Effective theories of phases with slowly fluctuating broken symmetries

Blaise Goutéraux

Center for Theoretical Physics, École Polytechnique and CNRS, Palaiseau, France

Friday Jan 11, 2019

Bringing holography to the lab workshop, Lorentz center, Leiden, The Netherlands

Acknowledgments and references:

- 'Hydrodynamic theory of quantum fluctuating superconductivity' [ARXIV:1602.08171] with Richard Davison, Luca Delacrétaz and Sean Hartnoll
- 'Bad Metals from Density Waves' [ARXIV: 1612.04381], 'Theory of hydrodynamic transport in fluctuating electronic charge density wave states' [ARXIV:1702.05104] and ongoing work on magnetotransport with Luca Delacrétaz, Sean Hartnoll and Anna Karlsson.
- 'DC resistivity of quantum critical, charge density wave states from gauge-gravity duality' [ARXIV:1712.07994], 'Effective holographic theory of charge density waves' [ARXIV:1711.06610] and 'A holographic strange metal with slowly fluctuating translational order' [ARXIV:1812.08118] with Andrea Amoretti, Daniel Areán, Daniele Musso.

• The phase diagram of high *T_c* superconductors reveals the presence of many phases with spontaneously broken symmetries.

[Keimer et al, Nature (2015)]

- It is plausible that these phases exist also as fluctuating phases in other parts of the phase diagram. What are their experimental signatures in transport?
- Interplay between fluctuating, broken symmetry phases and quantum criticality.

- The low energy dynamics of the ordered phase differ from those of the disordered phase by the necessity to include **new gapless degrees of freedom** (the Goldstones): eg fluid hydrodynamics vs superfluid hydrodynamics.
- An important property of Goldstones is that they are shift-symmetric: they realize non-linearly the broken symmetry. More concretely, take broken translations along x

$$x \rightarrow x + c \quad \Rightarrow \quad \phi \rightarrow \phi + c$$

• Shift symmetry: only gradient terms in the effective IR action:

$$f \sim \frac{1}{2} \rho_{\phi} \nabla \phi^2 + \dots$$

• ρ_{ϕ} is the 'stiffness' of the order parameter: in superfluids, $\rho_{\phi} = \rho_s$ the superfluid density; in phases with translational order, ρ_{ϕ} will be related to the bulk and shear moduli.

• If Q is the charge that generates the symmetry, then

$$[\phi(x),Q(y)]=i\delta(x-y)+\ldots$$

• The effective Hamiltonian contains a term

$$H \sim \int d^d x \, \mu(x) Q(x)$$

which leads to the 'Josephon' relation

$$\nabla \dot{\phi} \equiv \partial_t \nabla \phi = [H, \nabla \phi] = \nabla \mu$$

 Examples: in superfluids, Q is the U(1) charge density and μ the chemical potential; in translationally-ordered phases, Q is the momentum density and μ the velocity along the direction with broken symmetry.

The new sound poles (propagating modes) give rise to $\omega = 0$ poles in the 'conductivity' of the current associated to the broken density

superfluid:
$$\sigma_{jj} = \frac{i}{\omega} G_{jj}^R = \sigma_o + \frac{\rho_n^2}{\chi_{\pi\pi}} \frac{i}{\omega} + \frac{\rho_s}{\mu} \frac{i}{\omega}$$

cdw: $\sigma_{xy} = \frac{i}{\omega} G_{\tau^{xy}\tau^{xy}}^R = \eta + G\frac{i}{\omega}$

- There are obstructions to the existence of true long range order for continuous symmetries in d ≤ 2 [COLEMAN-MERMIN-WGNER] (d ≤ 4 in the presence of random couplings, [IMRY & MA'75]).
- The destruction of long range order occurs via the **proliferation of topological defects**, [BEREZENSKI-KOSTERLITZ-THOULESS]:

$$\phi_n = 0 = 1 = 1 \quad (1 - 1) \quad \phi_n = -\pi$$

• Concretely, the defects relax the phase gradients

$$\nabla \dot{\phi} = \nabla \mu - \Omega \nabla \phi$$

$$\nabla \dot{\phi} = \nabla \mu - \Omega \nabla \phi$$

The Goldstone relaxation rate **gaps out** the $\omega = 0$ poles discussed above, $\omega = -i\Omega + \dots$

• This gives to large diffusivities

superfluid:
$$\sigma_{jj} = \frac{i}{\omega} G_{jj}^R = \sigma_o + \frac{\rho_n^2}{\chi_{\pi\pi}} \frac{i}{\omega} + \frac{\rho_s}{\mu} \frac{1}{\Omega - i\omega} \Rightarrow D \sim \sigma_o + \frac{\rho_s}{\mu\Omega}$$

cdw: $\sigma_{xy} = \frac{i}{\omega} G_{\tau^{xy}\tau^{xy}}^R = \eta + \frac{G}{\Omega - i\omega} \Rightarrow D \sim \eta + \frac{G}{\Omega}$

- Important phenomenological consequences: destruction of superconductivity in two-dimensional films, melting of Abrikosov lattices in a magnetic field.
- Occurs because the Goldstones become **shorter and shorter lived** as Ω increases: gradual loss of phase coherence.

