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Central motivation: bad metallic transport
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Two experimental challenges for theorists (ussey, Takevaxs & Takacrod):
@ T-linear resistivity violating the MIR bound: no
quasiparticles
_ m
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e Optical conductivity: far IR peak (~ 102cm~!) moving off
axis as T increases to room temperature.



Planckian dynamics
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The Planckian timescale

Universal scale in all systems at finite temperature which follows
from dimensional analysis

W =Js, [kel=JK, [Tl=K = rmp=_m

In strongly-coupled, quantum systems, expected to be the fastest
equilibration time allowed by Nature and Quantum Mechanics
[SACHDEV,ZAANEN] . At room temperature

Tp ~ 25fs



Off-axis peaks in optical conductivity data (1)
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Off-axis peaks in optical

[PRB 67 134526 (2003)]
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conductivity data (2)
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Planckian dynamics in the optical conductivity [arxiv:1612.04381)
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@ These observations suggest that Planckian dynamics is a
defining feature of both ac and dc transport in bad metals.

@ Planckian dynamics also emerge in the low energy effective
description of strongly-coupled (holographic) quantum
matter.

@ Universal low energy effective theory?



Remainder of this talk
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| will offer a theory based on hydrodynamics and spontaneous
translation symmetry breaking which

@ leads to small dc conductivities;

@ accounts for the far IR off-axis peak in o(w);

@ naturally relates the dc and ac transport timescales.

Disclaimer: effective low energy theory of transport, not a
microscopic theory.



Spontaneous translation symmetry breaking
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Hydrodynamics

Short-lived quasiparticles: conserved quantities are more
fundamental for late-time transport

Ore + Vi =0
o' + Vit =0
Orp + ﬁf: 0
Hydrodynamics: long wavelength description of the system
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CREDIT: BEEKMAN ET AL'16]
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Electronic crystal

We also wish to include a CDW:

p(x) = pocos [@x + ¢(x, t)]

The phase ¢(x, t) is a new dof coming from the SSB of

translations (Goldstone): ‘phonon’ of the electronic crystal.
13



Hydrodynamics of a pinned CDW ([griinerss]

@ Constitutive relation for the current and the Goldstone

j=nev—+..., q'b:v+...

@ Standard procedure to extract retarded Green's functions

[KADANOFF & MARTIN'63].

e Weak disorder: finite momentum lifetime 1/I;
Ot + Witk = I

and pins the Goldstone ¢ with a small mass ko:

K
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Conductivity of a pinned CDW (Griiner'as]

o Conductivity

ne? —iw Relol
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@ Peak at wo = kov/K/Xrr

width .

@ Dc insulator due to Galilean
invariance.
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Conducting CDWs?
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We wish to describe conducting CDWSs. Two mechanisms
@ Relax Galilean symmetry;

@ Introduce phase disordering by mobile dislocations.
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Conducting, non-Galilean invariant CDWs [arxiv:1612.04381)

@ Modified constitutive relation for the current

j=qv—0oVu+..., dp=v+...

0o is a diffusive transport coefficient encoding charge
transport without momentum drag.

e Conductivity

@ Non-zero dc conductivity
Ode = 00+ O(I'z)

@ Can be small even for weak
momentum relaxation: bad
metal.
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Bad metals and quantum fluctuating cdws
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e However, recall that wpeak, Aw ~ O(1/7p): quantum!

@ Quantum fluctuating cdws in underdoped cuprates [kiveisox er
AL03].

@ Quantum fluctuating cdws in the bad metallic regime?
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Phase disordering
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@ In 2d, crystals can melt by proliferation of topological
defects in the Crysta||ine structure [Necson & Harperin'79).

e At T =0: quantum meltlng [KIVELSON ET AL'98, BEEKMAN ET AL’16].

@ The phase gets disordered (~ BKT) at a rate Q: flow of

mobile dislocations, ‘flux-flow' formula (rxw:1702.05104].
10



Conducting, phase-disordered CDWs [arxiv:1612.04381]

@ Now the conductivity reads
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Bad metallic transport from fluctuating CDWs

@ Neglect momentum relaxation I, < wyq, 2:

ne* Q
Ode = ——%
m w2
@ The width and position of the peak are controlled by Q, w,.
The data shows Q ~ w, ~ kg T /h
1 m kB T

:}dziwi
Pde ode nez h

T-linear resistivity!

@ Hydrodynamics of fluctuating CDWs provide a natural
mechanism whereby the ac and dc conductivities are
controlled by the same Planckian timescale.
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Experimental signatures: spectrum

29



Experimental signatures: spatially resolved conductivity

o1(w, k)




Resistivity upturns from fluctuating cdws
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Cyr-Choiniere et al., arXiv:1703.06297
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An upturn occurs as 2 decreases and phase fluctuations dominate
Icpw: relation to underdoped cuprates and static charge order?
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Violation of the Wiedeman-Franz law: pr/T ~1/Q > L,.



Some open questions

o Typical frequency scales of order T: at the edge of validity
of hydrodynamics w < T.

@ The role played by the Planckian timescale is indicative of
quantum criticality [saciosv: quantum critical computation.

e Work in progress: use Gauge/Gravity duality to compute
non-hydrodynamic transport in a metallic phase with
spontaneously broken translation symmetry.
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