlated do
not experience any effects of the impurity Selfenergy and thus should also not be influenced by
the double counting. Therefore, it is customary to subtract the double counting directly from the
impurity Selfenergy

Σ(iωn) = Σimp(iωn)− ΣDC, (6.4.10)

which is then upfolded into the Bloch space to create the interacting lattice Green’s function (see
Chapter 6.2)[
G−1

]
νν′

(k, iωn) = (iωn + µ− εν)δνν′ −
∑
mm′

[P (k)]
†
νm (Σmm′(iωn)− ΣDCδmm′)P (k)m′ν′ .

(6.4.11)

For simplicity let us assume that the Hartree term Σm,∞ = limωn→∞ Σmm(iωn) will be approx-
imately equal for all correlated orbitals Σ∞ ≈ Σm,∞. Since Σ∞ − ΣDC will usually be different
from zero, unless we make the special choice Σ∞ = ΣDC, the Selfenergy will introduce a net shift
of all correlated orbitals that will result in a change of the total electron number, so we have to read-
just the chemical potential µ in order to keep the total charge of the system constant (see Chapter
6.8)

µ→ µ+ ∆µ. (6.4.12)

The diagonal components of the Green’s function are then given by[
G−1

]
νν

(k, iωn) = iωn + µ+ ∆µ− εν −
∑
mm′

[P (k)]
†
νm (Σmm′(iωn)− ΣDCδmm′)P (k)m′ν

(6.4.13)

= iωn + µ−
(
εν −∆µ+ (Σ∞ − ΣDC)

[
P †P

]
νν

)
− P †(k)Σ′(iωn)P (k),

(6.4.14)

where Σ′mm′(iωn) = Σmm′(iωn) − Σ∞. Under the assumption that the imaginary part of the
Selfenergy is small and that Σ′(iωn) is similar for all orbitals, we can identify the new energies of
the quasiparticle excitations in LDA+DMFT as

εQP
ν ≈ εν −∆µ+ (Σ∞ − ΣDC)

[
P †P

]
νν
. (6.4.15)

If the hybridization between the correlated orbitals and uncorrelated orbitals is small, we can obtain
a good representation of the bands that have correlated orbital character, i.e.

[
P †P

]
νν
≈ 1 for a

band ν with mostly correlated character and resp. 0 for mostly uncorrelated character. This leads to
the approximative total shift of the quasiparticle excitation energies given by

∆εν ≈
{
−∆µ ν uncorrelated
−∆µ+ Σ∞ − ΣDC ν correlated

. (6.4.16)

As a result the correlated and uncorrelated bands are separated by the energy Σ∞ − ΣDC, which
is just a linear function of ΣDC. This tells us that different values of the double counting basically
define the separation of the correlated and uncorrelated states. We can distinguish two cases:
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1. The subset of correlated bands is well separated from the uncorrelated bands, so that the energy
window used for the projection does not include the the uncorrelated states:

If this is the case,
[
P †P

]
νν
≈ 1 for all ν considered, so that all bands will shifted approxi-

mately by the same constant which can be absorbed in the chemical potential. Therefore, the
choice of the double counting can be arbitrary and will not change the results. Thus it can
be even neglected, which is done for example in calculations based on a tight-binding model
where the number of correlated orbitals equals the number of bands.

2. The subset of correlated bands overlaps with the uncorrelated bands which are then included
in the energy window:

In this case the correlated bands are pushed to higher energies compared to the uncorrelated
depending on the value of the double counting correction. This can change the hybridizations
between the two kinds of bands and thus the localization of the orbitals, which can lead to
a difference in correlation strength. In general, the filling of the correlated orbitals reduces
while for the uncorrelated orbitals it increases much more than if the two sets were separated.
This is because the first are pushed to higher energies while the latter are pushed to lower
energies. In case when they are separated, the double counting acts like an overall shift, which
is absorbed in the chemical potential by requiring overall charge conservation, so charge can
only be redistributed in the correlated orbitals.

In the most extreme case uncorrelated bands that are above the Fermi level in the energy range
of about ∆µ can be pushed below EF even though they do not experience any Selfenergy
effects. In these cases the it is not the DMFT approximation that is at fault in general but more
the restriction to only a single effective impurity. Since the correlated atom hybridizes strongly
with one of its neighbours these neighbouring atom should also pick up a finite Selfenergy
which would resolve the problem of the unphysical separation between them.

We now discuss the difference of the double counting schemes at the example of two realistic
systems. The iron-based superconductor FeSe falls in-between these two cases discussed above.
The states at the Fermi level are almost exclusively of Fe 3d nature in the energy window of about
[−2.5, 2] eV, so we will tread them as correlated in the impurity problem. They are separated by
a gap from the selenium states that are lower in energy. Though, there is a sizeable hybridization
between these low-energy selenium states and the Fe 3d orbitals which we would like to include in
the energy window in order for the total Fe 3d weight to be normalized to one as close as possible.
By doing so, we also include the selenium states but since they have significant weight only away
from the Fermi level, the separation of the correlated from the uncorrelated sector due to the double
counting will not be of significance around the Fermi level.

As a result, we observe only small quantitative changes in the spectral function obtained from
LDA+DMFT for the two FLL and AMF double counting methods shown in Fig. 6.3, even though
the two corrections are quite different ΣFLL

DC −ΣAMF
DC ≈ 1 eV. Naturally, one would expect the uncor-

related selenium states to differ in their energy about the same value between the two schemes, while
we only observe a difference of about 0.25 eV. This is a general trend we find when performing the
calculation fully charge self-consistent (see Chapter 6.7), where the self-consistent calculation also
of the DFT charge moderates the different double countings, which was also observed in Ref. [139].
Still, the smaller AMF double counting results in an increased average mass enhancement of about
2.6 compared to the FLL double counting of about 1.9 (for parameters U = 4 eV, JH = 0.8 eV,
β = 100 1/eV).

As a second example where the double counting becomes more important is the iron-pnictide
superconductor KFe2As2, shown in Fig. 6.4. In this system the Fe 3d hybridize to a notable degree
with the As 4p states also close to the Fermi level and there is no gap that separates the bands of
majority iron and majority arsenic weight like in FeSe. As a result the double counting will have a
significant impact on the relative fillings of the Fe and As orbitals since smaller values of the double
counting will lead to an increase in separation of the correlated and uncorrelated sector.

Though, the qualitative agreement between the FLL and AMF double counting is still
quite good but not on the same level as in FeSe, even though the difference is very similar
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Figure 6.3: The spectral function of FeSe within LDA+DMFT, comparing the two different double
counting schemes of the fully-localized limit (FLL) and around mean-field (AMF) approximations.
Left: The total spectral function and right: orbital resolved spectral functions of the iron 3d or-
bitals. The most prominent difference between the two double counting schemes is the shift of the
uncorrelated selenium states since the double counting defines the effective separation between the
correlated and the uncorrelated sector (see explanation in the text). The smaller AMF double count-
ing results in an increased average mass enhancement of about 2.6 compared to the FLL double
counting of about 1.9 (for parameters U = 4 eV, JH = 0.8 eV, β = 100 1/eV).

ΣFLL
DC − ΣAMF

DC ≈ 1.1 eV. Apart from the shift in energy of the uncorrelated states at lower energy,
we also observe a shoulder-like feature in the Fe 3dz2 , 3dxy and 3dxz/yz spectral function at neg-
ative energies which is absent for the FLL calculation. Since the smaller value of the AMF double
counting brings the system closer to half-filling, we interpret this feature as an effect of the increase
in correlation strength, which is discussed in Chapter 8, also indicated by the increase in the average
mass enhancement of up to 2.8 compared to the FLL double counting of about 2.3 (for parameters
U = 4 eV, JH = 0.8 eV, β = 80 1/eV).

Despite all the effort that has been devoted to solving the double counting problem, a satisfy-
ing solution is not in sight and probably will never be. Since the double counting problem arises
whenever states that are not included in the DMFT model hybridize with the correlated states, the
straightforward solution would be to treat all states inside the energy window used for projection
on the same footing, with no separation into correlated and uncorrelated subsets. While this is in
principle possible for atomic orbitals on one atomic site, it immediately moves out of the scope of
DMFT as soon as more than one atomic site becomes relevant.

While fully charge self-consistent calculations (see Chapter 6.7) by our experience are found to
relieve the difference between the double counting procedures by updating the projectors and thus
the DFT potential in the presence of the modified DMFT charge density self-consistently, qualitative
differences can still remain (see for example our results on KFe2As2 in Chapter 7).

This makes modified approaches of LDA+DMFT method that aim to avoid the double counting
problem from the start highly attractive. While retaining the DMFT approach for its accuracy of
solving the interacting local problem also for strong interactions, it was suggested to replace the
DFT part in LDA+DMFT by a Green’s function based method like GW, called GW+DMFT (see
Outlook in Chapter 10), which allows for a unique identification of the correlations accounted for in
both methods.
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Figure 6.4: The spectral function of KFe2As2 within LDA+DMFT, comparing the two different
double counting schemes of the fully-localized limit (FLL) and around mean-field (AMF) approxi-
mations.
Left: The total spectral function and right: orbital resolved spectral functions of the iron 3d orbitals.
Similar to FeSe in Fig. 6.3 the shift of the uncorrelated states differs between the two methods but
one also observes a slightly different form of the Fe 3d spectral functions close to the Fermi level,
where in the AMF scheme a shoulder-like feature emerges at negative energies for most orbitals.
This feature will be discussed in more detail in Chapter 8. The smaller AMF double counting results
in an increased average mass enhancement of about 2.8 compared to the FLL double counting of
about 2.3 (for parameters U = 4 eV, JH = 0.8 eV, β = 80 1/eV).

6.5 Multiple correlated atoms
Often we are faced with a system that contains more than one correlated atom in the unit cell. This
raises the question of how we can actually tread multiple atoms within LDA+DMFT, since DMFT is
an effective single impurity method. In the derivation of the DMFT method in Chapter 5.2 we saw
that the Selfenergy Σij became site-diagonal in the limit of infinite dimensions

lim
d→∞

Σij = δijΣii, (6.5.1)

where i, j label the lattice sites. There are no off-diagonal terms in the Selfenergy since the hy-
bridization of an atom with only one specific neighbour becomes negligible for an infinite number
of neighbours and can be described instead by an effective bath G . In the original derivation we
considered the periodic Hubbard model where all sites are equivalent, which allowed us to choose a
unit cell that contained only a single atom and solve the impurity model only for this site. Focussing
on another atom does not change this result and by symmetry we know that each site i will pick up
the same Selfenergy site-diagonal Σii = Σ in the DMFT limit.

In the same way we can apply the DMFT approximations to two different sites i and j, that will
have no off-site Selfenergy Σij = 0 for i 6= j for d → ∞. They only interact via a global bath
G in which the two atoms are embedded that has to be determined self-consistently, as illustrated
in Fig. 6.5. In a realistic system with a finite coordination number Z this approximation will be
appropriate if the surrounding of the multiple impurity atoms is approximately homogeneous, i.e.
the impurity atoms do not hybridize directly with each other so there is no dimerization or clustering
of correlated atoms.

In the simplest case all correlated atoms are equivalent and related by symmetry, for example
most iron-based superconductors contain two or more Fe atoms in their unit cell which are related
by glide-mirror symmetry. This allows us to solve the resulting impurity model only once, and obtain
the Selfenergy for the other equivalent atoms by the corresponding symmetry operation Oα, where
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Figure 6.5: Illustration of two impurity atoms in the DMFT limit. For large coordination number Z
(or dimension d) the two impurities do not interact directly with each other but only via an effective
bath G that has to be found self-consistently. For equivalent atoms in the unit cell the effective local
environment for each atom is identical so only one impurity problem has to be solved. In general the
local bath is different for each atom.

α labels the equivalent atoms

Σα = Oα,†ΣOα. (6.5.2)

For an example let us consider two correlated atoms in the unit cell with two orbitals a, b taken as
the local basis. The two sites are related by the symmetry transformation x, y, z → y, x,−z, so the
full local Selfenergy is then of the form

Σ =

|a〉1 |b〉1 |a〉2 |b〉2
|a〉1
|b〉1
|a〉2
|b〉2


Σ1
aa Σ1

ab 0 0
Σ1
ba Σ1

bb 0 0
0 0 Σ1

aa −Σ1
ab

0 0 −Σ1
ba Σ1

bb

. (6.5.3)

The projection operators Pα from the Bloch basis to the local orbital basis (see Chapter 6.2) now
also depend on the atomic site since the local orbitals |χα,m〉 are different on each site (but related
by symmetry). The local Green’s function for the equivalent atoms α is then given by

Gαmm′(iωn) =
∑
k

[
Pα(k)G(k, iωn)Pα,†(k)

]
mm′

. (6.5.4)

The impurity problem is then solved for only one of the equivalent atoms, e.g. α = 1, since the
resulting Selfenergy Σ1(iωn) can be used to construct the Selfenergy for all other atoms by using
Eq. (6.5.2). The full lattice Selfenergy is then given by

Σνν′(iωn) =
∑
α

[
Pα,†(k)Oα,†

(
Σ1(iωn)− Σ1

DC

)
OαPα(k)

]
νν′

, (6.5.5)

which is then used to construct the lattice Green’s function via Eq. (6.2.5). Here we have set
Oα=1 = 1.

For two atoms or more in the unit cell that are not equivalent we cannot resort to symmetry
operations to obtain the Selfenergy from only one of them. In this case we have to solve each
impurity problem separately and obtain different Selfenergies Σα(iωn) for each site α. The final
lattice Selfenergy is then of the same form as Eq. (6.5.5) just without the symmetry operations

Σνν′(iωn) =
∑
α

[
Pα,†(k) (Σα(iωn)− ΣαDC)Pα(k)

]
νν′

. (6.5.6)
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6.6 Coulomb matrix
After the projection onto the local orbitals and application of the DMFT approximation the Hamil-
tonian in this local subspace is given by an effective Anderson impurity model (AIM), as discussed
in Chapter 5.2. The resulting AIM Hamiltonian we have to solve is of the form

HAIM = Hbath +Hhyb +Hint, (6.6.1)

whereHbath contains the kinetic contribution of the effective bath andHhyb the hybridization of the
bath with the impurity site, which both correspond to the non-interacting part of the Hamiltonian.
The difficult problem is contained in the interacting part Hint, describing the Coulomb interaction
of electrons on the impurity site.

Since the Coulomb interaction is spin-independent and thus preserves the spin of the interacting
electrons, the general form of Hint can be written as

Hint =
1

2

∑
mm′

m′′m′′′

∑
σσ′

〈mm′|VCoulomb|m′′m′′′〉 c†mσc†m′σ′cm′′′σ′cm′′σ, (6.6.2)

where the matrix elements are given by

〈mm′|VCoulomb|m′′m′′′〉 =

∫
dr

∫
dr′ ψ∗mσ(r)ψ∗m′σ′(r

′)
1

|r− r′|ψm′′′σ′(r
′)ψm′′σ(r). (6.6.3)

For the case of a one-orbital model the Coulomb interaction takes the simple form

H1
int =

1

2

∑
σσ′

V c†σc
†
σ′cσ′cσ (6.6.4)

= V n↑n↓. (6.6.5)

For a multi-orbital system the interaction terms become much more complicated. Often one
neglects terms with matrix elements that connect more than two different orbitals because they are
assumed to be small or spin-flip and pair-hopping terms due to numerical efficiency. For the con-
struction of the proper interaction matrix we follow the outline given in Ref. [140].

The case of a three-orbital system is still rather simple, but quite relevant in the context of transi-
tion metals in an octahedral environment, where three t2g orbitals form the states close to the Fermi
level. This leads to the so-called Kanamori form [4, 38] of the Coulomb interaction, which can be
shown to be fully parametrized by the three matrix elements

U = 〈mm|VCoulomb|mm〉 =

∫
dr

∫
dr′ |ψmσ(r)|2 1

|r− r′| |ψmσ̄(r′)|2, (6.6.6)

U ′ = 〈mm′|VCoulomb|mm′〉 =

∫
dr

∫
dr′ |ψmσ(r)|2 1

|r− r′| |ψm′σ̄(r′)|2, (6.6.7)

J = 〈mm′|VCoulomb|m′m〉 =

∫
dr

∫
dr′ ψ∗mσ(r)ψ∗m′σ(r′)

1

|r− r′|ψmσ(r′)ψm′σ(r). (6.6.8)

This leads to the Kanamori Hamiltonian

H3
int = U

∑
m

nm↑nm↓ + U ′
∑
m 6=m′

nm↑nm′↓ + (U ′ − J)
∑

m<m′,σ

nmσnm′σ

− J
∑
m 6=m′

c†m↑cm↓c
†
m′↓cm′↑ + J

∑
m6=m′

c†m↑c
†
m↓cm′↓cm′↑. (6.6.9)

The first term corresponds to the interaction of two electrons in the same orbital with opposite spin,
the second term to the same case in different orbitals, and the third term to different orbitals but with
the same spin. The energy for this state (U ′ − J) is reduced by J , reflecting the Hund’s rules of
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maximizing the total spin. The second last term is called the spin-flip term, since its form looks like it
flips the spin of each electron in the different orbitals m and m′. This is just an effective description
of the process of exchanging the orbitals of the two electrons, since the Coulomb interaction is spin-
independent. The last term is known as the pair-hopping term, since it effectively transfers a pair of
electrons in the same orbital to another different orbital.

