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The phase diagram of
high Tc
superconductors reveals
the presence of many
phases with
spontaneously broken
symmetries.

[Keimer et al, Nature (2015)]

It is plausible that these phases exist also as fluctuating phases in
other parts of the phase diagram. What are their experimental
signatures in transport?

Interplay between fluctuating, broken symmetry phases and
quantum criticality.
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The low energy dynamics of the ordered phase differ from those of
the disordered phase by the necessity to include new gapless
degrees of freedom (the Goldstones): eg fluid hydrodynamics vs
superfluid hydrodynamics.

An important property of Goldstones is that they are
shift-symmetric: they realize non-linearly the broken symmetry.
More concretely, take broken translations along x

x → x + c ⇒ φ→ φ+ c

Shift symmetry: only gradient terms in the effective IR action:

f ∼ 1
2ρφ∇φ

2 + . . .

ρφ is the ’stiffness’ of the order parameter: in superfluids, ρφ = ρs
the superfluid density; in phases with translational order, ρφ will be
related to the the bulk and shear moduli.
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If Q is the charge that generates the symmetry, then

[φ(x),Q(y)] = iδ(x − y) + . . .

The effective Hamiltonian contains a term

H ∼
∫

ddx µ(x)Q(x)

which leads to the ’Josephon’ relation

∇φ̇ ≡ ∂t∇φ = [H,∇φ] = ∇µ

Examples: in superfluids, Q is the U(1) charge density and µ the
chemical potential; in translationally-ordered phases, Q is the
momentum density and µ the velocity along the direction with
broken symmetry.
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The new sound poles (propagating modes) give rise to ω = 0 poles in
the ’conductivity’ of the current associated to the broken density

superfluid: σjj = i
ω
GR

jj = σo + ρ2
n

χππ

i
ω

+ ρs
µ

i
ω

cdw: σxy = i
ω
GR
τ xyτ xy = η + G i

ω

6



There are obstructions to the existence of true long range order for
continuous symmetries in d ≤ 2 [Coleman-Mermin-Wgner] (d ≤ 4 in the
presence of random couplings, [Imry & Ma’75]).

The destruction of long range order occurs via the proliferation of
topological defects, [Berezenski-Kosterlitz-Thouless]:

Concretely, the defects relax the phase gradients

∇φ̇ = ∇µ− Ω∇φ
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∇φ̇ = ∇µ− Ω∇φ

The Goldstone relaxation rate gaps out the
ω = 0 poles discussed above, ω = −iΩ + . . . .

This gives to large diffusivities

superfluid: σjj = i
ω
GR

jj = σo+ ρ2
n

χππ

i
ω

+ρs
µ

1
Ω− iω ⇒ D ∼ σo+ ρs

µΩ

cdw: σxy = i
ω
GR
τ xyτ xy = η + G

Ω− iω ⇒ D ∼ η + G
Ω

Important phenomenological consequences: destruction of
superconductivity in two-dimensional films, melting of Abrikosov
lattices in a magnetic field.

Occurs because the Goldstones become shorter and shorter lived
as Ω increases: gradual loss of phase coherence.
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These Goldstone relaxation rates can be computed using the
memory matrix formalism. Crucial technical crutch: consider a
Hamiltonian deformation involving the square of the density.

Disordered superfluid: recovers flux-flow resistance [Bardeen &

Stephens’65]

Ω = 2ρs
nf πr2

v
σn

Clean CDW: [Halperin & Nelson’80]

Ω = 2G nf πr2
v

ηn

Can these rates be computed in a holographic setup? Motivation:
eg vortex contribution to the resistivity in a critical metallic state.
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Spacetime symmetries can be explicitly broken: focus on the case of
broken translations. Momentum relaxes slowly

π̇ = −Γπ + . . .

Impact on the Goldstones: ’tilts the Mexican potential’, the
Goldstones become massive, which breaks their shift symmetry

f ∼ 1
2ρφ∇φ

2 + · · · → f ∼ 1
2ρφ∇φ

2 + 1
2m

2φ2 + . . .

Also contributes to the momentum conservation equation

π̇ = −Γπ − Gm2φ . . .

The Goldstones now resonate at a frequency
ωo = m

√
(G/χππ).

A peek ahead: shouldn’t we also expect that
m 6= 0⇒ Ω 6= 0? Ie, explicit breaking also
gives the Goldstones a finite lifetime.
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Weakly-disordered metal
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σ(ω) = σo +
ω2

p
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σdc ∼
1
Γ

The dc conductivity is dominated by
momentum relaxation

Weakly-pinned CDW
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σ(ω) = σo+ω2
p

Ω− iω
(Ω− iω)(Γ− iω) + ω2

o

σdc = σo +
ω2

p
Γcdw

, Γcdw = Γ + ω2
o

Ω
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σ(ω) = σo+ω2
p

Ω− iω
(Ω− iω)(Γ− iω) + ω2

o

σdc = σo +
ω2

p
Γcdw

, Γcdw = Γ + ω2
o

Ω
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1
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4

Insulating phase: Γ, 1/Ω increase as T decreases; the low
temperature dc conductivity is dominated by diffusive coefficients
computed in the clean theory.

Metallic phase: Γ, 1/Ω decrease as T decreases; the dc conductivity
is set by Γcdw and is large.

