### Bad Metals from Fluctuating Density Waves

#### Blaise Goutéraux

NORDITA, Stockholm

Tuesday August 22, 2017

Asia Pacific Center for Theoretical Physics Workshop on Geometry and Holography for Quantum Criticality

# Acknowledgments

Based on

'Bad Metals from Fluctuating Density Waves', [ARXIV:1612.04381], and 'Hydrodynamic transport in phase-disordered charge density wave states', [ARXIV:1702.05104]

together with Luca Delacrétaz, Sean Hartnoll and Anna Karlsson



• My research is supported by a Marie Curie International Outgoing Fellowship, Seventh European Community Framework Programme.



## Central motivation: bad metallic transport



Two experimental challenges for theorists [HUSSEY, TAKENAKA & TAKAGI'04]:

*T*-linear resistivity violating the MIR bound: no quasiparticles

$$\ell k_F \gtrsim \hbar \quad \Rightarrow \quad \rho \equiv \sigma^{-1} = \frac{m}{ne^2 \tau_{tr}} \lesssim \rho_{MIR} \sim 150 \,\mu\Omega.\mathrm{cm}$$

 Optical conductivity: far IR peak (~ 10<sup>2</sup>cm<sup>-1</sup>) moving off axis as T increases to room temperature.

#### Planckian dynamics



[Bruin et al, Science 339 804 (2013)]

**Universal scale** in all systems at finite temperature which follows from dimensional analysis

$$[\hbar] = J.s, \quad [k_B] = J.K^{-1}, \quad [T] = K \quad \Rightarrow \quad \tau_P = \frac{\hbar}{k_B T}$$

In strongly-coupled, quantum systems, expected to be the **fastest equilibration time** allowed by Nature and Quantum Mechanics [SACHDEV,ZAANEN]. At room temperature

$$\tau_P \sim 25 fs$$

# Off-axis peaks in optical conductivity data (1)



6

# Off-axis peaks in optical conductivity data (2)



#### Planckian dynamics in the optical conductivity [arXiv:1612.04381]



- These observations suggest that Planckian dynamics is a defining feature of both ac and dc transport in bad metals.
- Planckian dynamics also emerge in the **low energy effective description** of strongly-coupled (holographic) quantum matter.
- Universal low energy effective theory?

#### Remainder of this talk

10



I will offer a theory based on hydrodynamics and spontaneous translation symmetry breaking which

- leads to small dc conductivities;
- accounts for the far IR off-axis peak in  $\sigma(\omega)$ ;
- naturally relates the dc and ac transport timescales.

**Disclaimer**: effective low energy theory of transport, not a microscopic theory.

#### Spontaneous translation symmetry breaking



# Hydrodynamics

Short-lived quasiparticles: conserved quantities are more fundamental for late-time transport

$$\partial_t \epsilon + \vec{
abla} \vec{\pi} = 0$$
  
 $\partial_t \pi^i + 
abla_k \tau^{ik} = 0$   
 $\partial_t \rho + \vec{
abla} \vec{j} = 0$ 

Hydrodynamics: long wavelength description of the system



[CREDIT: BEEKMAN ET AL'16]

## Electronic crystal



[CREDIT: BEEKMAN ET AL'16]



We also wish to include a CDW:

$$\rho(x) = \rho_0 \cos \left[ Q x + \phi(x, t) \right]$$

The phase  $\phi(x, t)$  is a new dof coming from the SSB of translations (Goldstone): 'phonon' of the electronic crystal.

## Hydrodynamics of a pinned CDW [Grüner'88]

• Constitutive relation for the current and the Goldstone

$$j = nev + \dots, \qquad \dot{\phi} = v + \dots$$

- Standard procedure to extract retarded Green's functions [KADANOFF & MARTIN'63].
- Weak disorder: finite momentum lifetime  $1/\Gamma_{\pi}$

$$\partial_t \pi^i + \nabla_k \tau^{ik} = -\Gamma \pi^i$$

and **pins the Goldstone**  $\phi$  with a small mass  $k_o$ :

$$f = \frac{\kappa}{2}\phi\left(-\partial^2 + k_0^2\right)\phi$$

## Conductivity of a pinned CDW [Grüner'88]

Conductivity

$$\sigma = \frac{ne^2}{m} \frac{-i\omega}{(-i\omega)(\Gamma_{\pi} - i\omega) + \omega_o^2}$$

- Peak at  $\omega_o = k_o \sqrt{\kappa / \chi_{\pi\pi}}$ , width  $\Gamma_{\pi}$ .
- **Dc insulator** due to Galilean invariance.