The U ′ parameter can be determined by requesting H3
int to be rotationally invariant. By calcu-

lating the action of H3
int on a state which is not an Sz Eigenstate one obtains the requirement

U ′ = U − 2J. (6.6.10)

Therefore, the full Kanamori Hamiltonian can be parametrized by only the on-site Coulomb term U
and Hund’s coupling J as

H3
int = U

∑
m

nm↑nm↓ + (U − 2J)
∑
m6=m′

nm↑nm′↓ + (U − 3J)
∑

m<m′,σ

nmσnm′σ

− J
∑
m 6=m′

c†m↑cm↓c
†
m′↓cm′↑ + J

∑
m6=m′

c†m↑c
†
m↓cm′↓cm′↑. (6.6.11)

The next relevant case is that of a full d-shell with five orbitals, encountered in most iron-pnictide
superconductors (see our results in Chapter 7,8 and 9). A compact notation of the Coulomb matrix
for five orbitals is given by the use of Slater integrals [84, 141], which also allow a full parametriza-
tion in terms of an on-site Coulomb term and Hund’s coupling.

For this, we rewrite the Coulomb interaction in spherical coordinates, where the transformation
is given by r = r(cosφ sin θ, sinφ sin θ, cos θ), leading to the form

1

|r− r′| =

∞∑
l=0

rl<
rl+1
>

4π

2l + 1

l∑
m=−l

Yl,m(θ′, φ′)Y ∗l,m(θ, φ), (6.6.12)

where r< is the smaller of r, r′ and r> the larger, respectively. We assume that the local orbitals we
use for the basis of the impurity model are close to the atomic orbitals and thus evaluate the Coulomb
matrix elements in the basis of the states |n, l,m〉, where n is the principal, l the orbital and m the
magnetic quantum number. With this the matrix elements can be written as

〈mm′|VCoulomb|m′′m′′′〉 =

2l∑
k=0

ak(mm′′,m′m′′′)Fk, (6.6.13)

where ak contain the integrals over the angular part

ak(mm′′,m′m′′′) =
4π

2k + 1

k∑
q=−k

〈nlm|Yk,q|nlm′′〉 〈nlm′|Y ∗k,q|nlm′′′〉 , (6.6.14)

and Fk the Slater integrals given by

Fk =

∫
dr

∫
dr′ r′2R2

nl(r)
rk<
rk+1
>

R2
nl(r

′). (6.6.15)

The radial functions Rnl(r) are given by the usual form

Rnl(r) =

√(
2

na0

)3
(n− l − 1)!

2n[(n+ l)!]3
e−ρ/2ρlL2l+1

n−l−1(ρ), (6.6.16)

where a0 is the Bohr radius, ρ = 2r
na0

and L2l+1
n−l−1 are the generalized Laguerre polynomials.

In applications for electronic structure calculations the real form Y real
lm of the spherical harmonics

are usually used. Therefore, we will now formulate the Coulomb matrix elements for the d shell in
the real harmonics basis.
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Similar to the three-orbital case we define the direct Umm′ and exchange Jmm′ integrals as

〈mm′|VCoulomb|mm′〉 = Umm′ =

2l∑
k=0

ak(mm,m′m′)Fk (6.6.17)

〈mm′|VCoulomb|m′m〉 = Jmm′ =

2l∑
k=0

ak(mm′,m′m)Fk. (6.6.18)

With the aim of introducing a simple parametrization we define the average Coulomb parameters as

Uavg =
1

(2l + 1)2

∑
mm′

Umm′ = F0 (6.6.19)

Javg = Uavg −
1

2l(2l + 1)

∑
mm′

(Umm′ − Jmm′) =
F2 + F4

14
. (6.6.20)

It can be shown that for d-electrons only the F0, F2 and F4 Slater integrals contribute and that
F4/F2 ≈ 5/8 for realistic 3d orbitals. With this, we can parametrize the direct Umm′ and exchange
Jmm′ Coulomb matrices as

Umm′ |z2〉 |x2 − y2〉 |xy〉 |xz〉 |yz〉
|z2〉

|x2 − y2〉
|xy〉
|xz〉
|yz〉


U0 U0 − 2J2 U0 − 2J2 U0 − 2J4 U0 − 2J4

U0 − 2J2 U0 U0 − 2J3 U0 − 2J1 U0 − 2J1

U0 − 2J2 U0 − 2J3 U0 U0 − 2J1 U0 − 2J1

U0 − 2J4 U0 − 2J1 U0 − 2J1 U0 U0 − 2J1

U0 − 2J4 U0 − 2J1 U0 − 2J1 U0 − 2J1 U0

 (6.6.21)

Jmm′ |z2〉 |x2 − y2〉 |xy〉 |xz〉 |yz〉
|z2〉

|x2 − y2〉
|xy〉
|xz〉
|yz〉


0 J2 J2 J4 J4

J2 0 J3 J1 J1

J2 J3 0 J1 J1

J4 J1 J1 0 J1

J4 J1 J1 J1 0

, (6.6.22)

where

U0 = Uavg +
8

7
Javg (6.6.23)

J1 =
3

49
F2 +

20

9

1

49
F4 (6.6.24)

J2 = −10

7
Javg + 3J1 (6.6.25)

J3 =
30

7
Javg − 5J1 (6.6.26)

J4 =
20

7
Javg − 3J1. (6.6.27)

Within this parametrization, the Hamiltonian for the Coulomb interaction is given by

H5
int =

∑
mm′

Umm′nm↑nm′↓ +
∑

m<m′,σ

(Umm′ − Jmm′)nmσnm′σ

−
∑
m 6=m′

Jmm′c
†
m↑cm↓c

†
m′↓cm′↑ +

∑
m 6=m′

Jmm′c
†
m↑c

†
m↓cm′↓cm′↑. (6.6.28)

Again the Coulomb interaction can be parametrized by only the two parameters Uavg and Javg.
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Please note that in this definition Uavg is very different from U0, which corresponds to the inter-
action of two electrons with opposite spin in the same orbital, when Javg > 0. Therefore, care must
be taken when comparing calculations with different notations, since U0 is usually much larger than
Uavg.

As discussed in Chapter 6.3, the matrix elements of the Coulomb interaction 〈mm′|VCoulomb|mm′〉
cannot be used directly in the Hamiltonian of the Anderson impurity model since they are screened
to lower values by the remaining uncorrelated states. For example, the monopole Slater Integral
F0 = Uavg is usually of the order of 15− 20 eV for 3d orbitals, but is screened down to a few eV’s
at low energies, while the Hund’s rule coupling corresponding to Javg is approximately reduced by
20− 30 % [142].

The effective screened interaction parameters depend on the energy window, since the more num-
ber of bands are outside of the window the more efficient is the screening. From methods like con-
strained random-phase approximation (cRPA) [127, 130, 131], which calculate the non-interacting
polarization arising only from the excluded states that screens the bare Coulomb interaction, one
even obtains a frequency dependent interaction U(ω), since the screening is less efficient and re-
covers the bare value at high frequencies [127, 128, 130]. Taking these effects into account can
lead to plasmon satellites and transfer of spectral weight away from the Fermi level to high ener-
gies [56, 127, 128]. Since the numerical effort becomes quite involved in this case, we will not con-
sider the explicit treatment of the frequency dependence of the interactions in this work. A simple
approximation to capture the most important effects of the frequency dependence in transition-metal
oxides will be discussed in Chapter 9.

6.7 Full charge self-consistency
The original LDA+DMFT approach was based on a fixed set of non-interacting εk that were ob-
tained from a converged DFT calculation. This scheme is usually called “one-shot” LDA+DMFT. In
principle this approach is correct since the starting point for DMFT is the non-interacting dispersion.
On the other hand, due to the self-consistent determination of the charge density in combination
with the approximations applied to the exchange-correlation potential in DFT, the mapping to the
non-interacting electron system and the resulting effective one-particle potentials will also be only
approximative. It is quite natural for electronic correlations introduced by DMFT to induce a redis-
tribution of electronic charge density and thus the one-electron potentials.

This becomes especially important for total energy calculations within LDA+DMFT. The mod-
ified charge and one-electron potentials due to correlations will also effect the electron-nuclei and
exchange-correlation energy, that also contribute to the total LDA+DMFT energy. Therefore, a full
charge self-consistent scheme is necessary, where the charge density in DFT is self-consistently
updated and the one-electron potentials are recalculated within the LDA+DMFT cycle. In the de-
scription of this scheme we will follow the outline of [31].

After the convergence of the DMFT cycle for a given set of non-interacting ε(k) we can obtain
the LDA+DMFT density matrix for all bands ν, ν′ that were considered in the energy window W
for projection on the local orbitals as

ρνν′(k) = lim
τ→0−

1

β

∑
iωn

Gνν′(k, iωn)e−iωnτ . (6.7.1)

In real space the full charge density matrix including also the bands outside the windowW is then
given by

ρLDA+DMFT(r) = ρOW(r) +
∑
k,νν′

〈r|Ψν(k)〉 ρνν′(k) 〈Ψν′(k)|r〉 , (6.7.2)

where ρOW(r) (OW=outside window) is the density matrix for the contribution of the states outside
the windowW , which is identical to the DFT result. Depending on the basis of the DFT code, one
inserts the expansion of the Bloch wave function 〈r|Ψν(k)〉 into Eq. (6.7.2) to obtain an expression
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for the density matrix in the corresponding basis. For further details of the implementation in specific
basis sets we refer to Refs. [31, 137, 143, 144].

The total energy has the same form as the DFT total energy with the DFT density replaced by
the one obtained from LDA+DMFT plus the additional correlation energy corrected by a double
counting term [145] (see Chapter 6.4)

Etot =Ekin + Ec[ρLDA+DMFT] + EH[ρLDA+DMFT] + EXC[ρLDA+DMFT] (6.7.3)
+ 〈HU 〉 − EDC. (6.7.4)

The different contributions to the total energy are the kinetic term Ekin, the electron-nuclei and
nuclei-nuclei term EH[ρLDA+DMFT], the Hartree contribution EH[ρLDA+DMFT], the exchange-
correlation contribution EXC[ρLDA+DMFT] and the Hubbard term 〈HU 〉 with the double counting
correction EDC. The kinetic term is modified as

Ekin = Eband −
∫
vKS(r)ρLDA+DMFT(r) dr (6.7.5)

= EOW
band +

∑
k,ν

εν(k)ρνν(k)−
∫
vKS(r)ρLDA+DMFT(r) dr, (6.7.6)

with the Kohn-Sham potential vKS(r). The first term on the right is the sum over the energy of the
occupied Kohn-Sham states outside the window and the second term is the sum over the states inside
the windowW with the LDA+DMFT occupations.

The Hubbard term 〈HU 〉 can be obtained by either sampling the corresponding quantity directly
in the impurity solver, e.g. for density-density interactions the 〈nmnm′〉 correlation function

〈HU 〉 =
∑
mm′

Umm′〈nmnm′〉, (6.7.7)

where Umm′ are the Coulomb matrix elements with m,m′ including both orbital and spin indices.
Otherwise the Migdal formula can be used

〈HU 〉 =
1

2β
lim
τ→0+

∑
iωn,m

[Σ(iωn)G(iωn)]mm e−iωnτ , (6.7.8)

where Σ(iωn), G(iωn) are the impurity Selfenergy and Green’s function.
For the double counting correction EDC the same approaches as described in Chapter 6.4 are

used, and the corresponding double counting energies are obtained by a formal integration over
the impurity charge. For example, the FLL and AMF corrections are given by the corresponding
energies in Chapter 6.4 (see Eqs. (6.4.5) and (6.4.6))

EAMF
DC = UavgN↑N↓ +

1

2

2l

2l + 1
(Uavg − Javg)

∑
σ

N2
σ (6.7.9)

EFLL
DC =

1

2
UavgN(N − 1)− 1

2
Javg

∑
σ

Nσ(Nσ − 1), (6.7.10)

where N is the total impurity charge and Nσ is the total impurity charge for given spin σ. l is the
orbital quantum number and Uavg, Javg defined in terms of Slater integrals (see Chapter 6.6).

6.8 The complete LDA+DMFT cycle
After having established all the necessary tools for LDA+DMFT, we now give an example of the
complete self-consistency cycle that can be used for numerical implementations of the method. Dur-
ing this cycle the important quantities are the impurity Selfenergy Σ(iωn) and the local and impurity
Green’s functions Gloc(iωn), Gimp(iωn). Convergence will be reached when the difference in the
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Selfenergy from one iteration to the next is smaller than a given threshold or, equivalently, when
the difference between the local and impurity Green’s function is smaller than a desired accuracy.
Details can vary depending on the system and numerical complexity. For example, most of the time
we perform three self-consistent DMFT iterations before feeding back the charge into DFT for the
full charge self-consistency step. This ratio can be adjusted if the DFT or DMFT takes much longer
than the other, or converges at a different speed.

1. Set up the DFT calculation and perform a couple of self-consistent pure DFT iterations to
obtain a reasonable charge density.

2. Obtain the Eigenenergies ε(k), the chemical potential µ and the projectors P (k) (see Chap-
ter 6.2) from DFT, set up the initial non-interacting lattice Green’s function[

G−1
]
νν′

(k, iωn) = (iωn + µ− ε(k))δνν′ , (6.8.1)

and calculate the total number of electrons by (see Chapter 3.8)

Ne = lim
τ→0−

1

βNk

∑
iωn

∑
ν,k

Gνν(k, iωn)e−iωnτ . (6.8.2)

Perform the downfolding of the lattice Green’s function on the local orbitals

Gmm′(k, iωn) =
[
P (k)G(k, iωn)P †(k)

]
mm′

, (6.8.3)

and obtain the local charge

Ne,loc = lim
τ→0−

1

βNk

∑
iωn

∑
m,k

Gmm(k, iωn)e−iωnτ , (6.8.4)

to get the initial value for the double counting correction ΣDC[Ne,loc] (see Chapter 6.4). If
the double counting is already given from a previous iteration or does not depend on the local
charge, this step can be omitted.

3. Set up the initial interacting lattice Green’s function[
G−1

]
νν′

(k, iωn) = (iωn + µ− ε(k))δνν′ −
[
P †(Σ(iωn)− ΣDC)P

]
νν′

(6.8.5)

with the Selfenergy Σ(iωn) given from a previous iteration or a first guess. For example, it
can be set equal to the Hartree term or Σ(iωn) = ΣDC. In the latter case, the local Green’s
functions from the previous step can be used.

4. Obtain the local Green’s function by

Gloc
mm′(iωn) =

1

Nk

∑
k

[
P (k)G(k, iωn)P †(k)

]
mm′

. (6.8.6)

5. Obtain the effective Weiss field via the Dyson equation

G−1(iωn) =
[
Gloc

]−1
(iωn) + Σ(iωn), (6.8.7)

and calculate the hybridization function (see Chapter 5.2)

∆(iωn) = (iωn + µ̃)1− G−1(iωn). (6.8.8)

The value of the effective local orbital levels µ̃, which is in general different from the chemical
potential µ, is determined by the special form of the hybridization function for the Anderson
impurity model, which real part vanishes for ωn → ∞ (see Eq. 5.2.56). This requirement
fixes µ̃ as

µ̃ = lim
ωn→∞

Re
[
G−1(iωn)

]
. (6.8.9)

Note that per construction µ̃ depends on the orbital and spin.
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6. Calculate the hybridization function ∆(τ)

∆(τ) =
1

β

∑
iωn

∆(iωn)e−iωnτ , (6.8.10)

and solve the effective impurity model with ∆(τ), µ̃ and the Coulomb matrix (see Chapter 6.6
as the input.

7. From the impurity model obtain Gimp(iωn) and Σ(iωn). If the Selfenergy is not calculated in
the impurity solver, use the Dyson equation to get Σ(iωn). Update the double counting ΣDC

by calculating the impurity charge from Gimp(iωn). Project the Selfenergy back into Bloch
space by

Σνν′(k, iωn) =
[
P (k)† (Σ(iωn)− ΣDC)P (k)

]
νν′

. (6.8.11)

8. Calculate the new lattice Green’s function[
G−1

]
νν′

(k, iωn) = (iωn + µ− ε(k))δνν′ − Σνν′(k, iωn), (6.8.12)

which will now have a total charge different from Ne due to the Selfenergy effects. Use a
root-finding algorithm to adjust the chemical potential µ like regula-falsi or bisection search
so that the total electron number Ne is preserved.

9. Check for convergence of the DMFT cycle, i.e. whether Gimp = Gloc and the Selfenergy did
not change compared to the previous iteration within a desired accuracy. If convergence has
not been reached, go back to step 4. Otherwise, continue with step 10.

10. Calculate the density matrix

ρνν′(k) = lim
τ→0−

1

β

∑
iωn

Gνν′(k, iωn)e−iωnτ , (6.8.13)

and feed the result back into the DFT code. Perform another DFT iteration and go back to step
2.

The whole cycle is then iterated until the local and impurity Green’s function have become equal, the
Selfenergy is converged and also the DFT cycle (charge, energy, chemical potential) is converged.
The full cycle is illustrated in Fig. 6.6. After convergence is reached, observables of interest can be
calculated from the interacting Green’s function or Selfenergy (see Chapter 6.9).