- These Goldstone relaxation rates can be computed using the memory matrix formalism. Crucial technical crutch: consider a Hamiltonian deformation involving the square of the density.
- Disordered superfluid: recovers flux-flow resistance [BARDEEN & STEPHENS'65]

$$\Omega = 2\rho_s \frac{n_f \pi r_v^2}{\sigma_n}$$

• Clean CDW: [HALPERIN & NELSON'80]

$$\Omega = 2G \frac{n_f \pi r_v^2}{\eta_n}$$

 Can these rates be computed in a holographic setup? Motivation: eg vortex contribution to the resistivity in a critical metallic state. • Spacetime symmetries can be explicitly broken: focus on the case of broken translations. Momentum **relaxes slowly**

$$\dot{\pi} = -\Gamma\pi + \dots$$

 Impact on the Goldstones: 'tilts the Mexican potential', the Goldstones become massive, which breaks their shift symmetry

$$f \sim \frac{1}{2}\rho_{\phi}\nabla\phi^{2} + \cdots \rightarrow f \sim \frac{1}{2}\rho_{\phi}\nabla\phi^{2} + \frac{1}{2}m^{2}\phi^{2} + \dots$$

Also contributes to the momentum conservation equation

$$\dot{\pi} = -\Gamma\pi - Gm^2\phi\dots$$

The Goldstones now resonate at a frequency $\omega_o = m\sqrt{(G/\chi_{\pi\pi})}$.

A peek ahead: shouldn't we also expect that $m \neq 0 \Rightarrow \Omega \neq 0$? Ie, explicit breaking also gives the Goldstones a finite lifetime.

Weakly-disordered metal

Weakly-pinned CDW

The dc conductivity is dominated by **momentum relaxation**

- Insulating phase: Γ, 1/Ω increase as T decreases; the low temperature dc conductivity is dominated by diffusive coefficients computed in the clean theory.
- Metallic phase: Γ , $1/\Omega$ decrease as T decreases; the dc conductivity is set by Γ_{cdw} and is **large**.
- A peak at $\omega = 0$ is recovered if Ω becomes sufficiently large: 'destruction of translational order'.

Interplay between off-axis and Drude-like peaks also observed in cuprates:

Planckian dynamics in the optical conductivity:

$$\hbar\omega_{\rm peak} \sim k_B T , \qquad \hbar\Delta\omega \sim k_B T ,$$

I will now turn to holographic techniques to study this problem:

- Construct a model breaking translations homogeneously, easier to analyze than inhomogeneous models (but not suitable for 'UV' questions).
- Describes the low energy dynamics of phonons coupled to conserved densities: check of cdw hydrodynamics, including in the presence of weak explicit translation breaking.
- What happens when the phase becomes critical?
- Based on [ARXIV:1711.06610, ARXIV:1712.07994, ARXIV:1812.08118] with Andrea Amoretti, Daniel Areán and Daniele Musso.
- See also [Andrade, Krikun et al, arXiv:1708.08306], [Andrade & Krikun, arXiv:1812.08132], [A. Donos' talk] yesterday, [Alberte et al', arXiv:1708.08477, arXiv:1711.03100], [Jokela et al, arXiv:1612.07323, arXiv1708.07837]

$$S = \int d^4 x \sqrt{-g} \left[R - \frac{1}{2} \partial \phi^2 - \frac{Z(\phi)}{4} F^2 - V(\phi) - Y(\phi) \left(\partial \psi_x^2 + \partial \psi_y^2 \right) \right]$$
$$Y(\phi) = \phi^2 + O(\phi^3), \quad Z(\phi) = 1 + O(\phi), \quad V(\phi) = -6 + \phi^2 + O(\phi^3)$$

- Homogeneous Ansatz [Andrade & Withers'13, Donos & Gauntlett'13]: $\psi_i = k x^i$.
- UV boundary conditions on ϕ

$$\phi = \phi_s r + \phi_v r^2 + \dots$$

- If $\phi_s = 0$, then $\psi_i = kx^i$ is a vev: spontaneous breaking.
- If $\phi_s \neq 0$, then $\psi_i = kx^i$ is a source: **explicit breaking**.
- But if $\phi_s/\mu \ll \phi_v/\mu^2$, pseudo-spontaneous breaking.