A peak at ω = 0 is recovered if Ω becomes sufficiently large:
’destruction of translational order’.
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Interplay between off-axis and Drude-like peaks also observed in cuprates:

Bi2Sr2CuO6 La1.9Sr0.1CuO4 La2126
[PRB 55 14152 (1997)] [Phil Mag 84 2847 (2004)] [PRB 67 134526 (2003)]

Bi2Sr2CaCu2O8+δ Tl2Ba2CuO6+δ YBa2(Cu1−x Znx )3O7−δ
[J. of Phy: Cond Mat 19 125208 (2007)] [PRB 51 3312 (1995)] [PRB 57 081 (1998)]
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Planckian dynamics in the optical conductivity:

~ωpeak ∼ kBT , ~∆ω ∼ kBT ,
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I will now turn to holographic techniques to study this problem:

Construct a model breaking translations homogeneously, easier
to analyze than inhomogeneous models (but not suitable for ’UV’
questions).

Describes the low energy dynamics of phonons coupled to
conserved densities: check of cdw hydrodynamics, including in the
presence of weak explicit translation breaking.

What happens when the phase becomes critical?

Based on [arXiv:1711.06610, arXiv:1712.07994, arXiv:1812.08118] with Andrea
Amoretti, Daniel Areán and Daniele Musso.

See also [Andrade, Krikun et al, arXiv:1708.08306], [Andrade & Krikun,

arXiv:1812.08132], [A. Donos’ talk] yesterday, [Alberte et al’, arXiv:1708.08477,

arXiv:1711.03100], [Jokela et al, arXiv:1612.07323, arXiv1708.07837]
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S =
∫

d4x
√
−g
[
R − 1

2∂φ
2 − Z (φ)

4 F 2 − V (φ)− Y (φ)
(
∂ψ2

x + ∂ψ2
y
)]

Y (φ) = φ2 + O(φ3) , Z (φ) = 1 + O(φ) , V (φ) = −6 + φ2 + O(φ3)

Homogeneous Ansatz [Andrade & Withers’13, Donos & Gauntlett’13]:
ψi = kx i .

UV boundary conditions on φ

φ = φs r + φv r2 + . . .

If φs = 0, then ψi = kx i is a vev: spontaneous breaking.

If φs 6= 0, then ψi = kx i is a source: explicit breaking.

But if φs/µ� φv/µ
2, pseudo-spontaneous breaking.
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Let us first set φs = 0: purely spontaneous breaking

The phase does not minimize the free energy: describes the low
energy dynamics of phonons coupled to conserved densities, not the
phase transition. We can choose k, but ultimately this would be
fixed in a UV-complete model.

The phonon: act with Lie derivative along ∂/∂x , find that
ϕ ∼ δψ(0) (normalization factor!) where
δψi = δψ(−1)/r + δψ(0) + O(r).

Recovers the cdw hydro retarded Green’s functions:

GR
τ xyτ xy = −G + iωη , GR

jj = ρ2

χππ
− iωσo , GR

jπ = ρ ,

GR
jϕ = γ1 + ρ

χππ

i
ω
, GR

πϕ = i
ω
, GR

ϕϕ = 1
χππω2 −

ξ

G
i
ω
.
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Solids support transverse sound waves (or do they?)

ωshear = 1
2

−iq2
y

(
ξ + η

χππ

)
± qy

√
4 G
χππ

− q2
y

(
η

χππ
− ξ
)2
 .
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From the memory matrix

Γcdw ≡ MPP = Γ + ω2
o

Ω =
holography

k2sYh
4πχππ

Analytical approximate expressions

Ω−1 = 1
4πT

∫ rh

0
dr
( sTYh

√grr

gxxY
√gtt

− 1
rh − r

)
,

ω2
o

Ω = k2sYh
4πχππ

, Γ = 0
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Hydro prediction for the location of the poles:

ω± = − i
2Ω± 1

2

√
4ω2

o − Ω2 ,
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Hydro prediction for the ac conductivity:

σ(ω) = σo +
ω2

oγ1(2ρ− iγ1χππω)− ρ2

χππ
(Ω− iω)

ω2 − ω2
o + iωΩ
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The resistivity is linear in T at low T (same reason as in [Davison, Schalm &

Zaanen ’13]) but is always dominated by phonon dissipation

ρdc ∼ ω2
o/(Ωω2

p)

The peak turns around when the system becomes metallic, but not with
a T -linear dependence. Instead

ωpeak =
√
ω2

o −
1
2Ω2 ∼

T�µ

√
a − b

T
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What have we learned?

At the price of considering thermodynamically unstable phases, the
coupled low energy dynamics of phonons and conserved
densities can be modeled holographically without actually
constructing inhomogeneous spatially modulated backgrounds.

The low energy dynamics precisely matches the expectations from
cdw hydrodynamics, including in the presence of weak explicit
translation breaking.

Holographic metal where relaxation is completely dominated by
phonon dissipation.

Drude-like peaks from slowly-fluctuating cdws when the ground
state is metallic: interplay with off-axis peaks from pinning. O(1)
effect on ac/dc transport.
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First part of the talk: Ω⇐ topological defects. But the holographic
calculation reveals that explicit breaking generates both a mass
and a relaxation rate for the phonons (see also [Andrade &

Krikun’18]).

Moreover, Ω = m2ξ. Can we prove this from field theory? Does it
also hold in other holographic models? (eg Bianchi VII [Andrade &

Krikun’18], [A. Donos’ talk]).

In a quantum critical phase, we might expect Ω ∼ m ∼ T . This
would imply ξ ∼ 1/T . ξ is a diffusivity.

Diffusivities ∼ 1/T are expected on general grounds in incoherent
metals [Hartnoll’14]. In both electron and hole-doped cuprates, the
thermal diffusivity DT ∼ 1/T [Zhang et al’16,’18].
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