6.9 Observables
After the convergence of the LDA+DMFT calculation we can start investigating the effect of elec-
tronic correlations on the properties of the system. Possible observables are for example the density
of states, the band structure, Fermi surface, effective mass of the quasiparticles, their lifetime, etc.
Many of them require an analytic continuation of either the Green’s function or Selfenergy, others
can be directly derived from the data on the imaginary frequency or time axis.

In this section we want to give an overview over the most important observables and how one
can obtain them from the LDA+DMFT calculation. This list does not claim to be exhaustive but
will include the most essential ones that we use to analyze our results for correlated systems like
iron-pnictide superconductors.
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Figure 6.6: Illustration of the LDA+DMFT full charge self-consistency cycle. The full lattice
Green’s function in Bloch space Gνν′(k, iωn) is projected onto local orbitals to obtain the Weiss
field G (iωn), defining the effective Anderson impurity model (AIM). From the solution of the AIM,
the Selfenergy Σ(iωn) is projected back into the Bloch space to update the lattice Green’s function.
Iteration of this cycle is called “one-shot” LDA+DMFT, while the additional step of recalculat-
ing the DFT potentials self-consistently by feeding back the density matrix into DFT is called “full
charge self-consistency”.

6.9.1 Quasiparticle weight, lifetime and mass enhancement
A very important aspect of an interacting electronic system is the concept of quasiparticles. In
the presence of interactions, the electrons can no longer follow their non-interacting dispersion but
become dressed by the Selfenergy and pick up a larger effective mass which tends to make them
“heavier”, i.e. more localized. The new possible excitations of the system are called quasiparticles,
which energies will thus be different from the non-interacting system. In general they will also have
a finite lifetime, since an excitation of the system, i.e. the creation of a quasiparticle, will decay over
time due to scattering effects. These properties, amplitude and lifetime, of the excitations are exactly
the properties that are “measured” by the interacting Green’s function (see Chapter 3).

We will now shortly review the concept of quasiparticles in Fermi liquid theory in order to derive
the equations for their effective mass and lifetime. The interacting Green’s function on the real axis
that encodes the possible excitations of the system is given by

GR(k, ω) =
1

ω + iη + µ− ε(k)− ΣR(k, ω)
, (6.9.1)

with the corresponding spectral function (neglecting iη, since Im ΣR(k, ω) will usually be small but
finite at any frequency)

A(k, ω) = − 1

π
Im
[
GR(k, ω)

]
(6.9.2)

=
1

π

− Im ΣR(k, ω)(
ω + µ− ε(k)− Re ΣR(k, ω)

)2

+
(

Im ΣR(k, ω)
)2 . (6.9.3)

As we already know from Chapter 3, the imaginary part of the Selfenergy introduces a broadening
of the original Delta function-like excitation poles, while the real part is responsible for a shift of
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the excitation energies. If the imaginary part is small and varies smoothly with frequency, the new
excitation energies or, correspondingly, maxima in the spectral function are defined by

ω + µ− ε(k)− Re ΣR(k, ω) = 0. (6.9.4)

We define the quasiparticle energy Ek − µ as the energy which fulfils this relation so that

Ek − µ = ε(k)− µ+ Re ΣR(k, Ek − µ). (6.9.5)

Expanding ω+µ−ε(k)−Re ΣR(k, ω) as a function of ω around the maximum atEk−µ we obtain

ω + µ− ε(k)− Re ΣR(k, ω) ≈
(

1− ∂ Re ΣR(k, ω)

∂ω

∣∣∣∣
ω=Ek−µ

)
(ω − Ek + µ) + . . . (6.9.6)

= Z−1
k (ω − Ek + µ) + . . . (6.9.7)

where we have introduced the renormalization factor or also called quasiparticle weight as

Zk =

[
1− ∂ Re ΣR(k, ω)

∂ω

∣∣∣∣
ω=Ek−µ

]−1

. (6.9.8)

Using the definition of Zk we can now rewrite the spectral function close to the maximum Ek − µ
as

A(k, ω) ≈ 1

π

− Im ΣR(k, ω)

Z−2
k

(
ω − Ek + µ

)2

+
(

Im ΣR(k, ω)
)2 + inc. (6.9.9)

= Zk
1

π

Γk(ω)(
ω − Ek + µ

)2

+
(

Γk(ω)
)2 + inc., (6.9.10)

with the quasiparticle scattering rate, or inverse quasiparticle lifetime

Γk(ω) = −Zk Im ΣR(k, ω). (6.9.11)

The first term in Eq. (6.9.10) has a functional form which is identical to a Lorentzian centered at
Ek−µ and a width of Γk(ω), multiplied by the quasiparticle weight Zk. It is called the quasiparticle
peak, since it corresponds to the peak in the excitation spectrum of the new quasiparticles with energy
Ek − µ and lifetime Γ−1

k (ω). Because the Lorentzian is normalized to one, the total weight of the
peak is indeed equal to the quasiparticle weight Zk, which is, therefore, necessarily bound to be
positive and ≤ 1.

This Lorentzian shape of the quasiparticle peak is only valid close the excitation energy. All
other weight which is not contained in the peak is called incoherent spectral weight because it does
not belong to the coherent excitation of a quasiparticle with energy Ek − µ. For weak correlations,
the Selfenergy will be small and renormalize the spectrum only by a small value, thus Zk ≈ 1 and all
spectral weight is contained in the quasiparticle peak, which will be very similar to the Delta peak-
like spectrum in the non-interacting system. For strong correlations, Zk . 1 and spectral weight
is transferred into the incoherent part away from the quasiparticle peak. If Zk becomes zero, the
quasiparticle peak vanishes and all weight is contained in the incoherent part away from the original
quasiparticle energy Ek − µ. This corresponds to the metal-insulator transition in the Hubbard
model.

Since we are often interested in orbitally resolved features at the Fermi level at ω = 0, we can
obtain the quasiparticle weight and scattering rate directly from the impurity Selfenergy on the real
axis

Zm =

[
1− ∂ Re ΣRm(ω)

∂ω

∣∣∣∣
ω=0

]−1

(6.9.12)

Γm = −Zm Im ΣRm(ω = 0). (6.9.13)
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The inverse of the scattering is called the quasiparticle mass enhancement m∗

mnonint
and diverges if

the electrons in the corresponding orbital localize

m∗m
mnonint,m

= 1− ∂ Re ΣRm(ω)

∂ω

∣∣∣∣
ω=0

. (6.9.14)

We can now make use of the fact that at ω = 0, the retarded Green’s function and Selfenergy agree
with the corresponding functions on the Matsubara axis for ωn → 0+. This allows us to directly
calculate the quasiparticle scattering rate from the Selfenergy on the imaginary axis without analytic
continuation. For the quasiparticle weight and mass enhancement we make use of the Cauchy-
Riemann differential equations, which provide a relationship between the differentials along the real
and imaginary axis. For a holomorphic function of the form f(z) = u(z) + iv(z), where u, v are
real-valued functions, and z = x+ iy, the Cauchy-Riemann differential equations state that

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
, (6.9.15)

which directly leads to the following results

Zm =

[
1− ∂ Im Σm(iωn)

∂iωn

∣∣∣∣
ωn→0+

]−1

(6.9.16)

Γm = − lim
ωn→0+

Zm Im Σm(iωn) (6.9.17)

m∗m
mnonint,m

= Z−1
m . (6.9.18)

This has the important advantage that no analytic continuation to the real axis is necessary, avoiding
possible errors introduced by the continuation procedure. Since we only know the Selfenergy on
the discrete Matsubara points iωn, an extrapolation to ωn → 0+ has to be performed, for example
by fitting a polynomial to the first few Matsubara frequencies. This procedure will only be accurate
at small temperatures because the Matsubara grid will move further away from the origin due to
iωn(T ) being a linear function of the temperature T , making the extrapolation prone to errors.

6.9.2 Band structure and Fermi surface
Upon the inclusion of correlation the finite imaginary part of the Selfenergy replaces the Delta peak-
like excitation spectrum of the non-interacting system with the smooth spectral function A(k, ω),
which in general does not allow for an identification of a single excitation energy. Only a quasipar-
ticle energy in the sense of the energy where the spectral function approaches a maximum can be
defined for the case where the imaginary part of the Selfenergy is small.

Therefore, the usual “spaghetti plot” of the band structure is replaced by a plot of the spectral
function

A(k, ω) = − 1

π
Im
[
GR(k, ω)

]
, (6.9.19)

which can be directly compared to experiments like angular-resolved photoemission spectroscopy
(ARPES). This makes an analytic continuation of the Selfenergy or Green’s function from the Mat-
subara to the real axis necessary.

For the Fermi surface, which is given by A(k, ω = 0), we can avoid an explicit analytic con-
tinuation by obtaining the value of A(k, ω = 0) by extrapolation of the Green’s function on the
Matsubara axis, similar to the procedure for the quasiparticle weight described in Chapter 6.9.1. For
simplicity, the extrapolation can be applied to the Selfenergy, which only needs to be performed for
all orbitals instead of all bands and k-points, and then constructing the lattice Green’s function and
spectral function.
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6.9.3 Local spectral function A(ω)

The local spectral function A(ω) is usually the most difficult observable to construct, since it in-
volves an accurate analytic continuation of either the Selfenergy or Green’s function onto a large
frequency interval of several electron volts on the real axis. In our experience performing the ana-
lytic continuation on the Selfenergy instead of the local Green’s function gives more accurate results,
since possible errors introduced by the continuation are only contained in the correlated part of the
spectrum while the uncorrelated terms ε(k) are exactly known.

After continuation of the Selfenergy to the real axis, the local ΣR(ω) is upfolded into the
Bloch space (see Chapter 6.2) to construct the lattice Green’s function GR(k, ω), from which the
momentum-integrated spectrum is obtained by

A(ω) = − 1

πNk

∑
kν

ImGRνν(k, ω). (6.9.20)

Orbital resolved quantities can be obtained by a further downfolding to the local orbital basis in
the same way

Am(ω) = − 1

πNk

∑
k

Im
[
P (k)GR(k, ω)P †(k)

]
mm

. (6.9.21)
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Chapter 7

Effects of electronic correlations in
KFe2As2

S. Backes, D. Guterding, H. O. Jeschke, R. Valentí
New J. Phys. 16, 083025 (2014)

As we have already discussed in the introduction in Chapter 1.3, many members of the iron-
pnictide family show effects of strong electronic correlations that cannot be described reasonably
well within DFT. We will now use the LDA+DMFT method we introduced in Chapter 6 to study the
hole-doped 122 compound KFe2As2 and compare our obtained results for the electronic structure to
DFT calculations as well as experimental data.

Our calculations indicate that KFe2As2 is a moderately correlated metal with a mass renormal-
ization factor of the Fe 3d orbitals between 1.6 and 2.7. We also find that the obtained Fermi surface
is in good agreement with angular-resolved photoemission spectroscopy (ARPES) measurements,
since we observe specific changes with respect of the Fermi surface pockets with respect to DFT.
By this, we obtain de Haas-van Alphen (dHvA) frequencies that are in much better agreement with
experiments than the DFT results. This shows that correlation effects are important for a proper
understanding of the electronic structure of KFe2As2.

7.1 Introduction
The system KFe2As2 is the hole-doped end member of the Ba1−xKxFe2As2 family of iron-based
superconductors [146]. It shows a superconducting transition with Tc = 3.4 K under ambient pres-
sure [147]. In this material the origin of the superconducting phase and the pairing symmetry is
still unclear [148–150], both on the experimental and theoretical sides. On the one hand laser-based
angle-resolved photoemission (laser ARPES) measurements found the superconducting order pa-
rameter to be of s-wave character [151], while in contrast to that theoretical studies based on the
functional renormalization group [152] predicted a d-wave symmetry, which in turn are backed by
measurements of the thermal conductivity [153]. Other theoretical studies [154, 155] based on spin
pairing theory within the random phase approximation found that s- and d-wave pairing channels
are strong competitors in this system and both might be possible in KFe2As2. Also transport mea-
surements under pressure [156] suggested the presence of a possible phase transition from d-wave
to s-wave around 1.75 GPa.

Quantum oscillation experiments [23] also predicted high effective charge carrier masses of up to
19me with an average mass enhancement factorm∗/mband of about 9. Estimates from ARPES [20]
and cyclotron resonance experiments [157] on the other hand reported mass enhancements of about
3 for certain regions of the Fermi surface.

On the theoretical side, DFT calculations for KFe2As2 are known to show poor agreement with
ARPES measurements [19–21] and also to dHvA measurements [23, 158]. This makes the system a
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very promising candidate for a study within LDA+DMFT. Additionally, there was only one existing
publication in the literature so far [28] that considered an LDA+DMFT study for KFe2As2. From the
obtained mass enhancement and Fermi surface at kz=0 a promising improvement in the agreement
with ARPES data was evident, which motivated a deeper analysis of this system.

Therefore, we will perform a comprehensive LDA+DMFT investigation focused on features of
the KFe2As2 compound that have not been dealt with in past studies [28]. We will also study the
effects of the different FLL and AMF double counting schemes that were discussed in Chapter 6.4 on
the electronic Fermi surface. This will allow us to perform a critical benchmark of our LDA+DMFT
calculations to see in which way they can help to improve the agreement with experimental ARPES
and dHvA measurements as well as how they can contribute to the understanding of the electronic
structure of this system.

7.2 Computational details
For our calculations we will use the experimentally determined tetragonal I 4/mmm structures of
KFe2As2 by Tafti et al. [159], which are given for pressure values starting at 0.23 GPa. For the
zero pressure structure we perform a linear extrapolation of the available data points. A compari-
son of this structure to the existing crystal structure by Rosza and Schuster [160] used in previous
theoretical investigations shows that while lattice parameters a, b, and c are consistent, the As z po-
sition differs significantly between both structures. The As z position was consistently determined
over a large pressure range in the above mentioned study by Tafti et al. [159] and the As z position
determined by Rosza and Schuster does not follow the trend shown by those data. Here we use
the new structure with the following parameters: a = b = 3.8488 Å, c = 13.883 Å, fractional
As z = 0.140663. Additionally, we will also compare to the results obtained for the structure by
Rosza and Schuster [160].

For the DFT calculation we employed the full-potential linear augmented plane-wave (FLAPW)
framework as implemented in WIEN2k [161], using the local density approximation (LDA) as well
as the generalized gradient approximation (GGA) by Perdew, Burke and Ernzerhof [162] to the
exchange-correlation functional. We used a grid of 726 k points in the irreducible Brillouin zone
in our calculations. Additionally, we also included the effects of spin-orbit coupling (SO) in the
DFT calculation and compared to the case when its contribution is neglected. The LDA+DMFT
calculations were performed without the inclusion of SO.

The LDA+DMFT calculations were performed fully charge self-consistent by making use of
the implementations in the WIEN2K code for updating the DFT electronic density. The projection
from Bloch eigenstates to the correlated Fe 3d orbitals was carried out with our adoption [163] of
the projection method as described by Aichhorn et al. [36]. The energy window for the projection
onto the localized basis was chosen comparatively large, ranging from−5 eV to 13 eV to capture the
higher energy contribution of the Fe 3d orbitals to the density of states arising from the hybridization
with the As 4p orbitals. Compared to other materials no clear separation with the correlated Fe 3d
and uncorrelated As 4p states can be obtained. As a result we expect the different double counting
schemes to have a more noticeable effect on the results as discussed in Chapter 6.4.

The effective Anderson impurity model was solved using the continuous-time hybridization ex-
pansion quantum Monte Carlo solver as implemented in the ALPS [164] code. We made use of the
Legendre polynomial representation [165] of the impurity Green’s function and improved estimators
for the Selfenergy [166], which allow for an improved representation on the Matsubara axis in the
presence of numerical noise from the Monte Carlo sampling. About 6 × 106 Monte-Carlo sweeps
were performed at an inverse temperature β = 40 eV−1, corresponding to room temperature. The
effective local interaction parameters U and JH were chosen as U = 4 eV and JH = 0.8 eV
in terms of Slater integrals F 0, F 2 and F 4, where for the Fe 3d-electrons we used U = F 0 ,
JH = (F 2 + F 4)/14, and F 2/F 4 = 0.625 [118], as discussed in Chapter 6.6.

For the double-counting correction the fully-localized limit [82, 167] (FLL) and around mean-
field (AMF) [63] scheme were used. All orbital characters presented here are defined in a coordinate
system which is rotated by 45◦ around the crystallographic z axis, i.e. x and y are pointing along Fe-
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Figure 7.1: Overview of Fermi surface cuts at kz = 0 and kz = π in KFe2As2 obtained from
DFT using the LDA exchange correlation functional with and without spin-orbit coupling (SO).
Inclusion of spin-orbit coupling only leads to small quantitative changes, in particular a lifting of
all apparent degeneracies of Fermi surface sheets. Fermi surfaces are shown in the two-Fe Brillouin
zone representation.

Fe nearest neighbour bonds. For determining the LDA+DMFT excitation energies that we used to
define the Fermi surface, we tracked the maximum of the real-frequency spectral function throughout
the Brillouin zone. Analytic continuation of imaginary frequency data to the real frequency axis was
performed by using the Padé approximation for the impurity Selfenergy and we checked the results
against the stochastic analytic continuation method [93].

