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Goal of the lectures

@ The goal of these lectures is to give a short introduction to
non-quasiparticle approaches to transport at strong coupling, e.g.
hydrodynamics, memory matrices and AdS/CFT.

@ After setting up the stage, | will mostly focus on momentum relaxation in
metallic phases.

@ At the worksop, | will talk about spontaneous symmetry breaking.



General references

@ Lectures on hydrodynamics, Pavel Kovtun, [arxXiv:1205.5040].

@ Holographic quantum matter, Sean Hartnoll, Andrew Lucas and Subir
Sachdev, [arxiv:1612.07324].

@ Hydrodynamic fluctuations, broken symmetry and correlation functions,
D. Forster, 1975.



Transport with long-lived quasiparticles

s

@ Transport in a weakly-coupled metallic phase is accounted for by tracking
the dynamics of the weakly-interacting quasiparticles.

@ Infinite number of quasi-conserved quantities ¢, > h/(kgT) (or
Tl K Tinel)-

@ Kinetic Boltzmann equation: captures the dynamics of nsk, the qp
density at wavector 6k = k — kr. Difficulty: solving the collision integral
but this is a technical obstacle, not a conceptual one.



Transport with long-lived quasiparticles

For transport, this typically means that the ac conductivity
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There is a sharp Drude-like peak at w = 0 and
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This can be taken as an operational definition of a good metal.



Transport without long-lived quasiparticles

@ What about cases without long-lived quasiparticles 7q, ~ 1/T7?

@ Specifically, | will focus here on cases with an emerging long lived
collective mode: momentum.

@ Hydrodynamics: relaxation towards equilibrium 7> 74 ~ 1/T.
Expansion in small gradients which encapsulates the assumption that
T/Ten > 1 or equivalently £/Cmg > 1.

@ The memory matrix formalism does not assume small gradients:
‘disorder’ can vary importantly on microscopic scales. However it is only
practically useful if there is only a small number of long-lived operators.

@ AdS/CFT gives results consistent with both previous approaches, and
allows to describe the crossover from weak to strong breaking.



© Hydrodynamics



Relativistic hydrodynamics

@ The starting point is conservation equations for the stress-energy tensor
and current, in the presence of an applied electric field E; ~ Fo;:

Vi ™ :quNVa vuju =0

@ We give a constitutive relation to currents order by order in gradients
J* = put = Too (V¥ (u/T) — E'8I') + O(V?),
T" = (e + p)u*u” + pg"” — 2no*” + O(VZ)
Ouv = PEPEV(QUB) — %g,wv- u

Two transport coefficients at ~ O(V): 7, oo.

@ Finally, solve for linearized fluctuations around equilibrium
H(t7x):ﬁ+6u(tax)a T(t,X): 7_+6T(t7x)7“'

in terms of E;, using the relations between vevs and sources
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Spectrum of modes

w
@ There are three longitudinal modes: two acoustic and a diffusive mode

wi = Fcsk — ivs(n, 00)K° Wine = —iDinc(070) K>

@ The sound modes are carried by momentum and pressure fluctuations
1
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@ The diffusive mode is carried by a combination of charge and entropy
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Thermoelectric conductivities

@ Generalized Ohm's law
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Thermoelectric conductivities
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@ Their dc limit w — 0 is formally infinite. This is due to momentum
conservation and the non-zero overlap between the electric and heat
currents with momentum:
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Finite dc thermal conductivity

11

@ Consider the heat conductivity with open circuit boundary conditions
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@ The open circuit boundary conditions remove the contribution of the
sound modes from the thermal conductivity.

@ This is the thermal conductivity measured in experiments.



Introducing weak, long wavelength disorder
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@ Finite dc conductivities? Relax momentum, ie break translations explicitly.
The simplest way to treat disorder perturbatively in a ‘mean field" way.

O’ + 07" = —Tr' + p (E'+ wFY), T <N~ 1/

@ The conductivity and associated resistivity become
1
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Disorder is a (dangerously) irrelevant deformation for the resistivity.




Hydrodynamic signatures in electronic flows

@ Wiedemann-Franz law for conventional metals

Ke 7w [k 2_
L=or=3\% ) =F

The WF law holds because both ke, o ~ 7qp.

@ In very clean Graphene near the charge neutrality point
s

=t

Independent conduction of heat and charge.
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[CrROSSNO ET AL, SCIENCE 351 6277 (2016)]
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Hydrodynamic signatures in electronic flows

Other recent experiments

@ Backflows and negative resistance in Graphene due to viscous effects

[LEvITOV & FALKOVICH, NAT. PHYS. 12 (2016)], [BANDURIN ET AL, SCIENCE 351 (2016)].

@ Viscous contributions to the resistance in restricted channels in PdCoO»

[MoOLL ET AL, SCIENCE 351 2016].

@ Viscous contributions to the resistance, violations of WF law and Hall
measurements in WP2 [Goorn er AL, arXiv:1706.05925].
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Beyond simple hydrodynamics

@ How do we compute oo, I'?
@ Short-scale disorder?