# Conducting CDWs?



We wish to describe conducting CDWs. Two mechanisms

- Relax Galilean symmetry;
- Introduce phase disordering by mobile dislocations.

# Conducting, non-Galilean invariant CDWs [arXiv:1612.04381]

Modified constitutive relation for the current

$$j = q\mathbf{v} - \sigma_o \nabla \mu + \dots, \qquad \dot{\phi} = \mathbf{v} + \dots$$

 $\sigma_o$  is a **diffusive** transport coefficient encoding charge transport **without momentum drag**.

Conductivity

$$\sigma = \sigma_o + \frac{q^2}{\chi_{\pi\pi}} \frac{-i\omega}{(-i\omega)(\Gamma_{\pi} - i\omega) + \omega_o^2}$$

- Non-zero dc conductivity  $\sigma_{dc} = \sigma_o + O(\Gamma_{\pi})$
- Can be small even for weak momentum relaxation: bad metal.



# Bad metals and quantum fluctuating cdws



- However, recall that  $\omega_{peak}, \Delta\omega \sim O(1/\tau_P)$ : quantum!
- Quantum fluctuating cdws in underdoped cuprates [KIVELSON ET AL'03].
- Quantum fluctuating cdws in the bad metallic regime?

# Phase disordering



- In 2d, crystals can **melt by proliferation of topological defects** in the crystalline structure [NELSON & HALPERIN'79].
- At T = 0: quantum melting [Kivelson et al'98, Beekman et al'16].
- The phase gets disordered (~ BKT) at a rate Ω: flow of mobile dislocations, 'flux-flow' formula [ARXIV:1702.05104].

# Conducting, phase-disordered CDWs [arXiv:1612.04381]

Now the conductivity reads

$$\sigma = \frac{ne^2}{m} \frac{(\Omega - i\omega)}{(\Omega - i\omega)(\Gamma_{\pi} - i\omega) + \omega_o^2}, \qquad \sigma_{dc} = \frac{ne^2}{m} \frac{1}{\Gamma_{CDW}}$$
$$\Gamma_{CDW} = \Gamma_{\pi} + \frac{\omega_o^2}{\Omega}$$

New transport inverse timescale, **non-zero** even if  $\Gamma_{\pi} \sim 0$ .

• **Off-axis peak** for sufficiently small  $\Omega$  or large pinning  $\omega_o$  $\omega_o \ge \frac{\Omega^3}{\Gamma_{\pi} + 2\Omega}$ 

### Bad metallic transport from fluctuating CDWs

• Neglect momentum relaxation  $\Gamma_{\pi} \ll \omega_0, \Omega$ :

$$\sigma_{dc} = \frac{n \, e^2}{m} \frac{\Omega}{\omega_o^2}$$

• The width and position of the peak are controlled by  $\Omega$ ,  $\omega_o$ . The data shows  $\Omega \sim \omega_o \sim k_B T/\hbar$ 

$$\Rightarrow \rho_{dc} = \frac{1}{\sigma_{dc}} \sim \frac{m}{n e^2} \frac{k_B T}{\hbar}$$

*T***-linear resistivity**!

• Hydrodynamics of fluctuating CDWs provide a natural mechanism whereby the ac and dc conductivities are controlled by **the same Planckian timescale**.

#### Experimental signatures: spectrum



ω

### Experimental signatures: spatially resolved conductivity



## Resistivity upturns from fluctuating cdws

$$\rho = \frac{m}{ne^2} \Gamma_{CDW} \,, \quad \Gamma_{CDW} = \Gamma_{\pi} + \frac{\omega_o^2}{\Omega}$$



An **upturn** occurs as  $\Omega$  decreases and phase fluctuations dominate  $\Gamma_{CDW}$ : relation to underdoped cuprates and static charge order?

#### Violation of the Wiedeman-Franz law: $\rho\kappa/T \sim 1/\Omega \gg L_o$ .

- Typical frequency scales of order T: at the edge of validity of hydrodynamics  $\omega \ll T$ .
- The role played by the Planckian timescale is indicative of quantum criticality [SACHDEV]: quantum critical computation.
- Work in progress: use Gauge/Gravity duality to compute non-hydrodynamic transport in a metallic phase with spontaneously broken translation symmetry.