The dHvA frequencies were obtained from the electronic band structure using our own imple-
mentation of the dHvA frequency extraction algorithm by Rourke and Julian [168].

7.3 Results

7.3.1 Electronic structure
We first investigated the band structure of KFe2As2 obtained by the DFT calculation within LDA and
LDA+SO. Results obtained with the GGA functional were nearly identical to the LDA result and are
therefore not shown. At the Γ point (see Fig. 7.1 (a) and Fig. 7.2 (a)) we see three bands crossing the
Fermi level, forming hole pockets of Fe 3dxy , 3dxz and 3dyz character. The two outer hole pockets
form cylinders along kz between the Γ and Z points, while the cylinder of the third inner hole pocket
closes shortly before the Z point. This leads to two hole pockets at the Z point, being mostly of Fe
3dxy , 3dxz/yz character. Around the M̄ point, we observe very small hole pockets with Fe 3dxy ,
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Figure 7.2: The k-resolved spectral function and orbital-resolved Fermi surface of KFe2As2 within
LDA+DMFT. The LDA bands (black lines) are rescaled by the average mass enhancement of 2.04
for comparison. Dominant orbital characters are indicated by the colour scale. Fermi surfaces are
shown in the two-Fe Brillouin zone representation.

3dxz/yz character, where the bands with mostly Fe 3dxz/yz character are very shallow right above
EF , which leads to a high sensitivity to input parameters and total electron charge in the calculation.

By including the spin-orbit interaction we observe an overall repulsion between touching or
degenerate bands, which leads to clear separation of the hole pockets along the high symmetry
directions (see Fig. 7.1 (c), (d)).

Comparing these DFT results to ARPES measurements [19–21] we find that the agreement in
size and shape of the hole pockets along the high symmetry directions is quite poor. This disagree-
ment has already been noted in the publications cited above. The inner two pockets (α, ζ) are too
large while the outer one (β) is too small. The topology of the Fermi surface also differs from
experimental observations. ARPES clearly shows a separated outer hole cylinder at Γ, while the
two inner ones overlap considerably [19–21]. The closure of the inner hole cylinder is not seen
in ARPES [19–21] or dHvA [23, 158] measurements, leading to a third inner hole pocket at Z in
experiments. Also, the hole pockets (ε) close to M̄ are too small in DFT.

When including correlations on the Fe 3d orbitals via LDA+DMFT, the electronic structure of
KFe2As2 changes significantly. The different approximations to the exchange-correlation potential
of LDA and GGA do not result in noticeable changes in the electronic structure. In the band structure
shown in Fig. 7.2 we observe a strong renormalization of the bands around the Fermi level, with mass
enhancements for the Fe 3d orbitals ranging from 1.56 to 2.72, as shown in table 7.1.

These results are in agreement with a previous LDA+DMFT study [28], but still very differ-
ent from experimentally reported mass enhancements, that can reach values of up to 24 for the
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Figure 7.3: Three dimensional view of the Fermi surface obtained from LDA+DMFT in the two-Fe
Brillouin zone representation. Figure (a) shows the intersection nodes between the inner (green)
and middle (red) Fermi surface sheet. The configuration used in calculating de Haas-van Alphen
frequencies is indicated by the colours. Figure (b) shows the dispersion of the inner Fermi surface
sheet along the kz-axis.

small pockets (ε) and up to 6.9 for the large pockets (α, β, ζ) in the centre of the reciprocal unit
cell [23, 158]. We attribute the discrepancy between our results and the experimentally observed
mass enhancements partly to the restriction of the interactions in our method to be only of density-
density type, since it is known that including the full four-index rotationally invariant U-tensor (com-
pare Chapter 6.6) can increase obtained mass enhancements significantly [29]. Also the inclusion of
other effects missing in our current LDA+DMFT method like non-local correlations and electron-
phonon interactions should be able to further reduce the differences between theory and experiment.
It was already pointed out in [158] that flattening of the bands near the Fermi level caused by cou-
pling to low-energy bosonic excitations [169] that originate from strong spin fluctuations present
in KFe2As2 [170–172], also contribute to the mass enhancement, but are not accounted for in the
DMFT method. On the other hand overall the bandwidth renormalization as seen in ARPES, which
is independent of such low-energy bosonic excitations, is well reproduced in DMFT. Therefore, our
results support the interpretation given in [158].

Orbital dxy dz2 dx2−y2 dxz/yz
m∗

mLDA
2.72 1.89 1.56 2.02

Table 7.1: The orbital-resolved mass enhancements for the Fe 3d orbitals in KFe2As2.

We also observe a reordering of bands along the high symmetry directions with significant
changes in the size of the hole cylinders. Both the inner sheets (α, ζ) at the Γ point at kz = 0
shrink in size, while the outer one (β) gets enlarged, as seen in the LDA+DMFT Fermi surface in
Fig. 7.2. This is in better agreement with experimental observations. Moreover, we observe a small
overlap of the centre (ζ) and middle hole pocket (α) with small intersection nodes around Γ, which
are also observed in ARPES but were absent in the DFT calculation and previous LDA+DMFT stud-
ies [28]. Most importantly, at kz = π around the Z point the band of mostly 3dz2 character that
was located just below the Fermi level is pushed above EF due to correlations, opening the hole
cylinder that was previously closed in the DFT calculation. By also investigating the structure from
Rosza and Schuster [160], we found a strong dependence of the shape of this hole pocket on the
As-z position. Within DFT alone, an opening of a new hole pocket can be observed by increasing
the As height above the Fe plane. Since the band in question originates from the hybridization of Fe
3d with As 4p states, it is extremely sensitive to the arsenic position. The LDA+DMFT middle hole
pocket around Z reduces in size compared to LDA, forming an almost kz-dispersionless hole cylin-
der between the Γ and Z points. In Fig. 7.3 we show three-dimensional plots of the hole cylinders
throughout the Brillouin zone.
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Recent ARPES experiments [19–21] and dHvA measurements [23, 158] also observe three hole
pockets around theZ point, agreeing well with our calculations. The strong Fe 3dz2 character around
Z reported from ARPES [21] is also reproduced by our calculation. A detailed comparison shows,
however, still some differences between theory and ARPES experiment: the size of the middle hole
pocket in the kx-ky-plane at both the Γ and Z points is smaller in ARPES, while the inner pocket at
Z seems to be larger compared to our results.

The small hole pockets at the M̄ point emerge from the crossing of two bands at an energy of
about 5 meV above EF , with very weak dispersion of one of the bands. Therefore, these pockets
are extremely sensitive to the Fermi level which makes them strongly dependent on the details of the
calculation like the double-counting scheme or the chosen DFT functional. On the experimental side
this indicates a strong dependence on the actual composition and possible impurities in the sample;
this is a possible explanation for the different sizes of these pockets in ARPES experiments [19–21].
In Chapter 7.3.3 we show that for the structure by Rosza and Schuster [160] we indeed observe larger
hole pockets at the M̄ point compared to Tafti et al. [159]. In our calculations, we carefully checked
the results for different double-counting procedures and analytic continuation methods and found
overall qualitatively good agreement. Finally, we note that in order to obtain a better agreement
with experiment, the middle hole cylinder would have to be shifted inside of the inner cylinder
in our calculations. This cannot be achieved by inclusion of local correlations only since in this
system the necessary shifts of the band energies cannot be obtained with a k-independent Selfenergy
only. Instead, a k-dependent shift would be required to improve the agreement of the position of the
middle hole cylinder at Γ with experiments while retaining the otherwise satisfactory agreement at
other k-points.

The Fermi surface obtained from LDA+DMFT offers a natural explanation for the magnetic
breakdown junctions between orbits α and ζ observed by Terashima et al. [23, 158]. Taking spin-
orbit coupling into account will likely lift the exact degeneracies at the intersection nodes as seen
in our LDA+SO calculation. A shift of the maxima of the spectral function however does not for-
bid transition processes between Fermi surface sheets if the spectral weight between them remains
finite. We conclude that the degeneracy of the lines found in ARPES might be due to both experi-
mental resolution and overestimation of the distance between sheets in our calculation. Furthermore
we would like to point out that our Fermi surface strongly resembles the octet line-node structure
observed in laser ARPES measurements of the superconducting order parameter [151].

7.3.2 De Haas-van Alphen frequencies
Comparing our findings to measurements of quantum oscillations [158] we can confirm that DFT is
not able to describe the Fermi surface of KFe2As2 correctly. An overview of our results is presented
in Fig. 7.4. LDA and LDA+SO calculations for the structure by Rosza and Schuster are given in
Chapter 7.3.3. They reproduce the DFT results by Terashima et al. [23, 158].

The two inner hole pockets (α, ζ) around the Γ point are too large compared to experimental
frequencies, while the outermost hole pocket (β) is too small (Fig. 7.4 left panel). The size of the
hole pocket close to M̄ (ε) is already well described in DFT. Adding spin-orbit coupling already
shows the correct tendency to increase the size of the outer hole pocket and decrease the size of
the two inner hole pockets. Deviations from experimentally observed frequencies are nevertheless
large (Fig. 7.4 middle panel). The good agreement with experiment for the largest and smallest
frequencies comes with persisting disagreement for the two intermediate frequencies.

In the LDA+DMFT calculation (Fig. 7.4 right panel) the two innermost orbits (α,ζ) intersect
around the Γ point (Fig. 7.2). For the analysis of the dHvA frequencies we take into account the
outermost and innermost possible configuration of these two orbits as shown in Fig. 7.2. The same
configuration was attributed to fundamental frequencies observed in dHvA experiment [23,158]. The
outer hole pocket (β) is considerably enlarged. As the corresponding electronic band is flattened,
it becomes susceptible to tiny energy shifts. Both inner hole pockets (α, ζ) are shifted to lower
frequencies and thus decreased in size. The small orbit (ε) close to M̄ is enlarged around the Z
point, but decreases in size around Γ as shown in Fig. 7.2. Therefore we only find the maximum
frequency for this sheet.
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Figure 7.4: Overview of de Haas-van Alphen frequencies in KFe2As2 calculated from density func-
tional theory and LDA+DMFT. Lines represent our calculations, while crosses represent experimen-
tal frequencies taken from [158]. Colour coding is the same as in Fig. 7.2. The ζ-orbit (innermost)
is shown in green, while the frequencies originating from the middle sheet (α) are shown in red. The
outermost orbits (β, ε) are drawn in blue.

We would like to note that quantum oscillation experiments [173] and ARPES [20, 21] reported
the existence of a fourth very small pocket centred at the Z point which was not seen in our calcu-
lations for the most recent structure. This fourth pocket is however present in the DFT calculation
when using the structure from Rosza and Schuster [160], but we found it to vanish when adding cor-
relations in LDA+DMFT, depending on the double-counting. This will be discussed in more detail
in the next Chapter 7.3.3.

The opening of the innermost hole pocket ζ is clearly observed in the LDA+DMFT calculated
dHvA frequencies by the appearance of a lower extremal frequency. As pointed out before in the
ARPES section, the middle hole cylinder would have to be decreased in size considerably to match
the experimental frequencies. This would in turn increase the enclosed volume of the sheet labelled
ζ and thus shift it towards experimentally observed values. A comparison of experimental and
LDA+DMFT frequencies for B ‖ (001) is given in Table 7.2.

εl εh αl αh ζl ζh βl βh
exp. 0.24 0.36 2.30 2.39 2.89 4.40 7.16 -

LDA+DMFT - 0.42 4.05 4.20 0.94 3.25 6.62 6.81

Table 7.2: De Haas-van Alphen frequencies in kT (kiloTesla) for B ‖ (001) obtained from DMFT
calculations compared to experimental values [158].

Furthermore we calculated effective masses averaged over extremal orbits on the Fermi surface
from the LDA+DMFT excitation energies. These masses correspond to the effective masses ob-
served in dHvA experiments (Table 7.3). Note that values given in this table are absolute masses in
contrast to mass enhancements given in Table 7.1.

Qualitatively our calculation captures the trends that are observed in sheet-resolved effective
masses, however, as discussed above, the differences might be attributed to the restriction to density-
density type interactions and effects originating from other than electron-electron interactions miss-
ing in DMFT, which increase effective masses seen in dHvA experiments such as electron-phonon
coupling.

For comparison with dHvA experiment, we have obtained the Fermi surface within LDA+DMFT
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εΓ εZ αΓ αZ ζΓ ζZ βΓ βZ
exp. 6.0 7.2 6.0 6.5 8.5 18.0 19.0 19.0

LDA+DMFT - 5.9 3.4 4.6 2.4 5.3 8.3 8.3

Table 7.3: Electron orbit averaged effective masses in me for B ‖ (001) obtained from DMFT
calculations compared to experimental values [158].

Figure 7.5: The orbital-resolved spectral function of KFe2As2 at kz = 0 andE = 0 for the structure
by Tafti et al. [159]. The colour intensity indicates the value of the spectral function. Subfigure (f)
shows the summed Fe 3d orbital contributions to the spectral function.

by tracing the maxima of the spectral function throughout the Brillouin zone that is shown in Fig 7.2.
This approach is insensitive to the broadening of the excitation energies. Experimentally observed
dHvA frequencies correspond to orbits with extremal areas and maximal spectral weight, which we
take into account with our method. Fermi surface plots generated from the maxima of the spectral
function can however mask the true extent of the Fermi surface pockets as seen in ARPES experi-
ments. To allow for a better comparison with ARPES experiments and to visualize the broadening
of the excitation energies, we show the orbital resolved spectral function at the chemical potential
in Fig. 7.5. Compared to the Fermi surface in Fig. 7.2 a strong broadening of the bands can be ob-
served, especially in the Fe 3dxy and 3dxz/yz orbitals. This is in correspondence with the fact that
these orbitals also have the strongest renormalization in LDA+DMFT. The small pockets at the M̄
point can be seen to represent a very extended structure with no well defined maxima. Note that in
the Fermi surface plot obtained using spectral function maxima (Fig. 7.2 (b) and (c)) the true extent
of these pockets is not properly accounted for. From this we conclude that the spectral function in
LDA+DMFT (Fig. 7.5) is better suited for comparison with photoemission experiments.

7.3.3 Sensitivity analysis
Previous theoretical work on KFe2As2 was based on the structural data obtained by Rosza and
Schuster [160], while new results for elevated pressure by Tafti et al. [159] became available recently.
These structures differ most noticeably in the As z-position, where the old structure has a fractional
coordinate of z = 0.1475, while the new one yields z = 0.140663 by interpolation to 0 GPa.
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Figure 7.6: The orbital-resolved Fermi surface of KFe2As2 within (a) DFT for the structural data
by Rosza and Schuster [160], within (b) LDA+DMFT for with the FLL double counting scheme and
(c) the AMF double counting scheme. The GGA+DMFT indicates that the GGA functional has been
used in the DFT part. Dominant orbital characters are indicated by the colour scale. Fermi surfaces
are shown in the two-Fe Brillouin zone representation.

Therefore, to interpret current theoretical investigations correctly, we investigate the dependence of
the Fermi surface and de Haas-van Alphen frequencies of KFe2As2 on the two different structures
and also on different double-counting methods within LDA+DMFT. We also tested the dependence
of these quantities upon considering LDA versus GGA and found only minor changes. Here we
present GGA results.

We find very different behaviour for the two structural configurations: The Fermi surfaces for
the Rosza and Schuster [160] structure can be seen in Fig. 7.6 (a), to be compared to the Tafti et
al. [159] structure in Fig. 7.1. The cut at kz = 0 is qualitatively identical but the Fermi surface
topology at the Z point is different, where the structure of Rosza and Schuster with the higher As
z-position features two additional inner hole pockets around Z. The inner one emerges from a small
hole pocket centred at Z, while the second inner one corresponds to the open ζ-hole cylinder, which
closes shortly before kz = π in the structure by Tafti et al. [159]. From our calculations we can
deduce that the As z-position is the key factor for the existence of these hole pockets. This makes
sense since their main orbital character is either Fe 3dz2 or As 4p, giving rise to a strong dependence
on the Fe-As bonding distance. By lowering the As z-position, and thus enhancing the hybridization
of the Fe 3d with the As 4p orbitals, the two inner pockets become smaller and finally vanish.

In Fig. 7.6 (b) and (c) we show cuts of the Fermi surface in LDA+DMFT, calculated for the
structure by Rosza and Schuster. The electronic structure depends on the double-counting correction.
With the FLL double-counting the fourth inner hole pocket stays present at theZ point, whereas with
the around mean-field (AMF) double-counting it vanishes. This can be explained by the large As 4p
character of the inner hole pocket, which makes it sensitive to the double-counting method. Since
AMF reduces the Selfenergy by a smaller degree than FLL, this band is pushed below the Fermi
level when using the AMF method. In the structure by Tafti et al. this band is farther away from the
Fermi level already in the DFT calculation, lowering the As 4p contribution to the density of states
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at EF . Therefore, we see only slight differences between the two double-counting corrections in the
Tafti et al. structure without qualitative changes.

7.4 Conclusion
In summary, in this chapter we have presented the results of our LDA+DMFT calculations of the
Fermi surface and de Haas-van Alphen frequencies in KFe2As2. We first showed that DFT calcula-
tions with LDA or GGA exchange correlation functionals, with or without spin-orbit coupling fail
to reproduce the experimentally observed electronic structure of KFe2As2.

