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Goal of the lectures

The goal of these lectures is to give a short introduction to
non-quasiparticle approaches to transport at strong coupling, e.g.
hydrodynamics, memory matrices and AdS/CFT.

After setting up the stage, I will mostly focus on momentum relaxation in
metallic phases.

At the worksop, I will talk about spontaneous symmetry breaking.
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General references

Lectures on hydrodynamics, Pavel Kovtun, [arXiv:1205.5040].

Holographic quantum matter, Sean Hartnoll, Andrew Lucas and Subir
Sachdev, [arXiv:1612.07324].

Hydrodynamic fluctuations, broken symmetry and correlation functions,
D. Forster, 1975.
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Transport with long-lived quasiparticles

Transport in a weakly-coupled metallic phase is accounted for by tracking
the dynamics of the weakly-interacting quasiparticles.

Infinite number of quasi-conserved quantities τqp � ~/(kBT ) (or
τel � τinel).

Kinetic Boltzmann equation: captures the dynamics of nδk , the qp
density at wavector δk = k − kF . Difficulty: solving the collision integral
but this is a technical obstacle, not a conceptual one.
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Transport with long-lived quasiparticles

For transport, this typically means that the ac conductivity

σ(ω, k = 0) ∼
ω2

p

Γ− iω , Γ = 1
τqp

There is a sharp Drude-like peak at ω = 0 and

σdc = lim
ω→0

σ(ω) = ne2τqp

m � 1
T

This can be taken as an operational definition of a good metal.
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Transport without long-lived quasiparticles

What about cases without long-lived quasiparticles τqp ∼ 1/T?

Specifically, I will focus here on cases with an emerging long lived
collective mode: momentum.

Hydrodynamics: relaxation towards equilibrium τ � τth ∼ 1/T .
Expansion in small gradients which encapsulates the assumption that
τ/τth � 1 or equivalently ξ/`mfp � 1.

The memory matrix formalism does not assume small gradients:
‘disorder’ can vary importantly on microscopic scales. However it is only
practically useful if there is only a small number of long-lived operators.

AdS/CFT gives results consistent with both previous approaches, and
allows to describe the crossover from weak to strong breaking.
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1 Hydrodynamics

2 AdS/CFT
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Relativistic hydrodynamics

The starting point is conservation equations for the stress-energy tensor
and current, in the presence of an applied electric field Ei ∼ F0i :

∇µTµν = jµFµν , ∇µjµ = 0

We give a constitutive relation to currents order by order in gradients

jµ = ρuµ − Tσo
(
∇µ (µ/T )− E iδµi

)
+ O(∇2) ,

Tµν = (ε+ p)uµuν + pgµν − 2ησµν + O(∇2)

σµν = PαµPβν∇(αuβ) −
1
d gµν∇ · u

Two transport coefficients at ∼ O(∇): η, σo .

Finally, solve for linearized fluctuations around equilibrium

µ(t, x) = µ̄+ δµ(t, x) , T (t, x) = T̄ + δT (t, x) , . . .

in terms of Ei , using the relations between vevs and sources

πi = χPPv i = (ε+ p)v i ,

(
δρ
δs

)
=
(

χρρ χρs
χρs χss

)(
δµ
δT

)
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Spectrum of modes

There are three longitudinal modes: two acoustic and a diffusive mode
ω± = ±csk − iγs(η, σo)k2 , ωinc = −iDinc (σo)k2

The sound modes are carried by momentum and pressure fluctuations

GR
ππ,GR

δpδp ∼
1

ω2 − c2
s k2 − 2iγsk2

The diffusive mode is carried by a combination of charge and entropy

GR
δρincδρinc ∼

1
ω + iDinck2 , δρinc = sδρ− ρδs
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Thermoelectric conductivities

Generalized Ohm’s law(
j
jq

)
=
(

σ Tα
Tα T κ̄

)(
E

−∂δT/T

)

σ(ω) = σo + ρ2

(ε+ p)

( i
ω

+ πδ(ω)
)

α(ω) = − µT σo + ρs
(ε+ p)

( i
ω

+ πδ(ω)
)

κ̄(ω) = µ2

T σo + s2T
(ε+ p)

( i
ω

+ πδ(ω)
)
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Thermoelectric conductivities

σ(ω) = σo + ρ2

(ε+ p)

( i
ω

+ πδ(ω)
)

α(ω) = − µT σo + ρs
(ε+ p)

( i
ω

+ πδ(ω)
)

κ̄(ω) = µ2

T σo + s2T
(ε+ p)

( i
ω

+ πδ(ω)
)

Their dc limit ω → 0 is formally infinite. This is due to momentum
conservation and the non-zero overlap between the electric and heat
currents with momentum:

χJP = δj i

δv i = ρ

χJQP =
δj iq
δv i = sT
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Finite dc thermal conductivity

Consider the heat conductivity with open circuit boundary conditions

κ ≡ T δjq
δ∂T

∣∣∣
j=0

= κ̄− α2

Tσ

Finite as ω → 0
κ = (sT + µρ)2

Tρ2 σo

The open circuit boundary conditions remove the contribution of the
sound modes from the thermal conductivity.