Let us first set $\phi_s = 0$: purely spontaneous breaking

- The phase does not minimize the free energy: describes the low energy dynamics of phonons coupled to conserved densities, not the phase transition. We can choose *k*, but ultimately this would be fixed in a UV-complete model.
- The **phonon**: act with Lie derivative along ∂/∂_x , find that $\varphi \sim \delta \psi_{(0)}$ (normalization factor!) where $\delta \psi_i = \delta \psi_{(-1)}/r + \delta \psi_{(0)} + O(r)$.
- Recovers the cdw hydro retarded Green's functions:

$$G^{R}_{\tau^{xy}\tau^{xy}} = -G + i\omega\eta, \quad G^{R}_{jj} = \frac{\rho^{2}}{\chi_{\pi\pi}} - i\omega\sigma_{o}, \quad G^{R}_{j\pi} = \rho,$$
$$G^{R}_{j\varphi} = \gamma_{1} + \frac{\rho}{\chi_{\pi\pi}}\frac{i}{\omega}, \quad G^{R}_{\pi\varphi} = \frac{i}{\omega}, \quad G^{R}_{\varphi\varphi} = \frac{1}{\chi_{\pi\pi}\omega^{2}} - \frac{\xi}{G}\frac{i}{\omega}.$$

Solids support transverse sound waves (or do they?)

$$\omega_{shear} = \frac{1}{2} \left[-iq_y^2 \left(\xi + \frac{\eta}{\chi_{\pi\pi}} \right) \pm q_y \sqrt{4 \frac{G}{\chi_{\pi\pi}} - q_y^2 \left(\frac{\eta}{\chi_{\pi\pi}} - \xi \right)^2} \right]$$

From the memory matrix

$$\Gamma_{cdw} \equiv M_{PP} = \Gamma + rac{\omega_o^2}{\Omega} = rac{k^2 s Y_h}{4\pi \chi_{\pi\pi}}$$

Analytical approximate expressions

$$\Omega^{-1} = \frac{1}{4\pi T} \int_0^{r_h} dr \left(\frac{sTY_h \sqrt{g_{rr}}}{g_{xx} Y \sqrt{g_{tt}}} - \frac{1}{r_h - r} \right), \quad \frac{\omega_o^2}{\Omega} = \frac{k^2 sY_h}{4\pi \chi_{\pi\pi}}, \quad \Gamma = 0$$

Hydro prediction for the location of the poles:

$$\omega_{\pm}=-rac{i}{2}\Omega\pmrac{1}{2}\sqrt{4\omega_{o}^{2}-\Omega^{2}}\,,$$

Hydro prediction for the ac conductivity:

$$\sigma(\omega) = \sigma_o + \frac{\omega_o^2 \gamma_1 (2\rho - i\gamma_1 \chi_{\pi\pi} \omega) - \frac{\rho^2}{\chi_{\pi\pi}} (\Omega - i\omega)}{\omega^2 - \omega_o^2 + i\omega \Omega}$$

The resistivity is linear in T at low T (same reason as in [DAVISON, SCHALM & ZAANEN '13]) but is always dominated by phonon dissipation

$$ho_{dc}\sim\omega_o^2/(\Omega\omega_p^2)$$

The peak turns around when the system becomes metallic, but not with a T-linear dependence. Instead

$$\omega_{\it peak} = \sqrt{\omega_o^2 - rac{1}{2}\Omega^2} \, \mathop{\sim}\limits_{T \ll \mu} \sqrt{{\sf a} - rac{b}{T}}$$

What have we learned?

- At the price of considering thermodynamically unstable phases, the coupled low energy dynamics of phonons and conserved densities can be modeled holographically without actually constructing inhomogeneous spatially modulated backgrounds.
- The low energy dynamics precisely matches the expectations from cdw hydrodynamics, including in the presence of **weak explicit translation breaking**.
- Holographic metal where relaxation is completely **dominated by phonon dissipation**.
- **Drude-like peaks** from slowly-fluctuating cdws when the ground state is metallic: interplay with off-axis peaks from pinning. O(1) effect on ac/dc transport.

- First part of the talk: Ω ⇐ topological defects. But the holographic calculation reveals that explicit breaking generates both a mass and a relaxation rate for the phonons (see also [ANDRADE & KRIKUN'18]).
- Moreover, $\Omega = m^2 \xi$. Can we prove this from field theory? Does it also hold in other holographic models? (eg Bianchi VII [ANDRADE & KRIKUN'18], [A. DONOS' TALK]).
- In a quantum critical phase, we might expect $\Omega \sim m \sim T$. This would imply $\xi \sim 1/T$. ξ is a diffusivity.
- Diffusivities $\sim 1/T$ are expected on general grounds in incoherent metals [HARTNOLL'14]. In both electron and hole-doped cuprates, the thermal diffusivity $D_T \sim 1/T$ [ZHANG ET AL'16,'18].