Most notably, DFT predicts no third inner hole pocket at the Z point, which we find to open in
our LDA+DMFT calculation, in agreement with experiment. We also obtain a qualitatively correct
kz dispersion of the iron bands, where between the Γ and Z points the dispersion of the inner hole
cylinder is greatly increased while the middle hole cylinder shows almost no dispersion, giving
a much better agreement with dHvA measurements when identifying them in different order in
experiment.

The intersection nodes we found on the inner two hole cylinders offer a natural explanation for
magnetic breakdown orbits observed in dHvA measurements [158].

The obtained effective mass-enhancements about 1.6 − 2.7 show that KFe2As2 is a moderately
correlated metal and thus a DFT calculation fails to capture the important features that lead to the
experimentally observed electronic structure. This has strong implications for the obtained dHvA
frequencies, where LDA+DMFT gives distinctively different results than DFT. Our results are in
better agreement with both ARPES [20, 21] and quantum oscillation [23, 158] experiments. The
observed strong flattening of electronic bands gives a possible explanation for the spread of exper-
imental results in this compound in terms of extreme sensitivity to the experimental stoichiometry.
We conclude that LDA+DMFT captures most of the important correlation effects in KFe2As2 and
such a treatment may be necessary in order to understand the controversial nature of superconduc-
tivity in this system.

We also find strong broadening effects of the quasiparticle excitations at the Fermi level, leading
to a diffusive Fermi surface. While we considered different double counting schemes and structures,
we did not investigate the temperature dependence of the coherence properties in this system. This
will be the subject of the next Chapter 8.



Chapter 8

Strong electronic correlations in
AFe2As2 (A =K, Rb, Cs): Hund’s
coupling versus Coulomb repulsion

S. Backes, H. O. Jeschke, R. Valentí
Phys. Rev. B 92, 195128 (2015)

In this chapter we will now extend our analysis of the hole-doped iron-pnictide superconductors
by considering the isovalent 122 family of KFe2As2, RbFe2As2 and CsFe2As2. Along this series
we find that the hybridization between the Fe 3d orbitals is reduced because the increase in atomic
radius of the Rb and Cs atoms induces a lattice expansion in these systems. As a result we see an
increase in electronic correlations and especially a strong increase of the incoherence properties, with
shift of spectral weight from the Fermi level to negative energies. We attribute these observations to
the effect of the Hund’s coupling which also causes the incoherent weight not to show the typical
Hubbard-band behaviour.

8.1 Introduction
In addition to the Fermi surface changes and mass enhancements we investigated in the last chap-
ter, a significant amount of work on the iron-pnictide superconductors has been concentrated on the
description of effects of strong electronic correlations like possible non-Fermi liquid behavior or
Hubbard band-like features [27–29, 32–35]. Due to the multi-orbital nature of these systems, gov-
erned by the Fe 3d orbitals at the Fermi level, the Hund’s coupling JH has been shown to play a
key role in the determination of their electronic properties [27,32–38]. However, there is an ongoing
debate regarding the role of JH versus the on-site Coulomb repulsion U and the interpretation of the
correlated nature of Fe-pnictides and Fe-chalcogenides [28, 33, 34, 38–41, 174]. A main conclusion
drawn in many of these studies is that, depending on the electronic filling, the Hund’s coupling JH
on the one hand renders a moderately correlated system even more correlated and pushes it into a
bad metal regime, while on the other hand it can also reestablish a metallic behavior, albeit orbital
selective, in a strongly correlated system [38,41]. The main question for the Fe-based superconduc-
tors and especially the hole-doped members narrows down to which regime of parameters do they
belong to and how do correlations manifest in a wide range of binding energies as a function of
doping and/or pressure?

In the hole-doped 122 materials AFe2As2 (A = K, Rb, Cs) the substitution of Ba in the parent
system BaFe2As2 by K,Rb or Cs accounts for a doping of one hole per formula unit and is accompa-
nied by a complete suppression of any structural or magnetic phase transition [175, 176] and by the
appearance of superconductivity at low temperatures. This behavior is common [46,48,147,177,178]
to all hole-doped end members AFe2As2 and they all seem to have a nodal gap structure [178,179],
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Figure 8.1: The structural parameters for the considered materials KFe2As2 (K), RbFe2As2 (Rb),
CsFe2As2 (Cs) (from Ref. [46]), and the fictitious systems FrFe2As2 (Fr) and stretched CsFe2As2

(Csstretch). (a) The a-parameter (short side of the tetragonal unit cell) and absolute height of the
As-atom above the Fe plane and (b) the c-lattice parameter, corresponding to the long side of the
tetragonal unit cell.

which is different to the nodeless gap structure found in the parent BaFe2As2 system [180–182].
Further, experimentally Ba1−xKxFe2As2 is thought to undergo a coherence-incoherence transi-
tion [42,43,183] as a function of temperature, that has been interpreted in terms of a strong increase
in correlations [23, 184, 185]. Measurements of the Sommerfeld coefficient suggest that the hole-
doped end systems are among the strongest correlated 122 iron-pnictide superconductors [42, 46],
which is also corroborated by theoretical investigations on KFe2As2 [28,40,42,49] and our results in
the previous chapter. The measured Sommerfeld coefficient increases from BaFe2As2 to KFe2As2

by more than an order of magnitude [42, 44, 45] and increases further as K is substituted by Rb and
Cs [47, 48]. In view of these observations, the hole doped end members AFe2As2 provide an ideal
background for investigating strong correlation effects as function of negative pressure.

Therefore, in this chapter we will again use LDA+DMFT to study the electronic structure of the
seriesAFe2As2 (A = K, Rb, Cs) as well as the fictitious FrFe2As2 and a-axis stretched CsFe2As2 in
an extended range of binding energies. While a compression of the unit cell has been found to usually
decrease correlation effects in the 122 iron pnictides [186–188], similarly, the opposite is to be
expected when lattice parameters are expanded since the larger interatomic distances should reduce
the hybridization of neighboring atomic orbitals and lead to stronger localization of the electronic
states. We will show in the following that these considerations are correct only at first sight; actually,
the strong correlation effects in these systems are mostly governed by a subtle interplay of JH and
U .

8.2 Computational details
For our study we use the structural parameters from Ref. [46] for the tetragonal structures of
KFe2As2, RbFe2As2 and CsFe2As2 at room temperature. Due to the almost perfect linear depen-
dence of the lattice parameters as a function of atomic radius, we further use linear extrapolation to
obtain structural parameters for fictitious FrFe2As2, avoiding possible ambiguities from DFT-based
relaxation methods which do not work satisfactorily for these systems. Additionally, we prepare a
structure for CsFe2As2 that is extended along the a/b-axis by 3% and has a reduced relative Asz
height of 2% to mimic a small expansion of the lattice. The expansion is performed in both the x-
and y-direction so that tetragonal symmetry is preserved. The lattice parameters and Asz position
are shown in Fig. 8.1.

For the DFT calculations we again used the WIEN2K [161] implementation of the full-potential
linear augmented plane wave (FLAPW) method in the local density approximation. The Kohn-Sham
equations were solved on 726 k-points in the irreducible Brillouin zone, resulting in a 21× 21× 21
k mesh in the conventional Brillouin zone. For the local orbital basis we used the coordinate system
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Figure 8.2: Momentum-resolved spectral function of KFe2As2 (top) and CsFe2As2 (bottom). Strong
correlations in these materials introduce renormalization effects as well as broadening in the spec-
tral function due to finite quasiparticle lifetimes compared to DFT(LDA). We observe a notable
broadening and suppression of spectral features especially in the energy range [−2.0,−0.5] eV.

which is rotated by 45◦ around the z-axis with respect to the conventional I 4/mmm unit cell.
Thus, the x- and y-axis point towards neighboring Fe atoms. The energy window for the bands to
be considered for projection was chosen to be [−6, 13] eV, with the lower boundary lying in a gap in
the density of states. Consequently, 35 bands on average were taken into account for the projection,
resulting in a representation of the k-dependent and local non-interacting spectral function for each
orbital that is indistinguishable from the DFT result in the chosen energy window.

The effective Anderson impurity model was solved with the continuous-time quantum Monte
Carlo method in the hybridization expansion [8] as implemented in the ALPS [9, 164] project. In
the calculations we used an inverse temperature of β = 80 eV−1, corresponding to the temperature
of 145 K, unless stated differently. A total number of at least 50 × 106 Monte-Carlo sweeps were
performed for each solution of the impurity model and up to 90×106 sweeps for the larger interaction
parameters. For the double counting correction we used the nominal double counting [138, 139],
which has been shown to yield significantly better agreement with photoemission experiments [139],
especially for low and high binding energies, while other methods like the FLL [82, 167] double
counting scheme can overestimate the valence charge and underestimate a possible Mott gap [139].
The interaction parameters were used in the definition of the Slater integrals [85] F k with U = F 0

and JH = (F 2 + F 4)/14, like described in Chapter 6.6. For the on-site Coulomb interaction
we considered a value of U = 4 eV and for Hund’s rule coupling JH = 0.8 eV, unless stated
differently. We calculate the effective masses directly from the impurity Selfenergy as described in
Chapter 6.9.1. The continuation of the Monte Carlo data to the real axis was done by stochastic
analytic continuation [93] as described in Chapter 4.

To study the hopping matrix elements we obtained a tight-binding Hamiltonian from projective
Wannier functions [189] from DFT, generated by the all-electron full-potential local orbital (FPLO)
[190] code, using a 10 (16) orbital model, including the Fe 3d only (10-orbital model) [191] or Fe
3d and As 4p orbitals (16-orbital model).

8.3 Results

8.3.1 Momentum-resolved spectral function A(k, ω)

In Fig. 8.2 we show the momentum-resolved spectral function for KFe2As2 and CsFe2As2 as ob-
tained within LDA+DMFT (gray density plot) at a temperature T = 145 K and compare it to the
DFT bandstructure (red). We estimate for both systems Fe 3d effective masses m∗/mLDA between
2.2 and 4.1 (depending on the orbital) which lead to a renormalization of the DFT(LDA) band ener-
gies and overall reduction of bandwidth. The average effective mass increases slightly from 2.89 to
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Figure 8.3: (a) and (b): The density of states of the Fe 3d orbitals at the Fermi level as obtained
from (a) LDA+DMFT and in comparison with (b) DFT. The electronic correlations induce a marked
deviation from the DFT results: The contribution of the Fe 3dz2 orbital is strongly enhanced, while
a more pronounced decrease of the Fe 3dxy orbital is found towards the end system of stretched
CsFe2As2. Also, the trend in the Fe 3dxz/yz orbital in DFT is completely evened out in LDA+DMFT.
(c) and (d): Filling of the Fe 3d orbitals as obtained from (c) LDA+DMFT and (d) DFT(LDA).
Correlations reduce the overall Fe 3d filling, with the most correlated 3dxy and 3dxz/yz orbitals
being the closest to half filling in contrast to the DFT result. Along the alkali metal series, the
occupation of Fe 3dz2 and 3dx2−y2 orbitals reduces, while that of the 3dxy and 3dxz/yz orbitals
increases after a local minimum in RbFe2As2, which has the smallest 3dxy occupation of all systems
studied.

2.95, which indicates an increase in correlation along the AFe2As2 series due to enhanced localiza-
tion of electrons on Fe. The difference in the effective masses compared to our previous investigation
are due to the different double counting scheme (see also discussion in Chapter 6.4), as well as the
lower temperature. The effect of the temperature on the calculated mass enhancements will be dis-
cussed in more detail shortly.

Already at the Fermi level we obtain diffuse structures corresponding to incoherent quasi-
particle excitations with finite lifetimes. At energies below −0.5 eV all coherent features are
basically washed out due to correlation. This effect is present in all systems in the series
KFe2As2→CsFe2As2, where we observe in the energy range of [−2.0,−0.5] eV effects of strong
broadening and depletion of spectral weight compared to the DFT bandstructure. At energies below
−2 eV coherent features become visible again, which correspond to the As p states that partially
hybridize with Fe 3d states. Even though the Selfenergy in DMFT has no momentum dependence,
an effective momentum dependence is present in the results due to the momentum dependent orbital
character of the original DFT bands. This leads to k-dependent broadening effects in LDA+DMFT.

8.3.2 Spectral weight at the Fermi level and orbital-resolved electronic filling
We first analyze the manifestation of correlation effects near the Fermi level. For that we compare in
Fig. 8.3 LDA+DMFT (Fig. 8.3 (a)) with DFT(LDA) (Fig. 8.3 (b)) orbital-resolved density of states
at the Fermi levelN(EF ) for all studied systems. The LDA+DMFT calculations show an increasing
and pronounced dominance of 3dz2 contribution atEF along the series. This is in contrast to the DFT
results where the Fe 3dz2 orbital contribution also increases, but is much lower and only significant
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Figure 8.4: The local spectral function for (a) the Fe 3dz2 orbital, (b) the Fe 3dxy orbital, (c) the
Fe 3dxz/yz orbital and (d) the Fe 3dx2−y2 orbital as obtained from LDA+DMFT for the three com-
pounds KFe2As2, CsFe2As2 and an a-axis stretched CsFe2As2. Note the emergence of a Hubbard-
like peaks around −1.2 eV and +1 eV for 3dz2 and around −1 eV and +1 eV for 3dxy . With
arrows we mark the trend of the changes in the spectral function along the series. The interaction
parameters are given as U = 4 eV and JH = 0.8 eV.

for a-axis stretched CsFe2As2 with shortest As height. The non-monotonous behaviour of the Fe
3dxz/yz contribution in DFT is a result of the special electronic structure of these systems at the M
point. This feature is greatly suppressed by broadening effects in the LDA+DMFT calculation.

Linked to these results is the behavior of the LDA+DMFT orbitally-resolved electronic filling
(see Fig. 8.3 (c) and (d)). We observe that inclusion of correlation effects not only reduces the overall
Fe 3d filling due to the additional cost of the Coulomb interaction energy for doubly occupying a
certain orbital, but also introduces orbital-dependent effects (see Section 8.3.4). While the Fe 3dz2
and 3dx2−y2 filling decreases along the series, it increases for 3dxz/yz and 3dxy .

8.3.3 Spectral function A(ω)

In order to understand the origin of the changes in N(EF ) and orbital filling, we show in Fig. 8.4
the local spectral function A(ω) for the Fe 3d orbitals in the energy range [−2, 2] eV for the repre-
sentatives KFe2As2, CsFe2As2 and a-axis stretched CsFe2As2. The orbitals (a) 3dz2 and (b) 3dxy
are the most affected along the series: 3dz2 because of the decrease in As height from KFe2As2

to CsFe2As2 and 3dxy because of the increase in the orbital localization with increasing a lattice
parameter. Fe 3dz2 shows a shift of orbital weight to negative energies (high binding energies) and
a narrowing of the quasiparticle-like peak structure at EF from KFe2As2 to CsFe2As2. Since the
electronic filling of the iron 3d orbitals is larger than half-filling in these systems, the quasiparticle-
like peak is located close to but below the Fermi level. In Fe 3dz2 due to the reduction of the filling
from 0.66 in KFe2As2 to 0.63 in stretched CsFe2As2 (see Fig. 8.3) caused by an increase of elec-
tronic correlations, the quasiparticle peak-like structure is shifted even closer towards the Fermi level
along the series, which in turn leads to the observed increase of the density of states at the Fermi
level (Fig. 8.3(a)). Such a shift of the quasiparticle peak-like structure in KFe2As2 was already noted
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Figure 8.5: (a) Quasiparticle lifetimes given by τm = −(ZmImΣm(i0+))−1 of the Fe 3d orbitals
along the AFe2As2 series and (b) the corresponding effective masses m∗

mLDA
.

On the right we show the temperature dependence of the (c) scattering rates −ZmImΣm(i0+) of
the Fe 3d orbitals of KFe2As2. The shaded area indicates the coherent domain. The coherence
temperature estimate T ∗ as deduced from the scattering rate is quite low, located around 50 K. (d)
The corresponding effective masses evaluated at the same temperatures.

in Ref. [49]. For the 3dxy orbital, the quasiparticle peak is much closer to the Fermi level since the
filling is closer to half filling at nxy ≈ 0.59. This orbital shows a strong suppression of the quasi-
particle peak (up to ≈ 30%) from KFe2As2 to the a-axis stretched CsFe2As2 which points to an
important increase of decoherence along the series. This increase of decoherence will be studied in
more detail in the next section. Reduction of the maximum of the quasiparticle peak combined with
a slight change of its position results in the almost constant spectral function at the Fermi level for
the 3dxy orbital observed in Fig. 8.3 (a).

Additionally, a shoulder-like feature appears in the spectral function at 1 eV and −1 eV in
CsFe2As2, closely resembling the typical spectral function shape of a quasiparticle peak and a
lower and upper Hubbard band. These features do not correspond to any property found in the
non-interacting DOS and are purely an effect of correlations and, at first sight, are similar to the
emergence of Hubbard bands as a function of U in strongly correlated systems. This is also in agree-
ment with the 3dxy orbital being the strongest correlated one, whereas these features are far less
developed in the 3dz2 and other orbitals. However, as we will show in Section 8.3.6, these peaks do
not behave as expected for Hubbard bands in a one-band Hubbard model.