This is the thermal conductivity measured in experiments.
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Introducing weak, long wavelength disorder

Finite dc conductivities? Relax momentum, ie break translations explicitly.
The simplest way to treat disorder perturbatively in a ‘mean field’ way.

∂tπ
i + ∂jτ

ij = −Γπi + ρ
(
E i + vkF ki) , Γ� Λ ∼ 1/τth

The conductivity and associated resistivity become

σ(ω) = σo + ρ2

χPP

1
Γ− iω , ρdc = 1

σdc
∼ O (Γ) 6= 0

Disorder is a (dangerously) irrelevant deformation for the resistivity.
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Hydrodynamic signatures in electronic flows

Wiedemann-Franz law for conventional metals

L = κe

σT = π2

3

(
k2

B
e

)2

≡ L0

The WF law holds because both κe , σ ∼ τqp.

In very clean Graphene near the charge neutrality point

κe = s
Γ , σ ∼ σo ⇒ L ∼ O

( 1
Γ

)
� L0

Independent conduction of heat and charge.

[Crossno et al, Science 351 6277 (2016)]
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Hydrodynamic signatures in electronic flows

Other recent experiments
Backflows and negative resistance in Graphene due to viscous effects
[Levitov & Falkovich, Nat. Phys. 12 (2016)], [Bandurin et al, Science 351 (2016)].

Viscous contributions to the resistance in restricted channels in PdCoO2
[Moll et al, Science 351 2016].

Viscous contributions to the resistance, violations of WF law and Hall
measurements in WP2 [Gooth et al, arXiv:1706.05925].
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Beyond simple hydrodynamics

How do we compute σo , Γ?

Short-scale disorder?

Strong disorder?

Need a more microscopic approach!
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Inhomogeneous hydrodynamics and memory matrix

Γ can be computed by perturbing around an equilibrium state with long
wavelength disorder [Lucas, 1506.02662]

T = T̄ (x) + δT (t, x) , µ = µ̄(x) + δµ(t, x)

or using the ‘memory matrix’ formalism [Forster], [Hartnoll & Hofman,

1201.3917], [Davison, Schalm & Zaanen, 1311.2451]

H → H0+ε∆H+O(ε2) , Ṗ = i [H,P] = iε[∆H,P] = −ε
∫

d2x h(x) (∂O) (x)

σJJ = χ2
JP

χPP

1
MPP − iω

MPP ≡ Γ = ε2

χPP

∫
d2k

(2π)2

∣∣h(k)2∣∣ k2
x lim
ω→0

Im
(
GR

OO(ω, k)
)

ω
+ O(ε3)

When O = (T tt , J t), Γ determined by η, σo .

16



Coherent to incoherent crossover

17



1 Hydrodynamics

2 AdS/CFT
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A holographic toy-model of momentum relaxation

[Andrade & Withers, 1311.5157]

S =
∫

d4x
√
−g
[
R − 2Λ− 1

2
(
∂ψ2

x + ∂ψ2
y
)]

ψx = mx , ψy = my

ds2 = −r 2f (r)dt2 + dr 2

r 2f (r) + r 2(dx2 +dy 2) , f (r) = 1− m2

2r 2 −
r 3
h
r 3

(
1− m2

2r 2
h

)

The bulk background explicitly breaks translations in the boundary theory

∇µ〈Tµν〉 =
∑
x,y

∂ iψi〈Oψi 〉
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Computing the dc heat conductivity (1)

[Donos & Gauntlett, 1406.4742]

To compute the dc heat conductivity κ̄xx = −δjxq /∂xδT , we need to turn
on perturbations (δgtx (t, r), δgx

r (r), δψx (r)):

δgtx = −ζ(r 2f )t + δg(r)

For this choice of perturbation, all time dependence drops out of the
linearized equations.

Perform boundary change of coords t = t̄ − ζ t̄x

ds2 = −r 2f (1− 2ζx)dt̄2 + . . . ⇒ −ζ = ∂xT/T
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Computing the dc heat conductivity (2)

We can find a radially conserved quantity

∂rQ(r) = 0 , Q(r) = (r 2f )2∂r

(
δg

(r 2f )2

)
Using holographic renormalization, prove

Q = T tx

so Q is the heat current at the boundary.
Regularity at the horizon in Eddington-Finkelstein coordinates

t = v − 1
4πT ln(r − rh) ⇒ δg = − δgx

r |r=rh
+ ζ

4πT ln(r − rh)

Evaluate now Q at the horizon

Q(rh) = ζ
r 2
h
(

(r 2f )′
)2

m2

Finally,
κ̄ = 1

T
∂Q
∂ζ

= 4πsT
m2

Non-perturbative result in m: valid both when m� T (coherent) and
m� T (incoherent).
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Thermal conductivity in the coherent regime
[Davison & B.G., 1411.1062] By identifying to the hydro formula or by using the
memory matrix formula for Γ with O = ψ, in the coherent regime Γ� Λ

κ̄ = s2T
χPPΓ = s

Γ = 4πsT
m2 ⇒ Γ = m2

4πT

and
κ̄(ω) = s

Γ− iω
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Computing the momentum relaxation rate

In the previous slide, we assumed that for m� T , hydrodynamic
formulæ should be applicable, and verified it was so. Can we do better?