The Fe 3dxz/yz and 3dx2−y2 orbitals are less affected by an increase of the lattice parameter a.
Similar to the 3dz2 and 3dxy orbital a small Hubbard-like peak becomes more pronounced in the
3dxz/yz orbital, while the 3dx2−y2 orbital shows the opposite trend, increasing its spectral function
at the Fermi level at the cost of decreasing it at negative energies.

8.3.4 Effective masses and quasiparticle lifetimes
In order to quantify the change in correlation along the seriesAFe2As2 we plot in Fig. 8.5 (a) and (b)
the orbitally resolved quasiparticle lifetimes and effective masses m∗

mLDA
. The effective masses for Fe

3dz2 and 3dx2−y2 increase along the AFe2As2 series but remain constant or even slightly decrease
for 3dxz/yz and 3dxy . This last result cannot be explained solely by the behavior of the DFT-derived
tight binding parameters (see Fig. 8.3.7 ).
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Figure 8.6: Sketch of some of the most likely Fe atomic orbital configurations in hole-doped 122
iron pnictide systems. The electronic filling is indicated by n and the total spin by S.

Information on the origin of this behavior can be obtained from the quasiparticle lifetimes which
strongly decrease for all orbitals along the series (Fig. 8.5 (b)). This indicates that the coherent
quasiparticle picture, being the basis for the calculation of the effective masses, becomes less appro-
priate along the AFe2As2 series, and accordingly, the effective masses obtained by this procedure
are underestimated compared of the true value. This result shows that already at the temperature
of T = 145 K these systems are quite incoherent. With increasing lattice parameter incoherence
significantly increases, albeit leading to an orbital dependent change in localization of the Fe 3d
electrons. In particular, we find a pronounced decrease of the quasiparticle lifetime from KFe2As2

to RbFe2As2, which we attribute to the competing effects of decrease of Fe-Fe direct hopping
and increase in Fe-Fe indirect hopping through As, which seem to have a crossover point between
RbFe2As2 and CsFe2As2 (see Fig. 8.3.7).

In Fig. 8.5 (c) and (d) we show the temperature dependence of the quasiparticle scattering rates
and effective masses of KFe2As2. We find a similar temperature dependence as also observed for
multi-orbital SrRuO3 and CaRuO3 in Ref. [192]. As the temperature is lowered in the calculation,
the quasiparticle picture, which is suppressed at high temperatures, is partially restored, leading
to an exponential increase in the quasiparticle lifetimes. Still, even at the lowest studied tempera-
ture of T = 72 K the width (scattering rate) of the quasiparticle peak −ZmImΣm(i0+) (compare
Chapter 6.9.1) is still larger than the temperature, indicating that coherent quasiparticle excitations
are still in the minority. From our results for the scattering rate we estimate that the temperature
T ∗ for the incoherent-coherent phase transition for our chosen interaction parameters U = 4 eV,
JH = 0.8 eV is around 50 K, and is even lower for RbFe2As2 and CsFe2As2. This is in qualitative
agreement with previous LDA+DMFT estimates for KFe2As2 [49] and with magnetic susceptibility
and thermal expansion measurements which predict the coherence scale of KFe2As2 to be around
100 K [42,43,45] and even lower for RbFe2As2 and CsFe2As2 [45,46]. We expect that inclusion of
the full rotationally invariant Hund’s coupling, which is beyond the scope of the present work, will
shift the transition to higher temperatures in the calculation [29,33,193] and, therefore, closer to ex-
periment. The consequences of inclusion of rotationally invariant interactions have been extensively
discussed in previous works in the framework of the two-band [194] and three-band [195] Hubbard
models. The computational effort of including these terms in the five-band cases studied here is be-
yond the scope of the present work. However, we performed some benchmarking calculations with
fully rotational Hund’s coupling and find that the coherence transition shifts to higher temperatures
as found in other studies [29,33,193]. In this sense the presented results can be considered as a lower
bound to the experimental observations.

The increase of effective masses as shown in Fig. 8.5 (d) at lower temperatures in our calculation
is precisely the effect of restoring the coherent quasiparticle picture, so that the effective masses at
the lowest temperature (72 K) we investigated can be considered as the closest approximation to the
true values, i.e. 6.1 (3dxy), 4.6 (3dxz/yz), 3.4 (3dz2 ) and 2.5 (3dx2−y2 ).

Combining these observations along the series we conclude that alkali 122 systems show typical
signs of strong correlations but, in the studied range of temperatures, are actually quite deep in the
incoherent bad metal region with a well defined, albeit strongly suppressed, quasiparticle peak.



124 8. Strong electronic correlations in AFe2As2 (A =K, Rb, Cs)

|S
|

 0
 0.5

 1
 1.5

 2
 2.5

∆
E

 [
e
V

]

 0

 2

 4

 6

p
ro

b
a
b
ili

ty
 [
%

]

State energy spread

N=4

N=5

N=6

N=7

N=8

U=4.0 eV

JH=0.8 eV

high-spin

low-spin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

6.9 eV 7.6 eV 6.9 eV 3.8 eV    2.1 eV

Figure 8.7: The histogram of the Fe 3d atomic state for KFe2As2 at T = 145 K. The probability
corresponds to the fraction of time the Fe 3d orbitals spend in one of the 210 = 1024 possible
states. Within the interval of constant electron number N the states are sorted by increasing energy,
i.e. the leftmost states within an interval correspond to high-spin states, while the rightmost states
correspond to low-spin states.

8.3.5 Nature of the Fe 3d wave function
We proceed now with an analysis of the wave function in terms of the Fe atomic basis states, similar
to what has been done for other pnictide systems [28, 33]. In Fig. 8.6 we show a sketch for a few
typical orbital configurations in these systems with the orbital splittings obtained from the down-
folded charge self-consistent LDA Hamiltonian. Since the nominal electronic filling for Fe 3d for
these systems is 5.5 electrons per Fe, one would expect atomic Fe 3d states with 5 and 6 electrons to
be the most likely states. However, as shown in Fig. 8.3, the actual average Fe 3d filling is slightly
larger than 6 and this can be analysed in the histogram of Fig. 8.6 . For the interacting system there
is a non-trivial competition between the energy contribution due to the crystal field splitting, which
prefers to occupy the lowest states first, the on-site U interaction, which tends to decrease the fill-
ing of the localized states and the Hund’s coupling JH , which prefers orbital states with maximum
total spin. When the Hund’s coupling JH is large compared to the total crystal field splitting, the
high-spin states will have the highest probability and the low-spin states will be suppressed. This is
indeed true for the hole-doped 122 iron-pnictides.

In Fig. 8.7 we show for KFe2As2 the atomic histogram of the Fe 3d shell, i.e. the projection
of the wave function onto the Fe 3d atomic basis states. The states are sorted by the number of
electrons N , and inside the interval of constant filling the states are sorted by energy. Because of the
Hund’s coupling, the leftmost states in such an interval correspond to the high-spin states, while the
rightmost states correspond to low-spin states. The probability assigned to each state corresponds
to the fraction of time in the calculation the 3d orbitals spend in a specific configuration. Due to
the Hund’s coupling the high-spin states clearly dominate the histogram, although their probabilities
are quite low with less than 2%. Even for the low-spin states at higher energy the probability,
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Figure 8.8: (a) Probabilities of the most likely atomic states of the Fe 3d atomic orbitals for the
AFe2As2 series. The probability corresponds to the fraction of time the atom in the DMFT calcula-
tion spends in a specific state. (b) The summed probability of all atomic states with a given total spin
S. High-spin states become more likely for increasing lattice parameter a, while the probability of
low-spin states is reduced.

while being smaller, is never close to zero, which causes the Fe 3d orbitals to visit a large number
of accessible states over time even when they are much higher in energy. Since all these states
contribute with a finite fraction to the Fe 3d spectral function, no well defined atomic like excitations
can be expected. This leads to the observed suppression of the quasiparticle peak and subtle high-
binding energy features in the spectral function without well defined Hubbard bands, which is the
distinctive property of Hund’s metals [28, 41].

This behavior becomes even more pronounced when we perform this analysis along theAFe2As2

series. In Fig. 8.8 (a) we analyze the most likely atomic states from the histogram of the Fe 3d
orbitals for AFe2As2. For all systems, six out of the seven most likely atomic states are solely
composed of the maximal high-spin states with S = 2.5 and S = 2. For the earth alkali (undoped)
122 iron-pnictides like BaFe2As2 the atomic ground state of the Fe atom with a valence charge of 6
has a maximum possible spin of S = 2. Since for the systems studied here one electron per formula
unit has been removed by hole doping, the probability for the fully polarized half-filled S = 2.5
state with 5 electrons in the Fe 3d orbitals is among the most likely states with a comparably high
probability of 1.4% (or 2.8% when accounting for spin degeneracy) in KFe2As2, that increases up
to 1.8% (or 3.6%) in the stretched CsFe2As2 system. Along the series the low-spin states become
suppressed while the high-spin states increase in probability, as can be seen in Fig. 8.8 (b).

Generally, the systems can reduce their energy by assigning a higher probability to high-spin
states due to the Hund’s coupling JH . This leads to a significant increase of localization caused by
the orbital blocking mechanism [28]. Since JH enforces a high-spin state, orbital mixing is greatly
suppressed compared to a vanishing Hund’s coupling where high- and low-spin states would have
equal energies and, therefore, probabilities. This is the typical behavior of a so-called Hund’s metal,
in which the electronic correlations are much more sensitive to the value of JH than to the on-site
Coulomb interaction U . Therefore, in the hole-doped end systems like CsFe2As2 and especially the
a-axis stretched CsFe2As2 the Hund’s coupling becomes the most important interaction that governs
the physical properties of these systems.

8.3.6 Dependence on U and JH

In order to investigate the effects of U and JH more explicitly and to determine the nature of the
peak/shoulder at [−1.5,−1] eV we performed calculations for different interaction parameters for
the most correlated case, the a-axis stretched CsFe2As2 system. For computational efficiency these
calculations were done at higher temperature β = 40 eV−1. While the height of the quasiparticle
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Figure 8.9: The local spectral function A(ω) for the Fe 3dz2 orbital (upper row, (a)-(c) ) and the
Fe 3dxy orbital (lower row, (d)-(f) ) of the stretched CsFe2As2 compound as a function of the on-site
Coulomb repulsion U and Hund’s coupling JH . (a) An increase only in U leads to an increase in
renormalization, i.e. effective masses and a pronounced Hubbard-like peak at −1.5 eV but no other
qualitative changes are observed. (b) The Hund’s coupling JH greatly increases the decoherence
of the electronic states at the Fermi level and leads to a significant shift of spectral weight down to
lower energies. (c) The combined effect of U and JH is qualitatively similar to an increase in JH
alone.
In the Fe 3dxy orbital we see the similar result that the shift of spectral weight to lower energies
is almost exclusively dependent on the Hund’s coupling JH . Being the most correlated orbital, the
spectral function of the Fe 3dxy orbital at the Fermi level is almost gapped for U = 6 eV and
JH = 1.2 eV.

peak is reduced at higher temperatures, the behavior of the spectral function at [−2,−1] eV is quite
robust. We considered on-site Coulomb values U = 4, 5 and 6 eV and Hund’s couplings of JH =
0.8, 1.0 and 1.2 eV. In Fig. 8.9 we show the spectral function A(ω) for Fe 3dz2 and 3dxy . An
increase of U from 4 eV to 6 eV at a fixed JH implies only moderate changes in the spectral function
in general for all Fe 3d orbitals. The Hubbard-like shoulder at −1.2 eV becomes more pronounced
for larger U values and its maximum moves only slightly to negative energies (−1.4 eV). Due to
particle-hole asymmetry, we obtain a quasiparticle like peak shifted away from the Fermi level. On
the other hand, an increase in the Hund’s coupling JH for fixed U immediately renders the system
very incoherent, with a strong increase in the scattering rate and a reduction of the quasiparticle
lifetime. This leads to a strong suppression of the spectral function at the Fermi level and a significant
shift of spectral weight to lower energies, forming a broad lower Hubbard band located between −4
and −5 eV. Finally, the combined effect of U and JH yields an even more well pronounced lower
Hubbard-like band at around −4.5 eV. While this characteristic dependence on U and JH is similar
for all Fe 3d orbitals, we still find a strong orbital selection regarding the remaining spectral weight
at the Fermi level. Especially the Fe 3dxy orbital is almost gapped at the Fermi level for the largest
interaction values considered (see Fig. 8.9).

In Fig. 8.10 we show the dependence of the Fe 3dxz/yz and 3dx2−y2 orbital spectral function on
U and JH . The results are very similar to the other orbitals, with the effect of increasing U being
much less extreme than that of JH . While at higher U the spectral functions still mimics the LDA
result, an increase in JH results in a large shift of spectral weight to negative energies. The 3dx2−y2
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Figure 8.10: The spectral function for the Fe 3dxz/yz and 3dx2−y2 orbital of the stretched CsFe2As2

compound as a function of the on-site Coulomb repulsion U and Hund’s coupling JH . (a)+(d)
An increase only in U leads to a slightly better pronounced lower Hubbard band-like feature but
otherwise no qualitative changes to the high energy features. (b)+(e) The Hund’s coupling JH
greatly increases the decoherence of the electronic states at the Fermi level and leads to a significant
shift of spectral weight down to negative energies. (c)+(f) The combined effect of U and JH is
qualitatively very similar to an increase in JH alone.

orbital shows the smallest degree of correlations and experiences basically no suppression of the
spectral function at the Fermi level, regardless of the interaction parameters and instead retains a
well defined quasiparticle peak for higher values of U and JH .

Our results confirm the general picture of the iron pnictides being "Hund’s metals" with strong
orbital separation, especially for the strongly correlated hole-doped end systems considered in this
chapter. In this case, a slight increase of JH renders the system much more incoherent and "bad
metal"-like for the same value of U , while the spectral weight at the Fermi level differs strongly
between the orbitals but remains finite even for larger values of U .

We also checked the case of negligible Hund’s coupling by setting JH = 0, which recovered
the coherence properties even at T = 300 K, with low effective masses around 1.4 and a spectral
function that resembled quite well the DFT density of states.

8.3.7 Tight binding analysis
In order to quantify at the level of DFT the effects of negative pressure introduced by isovalent
doping in AFe2As2 (A = K, Rb, Cs, Fr), we calculated the Fe-Fe hopping matrix elements via
projective Wannier functions. The absolute values of the hopping parameters from a 10-band tight
binding fit to the Fe 3d orbitals are plotted in Fig. 8.11 (a). In this model the hoppings through
the arsenic site are integrated out and thus are included in the effective hopping. There are two
main contributions that affect the values of the Fe-Fe hopping parameters: First, the increase of
the interatomic distances due to increasing atomic radii of the alkali ions implies a decrease of the
direct Fe-Fe hopping. Second, due to elongation of the Fe-As tetrahedron, the As atom moves closer
to the Fe-Fe plane. This reduction of the Asz height leads to an increase of the indirect hopping
along the path Fe-As-Fe. The total contribution of these two effects translates into a non-trivial
behavior of the Fe-Fe effective hoppings along the doping series (K,Rb,Cs)Fe2As2. The Fe 3dxy-
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Figure 8.11: (a) The eight largest effective Fe-Fe hopping parameters t obtained from a 10-band
tight binding fit to the Fe 3d orbitals. In this model the hoppings through the arsenic site are inte-
grated out and thus included in the effective hopping. Also shown are some second nearest neighbour
parameters indicated by the label NN2. The non-trivial evolution of the hopping values with increas-
ing lattice parameter and reduced Asz height leads to different degrees of localization and effects of
correlation in the Fe 3d orbitals along the series KFe2As2, RbFe2As2, CsFe2As2 and FrFe2As2.
In comparison (b) shows the first six largest hopping parameters t for the Fe-Fe hopping obtained
from a 16-band tight binding fit, where the arsenic contribution is excluded. As a result, the increas-
ing lattice parameter results in an almost perfect linear decrease of the hoppings. Fei denotes the
i-th atom out of the two equivalent iron atoms in the irreducible Brillouin zone.

Fe 3dxy effective hopping is the smallest in KFe2As2 due to the almost perfect cancellation of the
two contributions as pointed out in Ref. [28]. As the lattice parameter increases, the indirect Fe-As-
Fe hopping contribution outweighs the contribution coming from the direct Fe-Fe orbital overlap.
This causes a slight increase of the hopping parameters from KFe2As2 to CsFe2As2. These two
contributions are very similar for hoppings between Fe 3dxz/yz orbitals. The trend in the hoppings
between Fe 3dz2 and 3dx2−y2 orbitals is less affected by changes of the indirect hopping contribution
and shows a small overall decrease in the hopping to the neighboring Fe 3d orbitals.

In comparison we also show in Fig. 8.11 (b) the six largest Fe-Fe hopping parameters obtained
from a 16-band tight binding fit, encompassing the Fe 3d and As 4p orbitals. By this, the effec-
tive hopping through the arsenic site is not included in the Fe hopping parameters. The overall
monotonous decrease resembles the increase of the interatomic distance that leads to a reduced
overlap of the neighboring Fe 3d orbitals. As already noted, the indirect hopping through the As 4p
orbitals has an important effect on the effective hopping parameters. Taking only the direct Fe-Fe
hopping into account, we observe the expected decrease of the hopping parameters which resembles
the reduced hybridization as the lattice parameters are increased.

8.4 Conclusions
From our extended analysis of the hole-doped iron-pnictide series AFe2As2 (A = K, Rb, Cs) as
well as the fictitious FrFe2As2 and a-axis stretched CsFe2As2 we conclude that the monotonous
increase of the a lattice parameters and a decrease of the Asz height are responsible for an increase
in correlation and incoherence of the Fe 3d orbitals, albeit orbitally selective, and the systems show
clear features of a Hund’s metal. In this case the Hund’s coupling plays the major role and renders
these materials much more incoherent than expected from the value of the Coulomb repulsion U
alone. While the most correlated orbitals (dxy) show features that resemble those of being close to
an orbital selective Mott transition, specially for a-stretched CsFe2As2, the system is deep in the
incoherent bad metal regime with a finite spectral weight at the Fermi level even for U = 6 eV and
JH = 1.2 eV.

Experimentally, we predict that an increase of the Fe-Fe distance in CsFe2As2 by stretching will
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induce an orbital dependent increase in correlations and incoherence of the Fe 3d orbitals, where the
Fe 3dz2 and Fe 3dxy orbitals are strongly, but not fully localized and the other Fe 3d orbitals retain
a bad metallic behaviour. From our results we estimate the coherence temperature to be located
around 50 K in KFe2As2 and even lower for RbFe2As2 and CsFe2As2 in qualitative agreement with
the experimental observations. This justifies the choice of the nominal double counting scheme,
since in our previous study of KFe2As2 in Chapter 7 within the FLL scheme we obtained a very
similar spectral function away from the Fermi level, but states that were too coherent at the Fermi
level compared to experiment. In general, these features make the hole doped end systems of the 122
iron pnictides, namely KFe2As2, RbFe2As2 and especially CsFe2As2 and a-axis stretched CsFe2As2

a valuable test bed to study the behavior of strongly correlated Hund’s metals and orbital-selective
bad metallicity and its interplay with superconductivity.
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In this chapter we come back to a system that has been the drosophila of correlated electron
methods: the strongly correlated cubic perovskite SrVO3. Being one of the first systems studied
within LDA+DMFT, it can basically be seen as the starting point for its success. While being struc-
turally very simple, it shows effects of strong electronic correlations that are interpreted as upper and
lower Hubbard bands in the spectral function, where LDA+DMFT can obtain a very good agreement
with experimental observations.

However, in this investigation which was done in collaboration with the experimental group of
Santander-Syro et al. (Université Paris-Sud, France), we show that the interpretation of the spectral
features found in SrVO3 solely in terms of Hubbard bands is not correct and oxygen vacancies play
an important role in the final spectrum. Moreover, we demonstrate that LDA+DMFT is not only
able to capture the contribution of incoherent spectral weight arising from a Hubbard band, but in
addition can also describe coherent states arising from oxygen vacancies below the Fermi level on
the same footing.

By this, the theoretical investigation in combination with experiments enables us to disentan-
gle the contributions coming from the oxygen vacancy states and from the lower Hubbard band
in SrVO3. Our results show the relevance of potential spurious states affecting angular-resolved
photoemission spectroscopy (ARPES) experiments in correlated metals, which are associated to the
ubiquitous oxygen vacancies as extensively reported in the context of a two-dimensional electron
gas (2DEG) at the surface of insulating d0 transition metal oxides.

9.1 Introduction
Among the most emblematic achievements of DMFT is the prediction of a Hubbard satellite, which
splits off of the conduction band of a metal. This satellite results from the partial localization of
conduction electrons due to their mutual Coulomb repulsion. Early DMFT studies also showed that
it is the precursor of the localized electronic states of a Mott insulator [196]. Since then, these
predictions promoted a large number of studies using photoemission spectroscopy, which is a tech-
nique to directly probe the presence of Hubbard bands. In this context, the transition metal oxide
(TMO) SrVO3 has emerged as the drosophila model system to test the predictions of strongly cor-
related electron theories. In fact, SrVO3 is arguably the simplest correlated metal. It is a cubic
perovskite, with nominally one electron per vanadium site, which occupies a 3 fold degenerate t2g
conduction band. While the presence of a satellite in the photoemission spectra of Ni metal was
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already well known, in the context of correlated TMOs, the Hubbard band was originally reported
in a systematic investigation of Ca1−xSrxVO3 [197], which was followed by many subsequent stud-
ies, including ARPES [54, 55, 198] and comparison with theoretical predictions (see for instance
Refs. [36, 51, 57, 123, 126, 199–204] among others).

One of the most salient features in SrVO3 is the observation of a broad peak at an energy of
about −1.5 eV in angle integrated photoemission spectra, (see upper black curve in Fig. 9.1 (a)),
which is interpreted as a Hubbard satellite linked to the V t2g electrons. This feature is also seen
in a large range of 3d1 materials [205, 206]. The ratio of spectral strength between the quasiparticle
state and the incoherent satellite in SrVO3 is an important indicator of the magnitude of electron
correlations [80,207]. However, photoemission experiments using different photon energies or light
brilliance have reported very dissimilar values for such ratio [51], making the quantitative bench-
marking of realistic ab initio theories for correlated-electron systems difficult [51,52,197,203,208].
Moreover, as shown in Fig. 9.1 (a), a broad peak at about the same energy is also observed in sev-
eral d0 TMO cubic perovskites, such as SrTiO3, KTaO3, or anatase TiO2. Nevertheless, in all these
cases the feature has been clearly linked to the presence of oxygen defects [209–216]. Interest-
ingly, recent ab initio calculations show that spectral weight at −1.3 eV in SrTiO3 most likely is
not of Ti t2g orbital character, but should be understood as an in-gap defect state with Ti eg char-
acter [217–220]. Thus, we are confronted with the fact that at about 1.5 eV below the Fermi level,
we find the lower Hubbard bands of d1 systems as well as the in-gap states of oxygen-deficient d0

systems. In view of these observations one may unavoidably wonder (and worry), despite the great
success of LDA+DMFT methods, whether the putative Hubbard satellite of SrVO3 might also orig-
inate from oxygen vacancies states. Moreover, one should also worry about the possibility of these
extrinsic states affecting the features of the conduction band dispersion. These are the questions that
motivated us to take a closer look at the presumably simplest correlated system of SrVO3.

In order to provide context for our theoretical investigations, we present the results of the sys-
tematic photoemission study of SrVO3 by the group of Santander-Syro et al., to demonstrate dra-
matic consequences in the spectra due to production of oxygen vacancies. The ARPES experiments
will show that the UV/X rays used for measurements can produce a large enhancement, of almost
an order of magnitude, of the peak at −1.5 eV, similar to the effect observed in d0 oxide insula-
tors [210–212, 215, 221]. Despite these significant effects on the energy states around the Mott-
Hubbard band, the experiments are able to determine the bulk SrVO3 photoemission spectrum in
the zero-vacancy limit, where a clear signal of the correlated Hubbard band remains. We support
the interpretation of the experimental data by means of our LDA+DMFT calculations on SrVO3

with oxygen vacancies. Consistent with the experimental data, our calculations show that oxygen
vacancies produce states (of eg symmetry) at energies near the Hubbard satellite. While our study
provides definite evidence of a correlated Hubbard band in SrVO3 as predicted by LDA+DMFT, it
also underlines the significant effects due to oxygen vacancies, which may also affect photoemission
data in other TMOs.

9.2 Computational and experimental details
For the DFT calculations in the local density approximation (LDA) and LDA+DMFT calculations
we consider a 2 × 2 × 3 supercell where two adjacent oxygen atoms to a vanadium have been re-
moved. This leads to a stripe-like configuration of vacancies with a concentration of 2/36 ≈ 5.56%.
The internal atomic positions of this structure has been relaxed using the GPAW code [222]. For the
LDA+DMFT calculations we used the WIEN2K [161] implementation in the local density approx-
imation in combination with a continuous-time quantum Monte Carlo (CTQMC) impurity solver
in the hybridization expansion [8] from the ALPS [9, 164] project. We projected the Bloch wave
functions onto localized V 3d orbitals [36, 163] (see Chapter 6.2) in the unit cell, leading to a set
of 6 inequivalent impurities for the two vacancy structure. Within the DMFT approximation we
assume that (i) the multiple impurity atoms only hybridize with an effective bath that is determined
self-consistently and (ii) the intersite hybridization to be small. This allows us to solve the impurity
problems separately and obtain the local Selfenergy for all 6 vanadium atoms, as described in Chap-
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ter 6.5. The projection comprises the V t2g and eg orbitals in the energy window [−1.5, 6.0] eV.
The calculations were performed for the inverse temperature β = 40 eV−1 (290 K) with the inter-
action parameters used in the definition of the Slater integrals [85] with average U = 2.5 eV and
JH = 0.6 eV (see Chapter 6.6). For the double counting correction we used the FLL [82, 167]
scheme and we checked that different values of the double counting only lead to small quantitative
changes in the spectral function. We performed analytic continuation directly on the impurity Self-
energies Σa(iωn) by stochastic analytic continuation [93] to obtain Σa(ω) on the real axis. In the
following we always show the atom- and orbital resolved spectral function of the t2g and eg states
summed over all atoms.

In this chapter we also included the effects of bandwidth renormalization due to dynamically
screened Coulomb interactions using a low-energy effective model with an effective Hamiltonian

Heff = −
∑
ijσ

ZBtijd
†
iσdiσ + U

∑
i

d†i↑di↑d
†
i↓di↓, (9.2.1)

with the screened Hubbard interaction U , where the renormalization parameter ZB mimics the effec-
tive bandwidth renormalization introduced by a frequency dependent screened Coulomb interaction.
This approach has been suggested in Ref. [56], and proved to be a good approximation to the full
treatment of the dynamically screened Coulomb interaction. For the bandwidth renormalization
factor we used ZB = 0.7 [56].

The bulk crystalline (001) oriented SrVO3 thin films were grown by pulsed laser deposition
(PLD) either at the GEMaC laboratory, then measured at the CASSIOPEE beamline of Synchrotron
SOLEIL, or in a PLD chamber directly connected to the ARPES setup at beamline 2A of KEK-
Photon Factory (KEK-PF) [55, 223] by the group of Santander-Syro et al. Directions and planes are
defined in the cubic unit cell of SrVO3. We note [hkl] the crystallographic directions in real space,
〈hkl〉 the corresponding directions in reciprocal space, and (hkl) the planes orthogonal to those
directions. The indices h, k, and l of Γhkl correspond to the reciprocal lattice vectors of the cubic
unit cell of SrVO3. Further details about the experimental setup, sample growth and measurements
can be found in the original publication [224].

9.3 Results

9.3.1 Experimental results
Figure 9.1(b) shows the integrated photoemission spectra of SrVO3 as a function of the UV dose,
measured at SOLEIL under the same conditions of light brilliance of any standard ARPES exper-
iment at a third-generation synchrotron. The measurements were done by continuously irradiating
the sample with hν = 33 eV photons while recording the spectra as a function of irradiation time,
with an accumulation time of about 2 minutes per spectrum. The blue and black curves show spectra
for the lowest and highest measured doses, obtained respectively after ∼ 2 minutes and ∼ 2 hours
of irradiation. These data clearly demonstrate that the very UV/X rays used for photoemission ex-
periments can effect radical changes in the measured spectra of SrVO3. Note in fact that a similar
effect has been observed for VO2 [225]. In particular, from Fig. 9.1(b) it can be observed that the
amplitude of the in-gap state at −1.5 eV, and more significantly, the ratio of in-gap to quasiparticle
(QP) amplitudes, strongly increase with increasing UV dose, going from about 1 : 3 in a pristine
sample to more than 2 : 1 in a heavily irradiated sample. Importantly, note that the QP peak position
remains basically dose-independent, implying that the carriers created by the UV/X irradiation do
not significantly dope the conduction band, and form dominantly localized states. This is confirmed
in Fig. 9.1(c), which shows that the Fermi momenta of the QP band, given by the peaks’ positions
in the momentum distribution curves (MDCs) at EF, are also dose-independent. Thus, the observed
increase in intensity of the in-gap state upon UV irradiation cannot be ascribed to a change in filling
of the conduction band, which could have affected the electron correlations. Instead, this unam-
biguously shows the light-assisted formation of localized defect states at essentially the same energy
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Figure 9.1: (a) Integrated UV photoemission spectra for various perovskite oxides, showing a quasi-
particle peak (QP) at EF and an in-gap state at energies between -1 eV and -1.5 eV. For SrVO3 (up-
per black curve), a correlated-electron metal, the QP peak corresponds to the bulk conduction band,
and as will be shown further, the in-gap sate is a superposition of the lower Hubbard band and local-
ized electronic states associated to oxygen vacancies. For the other d0 oxides, such as KTaO3 (blue
curve), anatase TiO2 (green curve), or SrTiO3 (red curve), the QP peak and in-gap state correspond
respectively to a confined quasi-2D electron gas at the sample surface and to localized states, all
formed by oxygen vacancies. The crystal orientation (normal to the samples’ surface) is indicated
in all cases.
(b) Photoemission spectra of SrVO3 as a function of UV dose, measured at Synchrotron SOLEIL.
The energy distribution curves (EDCs) were extracted from raw ARPES data around the Γ002 point
integrated along the k =< 010 > direction, obtained by the group of Santander-Syro et al.. (c) Cor-
responding momentum distribution curves (MDCs) integrated over 50 meV below EF. Peaks in the
MDCs indicate the Fermi momenta. (d, e) Same as (b, c) for SrTiO3. The filling of a 2DEG upon
UV irradiation is evidenced by the formation of QP peaks in the EDCs and MDCs at EF (inset of (c)
and panel (d), respectively). All data were taken at 20 K.

as that of the expected intrinsic lower Hubbard band, which should then resemble the in-gap peak
observed at the lowest UV doses.

In fact, as mentioned previously, it is well established that strong doses of UV/X rays create
a large concentration of oxygen vacancies in several d0 perovskites [209–216, 226]. As illustrated
in Figs. 9.1(d, e) for the case of SrTiO3, the progressive doping of the surface region with oxygen
vacancies, due to synchrotron UV irradiation, has two effects: formation of a very intense in-gap
state at about −1.3 eV, and, in contrast to SrVO3, simultaneous creation of a sharp QP peak at EF
corresponding to a confined quasi-2D electron gas (2DEG) at the samples’ surface. The effective
mass of such 2DEG, precisely determined by ARPES, matches the mass expected from density
functional theory calculations [210, 211, 227, 228]. Thus, as in SrVO3, the increase in intensity of
the in-gap state observed in SrTiO3 upon UV/X irradiation cannot be due to an onset or increase of
electron correlations, and should be ascribed to an extrinsic effect.

This leads to the conclusion that in SrVO3 exposure to synchrotron UV/X rays creates oxygen
vacancies, which are in turn responsible for the extrinsic increase in intensity of the in-gap state
evidenced by our measurements. This effect, never discussed or taken into account in the literature
before our investigation, can seriously obscure the determination of the spectral function of this
model system, thus hampering the advancement of valid theories for correlated-electron systems.

All the previous findings imply that the correct experimental determination of the vacancy-free
photoemission spectrum of SrVO3 should (i) use samples that from the beginning have the lowest
possible concentration of oxygen vacancies, and (ii) use doses of UV or X-ray light low enough to
avoid light-induced changes in the measured spectra. To this end, we show the results of the mea-
surement of SrVO3 thin-films grown directly in-situ at beamline 2A of KEK-PF by our experimental
collaborators. As mentioned before, the growth protocol of such thin films minimizes the forma-
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Figure 9.2: (a) Energy-momentum ARPES intensity map measured at KEK-PF with a low UV dose
on an SrVO3 sample prepared in-situ, using a well-established protocol to minimize the formation of
oxygen vacancies (see main text). Note that due to the choice of light polarization, the heavy bands
along (100) are not observed and only the contribution of the light dxy band is detected. (b) Same as
(a) after a strong UV irradiation dose, measured at SOLEIL, and typical of modern third-generation
synchrotrons. All data were taken at 20 K.

tion of vacancies, while the UV light brilliance at KEK-PF is ∼ 100 times smaller than the one in
Figs. 9.1(b, c) from measurements at SOLEIL. Under these conditions the spectra did not change
with time, even after several hours of measurements.

The resulting energy-momentum ARPES map is shown in Fig. 9.2 (a). One clearly observes
the dispersing QP band along with the weaker intensity in-gap state, corresponding to the intrin-
sic lower Hubbard band, as reported in previous works [54]. By contrast, Fig. 9.2 (b) shows the
momentum-resolved electronic structure of a sample, measured at SOLEIL, that was intensively
irradiated. There, the peak at −1.5 eV becomes broader, more intense, and non-dispersive –all
characteristic signatures of a high random concentration of oxygen vacancies.

9.3.2 Theoretical results
To rationalize from a microscopic point of view the influence of oxygen vacancies on the electronic
structure of SrVO3, we performed charge self-consistent LDA+DMFT calculations for bulk SrVO3

and various relaxed oxygen-deficient SrVO3 supercells. The latter are computationally demanding
calculations. We shall focus here on the case of a 2 × 2 × 3 supercell with two oxygen vacancies
located at opposite apical sites of one vanadium atom, as shown in the inset of Fig. 9.3 (b). We use
such vacancy arrangement as it is the prototypical one for d0 compounds [227].