Option 1: Using a hydrodynamic expansion around the background,
derive that for small m� T [Davison & B.G., 1505.05092], [Blake, 1505.06992]

κ̄ = s
Γ− iω , Γ = m2

4πT
Disadvantage: need to know the background analytically.

Option 2: Other methods based on Einstein equations give the location
of the pole analytically by direct computation [Lucas, 1501.05656], assuming
there is a low lying pole at ω = −iΓ, Γ� T .

Option 3: Memory matrix prediction (does not rely on either ads/cft or
hydrodynamics) [Hartnoll & Hofman, 1201.3917]

H → H0 + ∆H , Ṗ = i [H,P] = i [∆H,P] = −
∫

d2x h(x) (∂O) (x)

Γ = 1
χPP

∫
d2k

(2π)2

∣∣h(k)2∣∣ k2
x lim
ω→0

Im
(
GR

OO(ω, k)
)

ω

∣∣∣∣∣
h=022



Computing the momentum relaxation rate (2)

Applied to our toy model, the previous formula reads

Γ = m2

sT lim
ω→0

Im
(
GR
ψψ(ω, k = 0)

)
ω

∣∣∣∣∣
m=0

We need to compute the spectral weight of the operator dual to ψ in the
translation invariant theory.

This is done by solving the δψ fluctuation equation of motion and taking
the ratio

GR
ψψ(ω, k = 0) = 3δψ3

δψ0
, δψ →

r→+∞
δψ0 + δψ3

r 3 + . . .
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Computing the momentum relaxation rate (3)

Decompose δψ = δψ(r)e−iωt . The structure of the equation is(
r 4f (r)δψ′(r)

)′ + #ω2δψ = 0

The ω dependence only appears at quadratic order.

We need to impose ingoing boundary conditions

δψ(r ∼ rh) = ψh(r−rh)−iωt/(4πT ) (1 + . . . ) ∼ ψh

(
1− iω

4πT ln(r − rh) + O(ω2)
)

Since we are interested in the ω → 0 limit, we only need to solve the
ω = 0 equation:

δψ = ψh + ψsing

∫ +∞

r

dr
r 4f ∼r∼rh

ψh −
ψsing

4πTr 2
h
ln(r − rh)

But then it must be that ψsing = iωr 2
hψh and:

δψ(r) = ψh

(
1 + iωr 2

h

∫ +∞

r

dr
r 4f + O(ω2)

)
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Computing the momentum relaxation rate (4)

δψ(r) = ψh

(
1 + iωr 2

h

∫ +∞

r

dr
r 4f + O(ω2)

)
I can now expand the previous equation close to the boundary r → +∞
and read off

δψ →
r→+∞

δψ0 + δψ3

r 3 + . . .

Finally, we find that

lim
ω→0

Im
(
GR
ψψ(ω, k = 0)

)
ω

∣∣∣∣∣
m=0

= r 2
h

which we can plug into the expression for Γ

Γ = m2

sT lim
ω→0

Im
(
GR
ψψ(ω, k = 0)

)
ω

∣∣∣∣∣
m=0

Recalling that s = 4πr 2
h , our final result is

Γ = m2r 2
h

sT = m2

4πT
25



Thermal conductivity away from the coherent regime

[Davison & B.G., 1505.05092]

We can compute the first deviations away from the coherent regime
analytically

κ̄(ω) = χPP

TΓ , χPP = sT
(
1 + 4πTλΓ + O(Γ2)

)
,

Γ = m2

4πT
(
1 + m2λ+ O(m4)

)
, λ =

√
3π − 9 log 3
96π2T 2

Corrections both to the momentum relaxation rate and to the static
susceptibilities.

The corrections combine in a non-trivial way such that the dc limit is still

κ̄ = 4πsT
m2
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Thermal conductivity in the incoherent regime
[Davison & B.G., 1411.1062]

In the incoherent regime, momentum is short-lived and not part of the
late time effective theory:

∂tε+∇ · jε = 0 , jε = −κ̄o∇T

Thermal transport occurs by diffusion of energy rather than sound waves

κ̄ = κ̄o = T ∂s
∂T D , κ̄(ω) = iωκ̄o

iω − Dk2
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