For our LDA+DMFT calculations we chose values of U = 2.5 eV and J = 0.6 eV for vana-
dium and included the effects of bandwidth renormalization due to dynamically screened Coulomb
interactions as described in the previous section. The unrenormalized data LDA+DMFT are shown
in the next section.

In Figs. 9.3(a) and (c) we show, respectively, the results of the k-integrated and k-resolved spec-
tral functions for bulk SrVO3 without oxygen vacancies. We find the expected features of a t2g
quasiparticle peak at the Fermi level and a lower Hubbard band at negative energies of the same t2g
nature, in agreement with the photoemission spectra in Figs. 9.1(b) and 9.2 (a). The light band at EF
along k<100> (see Fig. 9.3(c)), consists of two degenerate bands of dxy and dxz characters, while
the heavy band along the same direction has dyz character. While comparing with the measured
k-resolved spectral function, Fig. 9.2(a), one should bear in mind that along Γ-X (or Γ-Y) the heavy
dyz (or dxz) bands are silenced by dipole-transition selection rules in the experiment [210]. Inclu-



136 9. Electronic correlations and oxygen vacancies in SrVO3

Figure 9.3: LDA+DMFT results for SrVO3 including bandwidth renormalization effects [56]. (a)
k-integrated spectral function for bulk SrVO3. The V t2g orbitals show a quasiparticle peak at EF

and a lower Hubbard band at −1.6 eV. (b) Spectral function for the 2 × 2 × 3 supercell of SrVO3

with two oxygen vacancies. An additional non-dispersive V eg vacancy state originating from the V
atom neighboring the oxygen vacancies lead to a sharp peak below the Fermi level at −1.1 eV. The
V t2g orbitals show a quasiparticle peak at EF and a lower Hubbard band at −1.8 eV. (c) and (d)
show the corresponding spectral functions (multiplied by a Fermi-Dirac function at 20 K) along the
X-Γ-X path.

sion of bandwidth renormalization [56] renders the lower Hubbard band at an energy (−1.6 eV) in
reasonable agreement with experiment (−1.5 eV). Please note the difference in position of the lower
Hubbard band compared to Fig. 6.2 in Chapter 6.3 which was obtained without the inclusion of the
effective bandwidth renormalization. We adopted typical values for U and JH from the literature.
We did not attempt to further optimize the values to get a better quantitative agreement with the
experimental data, due to two reasons. Firstly, the heavy numerical cost, and secondly, as we show
next in the calculations with oxygen vacancies, the adopted values facilitate the distinct visualization
of the contributions from the Hubbard and localized states to the incoherent peak at ∼ −1.5 eV.

The removal of oxygen atoms in the system leads to the donation of two electrons per oxygen to
its surrounding. Already at the level of density functional theory in the local density approximation
(see Fig. 9.4), we find that most of the charge coming from the additional electrons is transferred
to the 3dz2 orbitals of the neighbouring V atom, developing into a sharp peak of eg symmetry lo-
cated around −1.1 eV, i.e. at an energy close to the position of the experimentally observed oxygen
vacancy states. In analogy to the experimental average over many lattice sites, note that averaging
among various supercells with different oxygen vacancy locations and concentrations (what is be-
yond the scope of this work) would result in a wider in-gap eg band, as demonstrated for the case of
SrTiO3 (see Fig. 3 of Ref. [218]) and for some cases in SrVO3 (see Fig. 9.5). By including electronic
correlations within (bandwidth renormalized) LDA+DMFT we then see that all the experimental ob-
servations qualitatively emerge. In fact, the conducting t2g orbitals develop a lower Hubbard band
peaked at energies about −1.8 eV (Figs. 9.3(b) and (d)) similar to the bulk case without oxygen
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Figure 9.4: Comparison for bulk SrVO3 between (a) the DFT result, (b) the LDA+DMFT result,
and (c) the LDA+DMFT including an effective treatment of the dynamical Coulomb interacting
screening indicated by a *. (d-f): Same comparison for the 2 vacancy structure of SrVO3. The main
effect of the renormalization factor is a shift of the upper and lower t2g Hubbard bands towards the
Fermi level, yielding a better agreement with experiment.

vacancies. Most notably, this lower Hubbard satellite does not increase in amplitude with the intro-
duction of vacancies, but rather broadens. In addition, the oxygen-vacancy defect states situated at
about −1 eV remain qualitatively unchanged by the correlation effects, but experience a broadening
with respect to the pure LDA case. This is in agreement with the photoemission data measured by
our experimental collaborators, evidencing that the increase in intensity of the in-gap state in the
oxygen-deficient SrVO3 is not to be attributed to an increase in population of the lower Hubbard
satellite, but instead to the manifestation of vacancy states of eg character.

9.3.3 Standard LDA+DMFT vs. LDA+DMFT including dynamical screening
In Fig. 9.4 we show a comparison between standard DFT, “standard” LDA+DMFT and the
LDA+DMFT approach including the effective screening of the Coulomb interaction for a)-c) bulk
SrVO3 and d)-f) the two vacancy structure of SrVO3. The main effect of including the Coulomb
interaction screening via this approach is a shift of the upper and lower t2g Hubbard bands towards
the Fermi level, originating from the effective reduction of bandwidth. Compared to experiment,
“standard” LDA+DMFT consistently locates the lower Hubbard band at higher binding energies, in
both the bulk and vacancy structure, whereas the effective model yields a much better agreement.
Especially in the bulk system the position of the lower Hubbard band is brought to a good agreement.

Finally, the calculations with oxygen vacancies produce a ladder of heavy bands near EF, that
originate from the non-equivalence in all the vanadium atoms of the super-cell contributing t2g bands
near the Fermi level. This V non-equivalence is due to the presence of oxygen vacancies that lower
the symmetry. In the more realistic case with larger cells, only the in-gap eg states of the V near the
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Figure 9.5: GGA Total and Vanadium eg resolved density of states (DOS) for 2× 2× 3 bulk and the
2× 2× 4 slab structures with two oxygen vacancies. See text for details.

vacancy/vacancies would produce a significant spectral feature, while essentially all the vanadium
atoms of the cell would be equivalent, and the effects of the t2g states coming from the few non-
equivalent vanadium atoms around the vacancy would be negligible. At present, such a calculation
is however computationally infeasible in the framework of LDA+DMFT.

9.3.4 Comparison of DFT results between different oxygen vacancy configu-
rations

In order to strengthen the claim regarding the position of the in-gap states, we have also constructed
a stoichiometric 2× 2× 4 slab of SrVO3 with 20Å of vacuum and two oxygen vacancies in the VO2

surface. We have relaxed this structure with the Vienna Ab initio simulation package (VASP) [229].
Both for the 2 × 2 × 3 bulk and the 2 × 2 × 4 slab structures with two oxygen vacancies we
have performed GGA calculations with the full potential local orbital (FPLO) method [190]. The
calculations have been converged with 12×12×12 k points in the bulk and 8×8×8 k points in the
slab case. As shown in Fig. 9.5, we find that the in-gap state for the slab appears around −1.5 eV,
and shows a weak dispersion due to the finite size of the slab considered, while the in-gap state for
the supercell is at −1 eV. Additionally, we also checked the effects of correlations on that in-gap
state via GGA+U calculations (see Chapter 2.5), which showed no significant effect on its position.
Therefore, we conclude that also LDA+DMFT will not change the position of the in-gap state, as we
have already found to be the case in all other calculations we performed. So the lower Hubbard band
will indeed fall in the same position as the in-gap state of vanadium eg character when considering
an average over various spatial distributions of vacancies.

9.4 Conclusion
In conclusion have found that oxygen vacancy states, which are created by UV/X-ray irradiation of
the sample, emerge at energies close to the Hubbard satellite in this material and contribute with
significant weight to the total spectral function. This dramatically affects the measured line-shape of
the Mott-Hubbard band and the ratio of intensities between the quasi-particle and the Mott-Hubbard
peaks.

In the experimental investigations performed by the group of Santander-Syro et al. it was pos-
sible to extract the photoemission spectrum of the bulk SrVO3 system in the zero-vacancy limit,
confirming the presence of a lower Hubbard band also in the bulk system. This is a satisfactory
result since it showed the validity of previous LDA+DMFT investigations of this material that so far



9.4 Conclusion 139

had never considered oxygen vacancies in the calculation. Furthermore, we could show that within
a multi-vacancy supercell calculation LDA+DMFT is able to capture both the contributions of the
incoherent spectral weight arising from the lower Hubbard band and as well as the coherent states
induced by oxygen vacancies.

These results will have important implications for the interpretation of spectral properties also in
other correlated materials that are prone to the formation of vacancies. Furthermore, LDA+DMFT
has proven to be a valuable tool for the explanation of experimental observations also for the study of
intricate structural configurations with multiple non-equivalent atoms, where both effects of strong
and weak electronic correlations are present.
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Chapter 10

Summary and Outlook

In this thesis we have introduced the LDA+DMFT method to obtain insight into the electronic prop-
erties of strongly correlated systems and applied this method to the rather new type of iron-pnictide
superconductors.

In Chapter 2 we started with an introduction into density functional theory (DFT), today’s state-
of-the-art method for electronic structure calculations and discussed the most common approxima-
tions that are applied to the Coulomb interaction. In this context we have seen that DFT has certain
weaknesses regarding the correct description of strongly correlated systems, which mainly stem
from the approximation of the exchange-correlation functional that is derived from a homogeneous
electron gas and, therefore, underestimates electronic correlations.

In preparation for an improved treatment of electronic correlations we introduced the Green’s
function formalism in Chapter 3. Green’s functions proved to be a very useful tool to clearly identify
the difference between a non-interacting and an interacting system in the form of a Selfenergy and
the relation between them. We discussed the peculiarity of the imaginary time formalism and how it
can simplify the calculation of interacting Green’s functions.

Connected to that, we dedicated Chapter 4 to the problem of analytic continuation that arises
when we extract observable properties from Green’s functions defined on the imaginary time or
frequency axis. Since this problem is very ill-conditioned, even small numerical noise in the input
can lead to unphysical results in the observable properties. Therefore, sophisticated probabilistic
or stochastic approaches are needed, from which we discussed the most common, the maximum
entropy method and the more general approach of the stochastic analytic continuation method.

With the Green’s function formalism as a background, we were able to introduce the dynamical
mean-field theory (DMFT) in Chapter 5 as an approach to solve strongly correlated lattice models.
We saw that in the DMFT limit of infinite dimensions or infinite number of nearest-neighbours the
Selfenergy becomes momentum-independent and the lattice model can be mapped onto an effective
Anderson impurity model which leads to a tremendous simplification of the problem. Being non-
perturbative in both the kinetic energy and Coulomb interaction, the DMFT turned out to be well
suited for the investigation of strongly correlated systems.

In Chapter 6 we then discussed how DMFT can be applied to investigate realistic systems within
the LDA+DMFT method. This method combines density functional theory for obtaining an effective
lattice model with parameters that describes the real system with high accuracy and DMFT for solv-
ing this effective model and properly accounting for electronic correlations. We further discussed the
difficulties that arise in the actual implementation, like obtaining a local basis from the Kohn-Sham
wave functions in DFT, the choice of the energy window of states taken into account, the double
counting problem and how to obtain observables like the Fermi surface from the converged Green’s
function.

We then studied the hole-doped iron-pnictide superconductor KFe2As2 within LDA+DMFT and
presented our results in Chapter 7. We found that KFe2As2 is a rather strongly correlated metal,
where DFT is incapable of explaining the electronic structure found in photoemission experiments.
The treatment of electronic correlations within DMFT improved the agreement with experiment con-
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siderably and allowed us to obtain the correct Fermi surface topology in this system. The modified
shape of the Fermi surface cylinders also resulted in an improved description of the de Haas-van
Alphen frequencies.

We then continued the study of the hole-doped 122 family of iron-pnictide superconductors
based on the isovalent series (K,Rb,Cs)Fe2As2 in Chapter 8, which allowed for a unique investi-
gation of the effect of pressure and lattice expansion on electronic correlations. While the starting
point system KFe2As2 already shows significant effects of correlation, the strength of correlations
and especially the incoherence properties increased dramatically as the system was substituted with
atoms of increasing radius. We attribute these changes to an increase of the localization of the iron
3d orbitals caused by the lattice expansion, confirmed by the reduced hopping amplitudes between
the iron atoms. We showed that these systems are so-called Hund’s metals, where the Hund’s cou-
pling JH is responsible for a suppression of orbital fluctuations that lead to a highly incoherent bad
metal behaviour in these systems which are still not in direct proximity of a Mott transition.

Finally, in Chapter 9 we return to one of the best studied system within LDA+DMFT, the cu-
bic perovskite SrVO3, which was known so far to show effects of strong electronic correlations in
form of an upper and lower Hubbard band. Since related systems are known for oxygen vacan-
cies being responsible for the emergence of an additional state at lower energies, we considered
the question of whether the low energy feature in SrVO3 might actually also be caused by oxygen
vacancies rather than strong electronic correlations. To answer this question, we employed sophis-
ticated LDA+DMFT calculations including oxygen vacancies in collaboration with an experimental
group performing photoemission experiments. LDA+DMFT turned out to be well suited for this
problem since, being non-perturbative in both the kinetic energy and Coulomb interaction, it can
describe weakly as well as strongly correlated systems on equal footing. From our results we were
able to conclude that in the vacancy-free case there indeed does exist a lower Hubbard band, while
in the realistic case of a low vacancy concentration a superposition of a lower Hubbard band and an
additional in-gap state introduced by oxygen vacancies at the same energy are present.

As we have seen, LDA+DMFT can provide an important contribution to an improved under-
standing of strongly correlated systems. This was made possible by going to the limit of infinite
dimensions, which resulted in a momentum-dependent Selfenergy, simplifying the problem signifi-
cantly. Therefore, non-local fluctuations are completely neglected. While this approximation is not
severe for many realistic systems with high coordination number, spatial fluctuations, e.g. in the
vicinity of a phase transition, are important and are necessary for a correct description of the phys-
ical properties. Especially in low-dimensional systems this neglect of spatial fluctuations can lead
to significant deficits, like in the two-dimensional Hubbard model where standard DMFT drastically
underestimates the critical interaction strength of the Mott transition [230–234].

There are a number of possible extensions to include spatial fluctuations and thus reintroduce
the momentum dependence of the Selfenergy. Most of them restrict the range of these fluctuations
or treat them perturbatively around the local limit, since the computational cost usually scales expo-
nentially with higher orders.

Cluster DMFT approaches divide the lattice system into separate cells that consist of several
sites, where non-local correlations are considered only inside each cell but not between cells [116,
235, 236]. Another similar approach which works in momentum space is the dynamical cluster
approximation [237, 238]. It divides the Brillouin zone into patches, where inside each patch the
Selfenergy is constant but can be different for each patch due to the different parts of the Brillouin
zone included.

For perturbative expansions around the local limit, the most direct approach is to add all diagrams
to next order in 1/d, as proposed in [239]. Another diagrammatic expansion is the dual fermion
approach [240], or the dynamical vertex approximation (DΓA) [241, 242].

Apart from the local approximation, LDA+DMFT still faces some fundamental problems by
construction, like that of the double counting discussed in Chapter 6.4. A possible alternative
that replaces the LDA part in LDA+DMFT by a purely diagrammatic approach is the GW+DMFT
method [243, 244] based on Hedin’s GW approximation [245]. It has the advantage of being able to



143

identify the correlations accounted for in both GW and DMFT, thus in principle removing the double
counting problem, as well as treating the non-local parts of the Coulomb interaction.

Another aspect is the screening of the Coulomb interaction by all states that are not treated as
correlated. This is in principle a dynamical process, since the screening is for example less efficient at
high frequencies, so already the local U term picks up a frequency dependence [127,130]. Inclusion
of frequency dependent interactions in the DMFT impurity model is possible and often combined
with GW+DMFT [56, 128, 129].

While all these issues and difficulties are very important and decisive for the reliability of
LDA+DMFT, it has already proven to be quite a robust and promising method that lead to a sig-
nificant improvement of our understanding of correlated electronic systems. Still, it is important
that further work is done on resolving the issues states above to secure the future success of the
LDA+DMFT method. Compared to the well established DFT method, it is still a young and evolv-
ing field and will for sure mature over time as its popularity grows.
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Appendix

In order to evaluate the high frequency correction terms analytically, we use the result from Cvijović
and Klinowski [246]
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For τ ∈ (−β, 0) we can reuse the above equations and get
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e−iωn(−|τ |) c3
(iωn)3

= −
(

1

β

∞∑
n=−∞

e−iωn|τ |
c3

(iωn)3

)∗
(10.35)

= −c3
4
τ (β − τ) (10.36)

1

β

∞∑
n=−∞

e−iωn(−|τ |) c4
(iωn)4

=

(
1

β

∞∑
n=−∞

e−iωn|τ |
c4

(iωn)4

)∗
(10.37)

=
c4
48

(2τ − β)(2τ2 − 2τβ − β2) (10.38)

This result could also be obtained by using the property of the imaginary time Green’s function
F (−τ) = −F (β − τ) and evaluating the results from above at β − τ with an overall sign change.
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