@ Strong disorder?

Need a more microscopic approach!
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Inhomogeneous hydrodynamics and memory matrix

@ [ can be computed by perturbing around an equilibrium state with long
wavelength disorder [Lucas, 1506.02662]

T=Tx) +06T(t,x), p=p(x)+du(t,x)
@ or using the ‘memory matrix’ formalism [Forster], [Harrnorr & Horumax,

1201.3917], [DAVISON, SCHALM & ZAANEN, 1311.2451]

H — Ho+eAH+0(%), P =i[H,P] = ie[AH, P] = —e/d2x h(x) (80) (x)
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Mep =T =~ | Gpye [(K)| K< Jim ———"2——
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@ When O = (T",J"), T determined by 7, co.



Coherent to incoherent crossover

Im[w] Im[w]

0 Relw] 0 Re[w]

F<<A
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© AdS/CFT



A holographic toy-model of momentum relaxation

[ANDRADE & WITHERS, 1311.5157]
1
S = /d4x\/7—g [R AR (0y% + 81#5)}

Y =mx, by =my

2 2
ds? = — P2 (r)di® + j,’c( o 2dx+dy?), f(r)= —i—’—h (1—’"2>

The bulk background explicitly breaks translations in the boundary theory

W(TH) Zaw, (Oy,)
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Computing the dc heat conductivity (1)

[DoNos & GAUNTLETT, 1406.4742]

@ To compute the dc heat conductivity Ry = 75j§/8X5T, we need to turn
on perturbations (0gu(t, r),0g7(r), d¢«(r)):

Sgec = —C(r*f)t + dg(r)

For this choice of perturbation, all time dependence drops out of the
linearized equations.

@ Perform boundary change of coords t = T — (tx

ds’ = —rPf(1—2(x)dE +... = —(=08T/T
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Computing the dc heat conductivity (2)

@ We can find a radially conserved quantity

2 £\2 og
0-Q(r)=0, Q(r)=(rf)o: <(,2f)2>

@ Using holographic renormalization, prove
Q — —,—tx
so @ is the heat current at the boundary.

@ Regularity at the horizon in Eddington-Finkelstein coordinates

_ 1 _ x ¢
t=v— mln(r—rh) = 0g=—10gl,_, + mln(r rh)
@ Evaluate now @ at the horizon
2 2 v\ 2
ry (r f)
Q(r) = C%
@ Finally,
5= l@ _ A4nsT
T TO T O m?

Non-perturbative result in m: valid both when m < T (coherent) and
m < T (incoherent).
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Thermal conductivity in the coherent regime

[Davison & B.G., 1411.1062] By identifying to the hydro formula or by using the
memory matrix formula for I with O = 1, in the coherent regime ' < A
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Computing the momentum relaxation rate

@ In the previous slide, we assumed that for m < T, hydrodynamic
formulae should be applicable, and verified it was so. Can we do better?

@ Option 1: Using a hydrodynamic expansion around the background,
derive that for small m << T [Davisox & B.G., 1505.05092], [BLAKE, 1505.06992]

s _ m?
M—iw’ T 4nT

Disadvantage: need to know the background analytically.

K=

@ Option 2: Other methods based on Einstein equations give the location
of the pole analytically by direct computation [Lucas, 1501.05656], assuming
there is a low lying pole at w = —il, T < T.

@ Option 3: Memory matrix prediction (does not rely on either ads/cft or
hydrodynamics) [HarrnoLr & Homvan, 1201.3917]

H— Ho+AH, P=i[H,P]=i[AH,P]=— / d’x h(x) (90) (x)

2 Im (Ggo(w7 k))
XPP/ e (M| K fim, =2

h=0



Computing the momentum relaxation rate (2)

@ Applied to our toy model, the previous formula reads

2 Im (GF (w, k=0
S L CHIC )
sT w—0 w

m=0

@ We need to compute the spectral weight of the operator dual to ¥ in the
translation invariant theory.

@ This is done by solving the §v fluctuation equation of motion and taking
the ratio
)3

3093
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Gly(w, k=0) =

27



Computing the momentum relaxation rate (3)

@ Decompose 61p = 61b(r)e™"“t. The structure of the equation is

(F'F(r)0y' () + #w’89 =0

The w dependence only appears at quadratic order.

@ We need to impose ingoing boundary conditions

SP(r ~ 1) = u(r—ry) 7O (14 ) ~ iy (1 - ""T In(r — ) + O(w2)>

47

@ Since we are interested in the w — 0 limit, we only need to solve the
w = 0 equation:

+o0 )
5’(/) = wh + wsing/ dr 'l/fh - wsmg |I"I(I‘ — rh)

— ~
r*f reorp 47rTrﬁ

@ But then it must be that g, = iwrf1b, and:
O dr
S(r) = i <1 + fwrﬁ/ 7t O(w2))
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Computing the momentum relaxation rate (4)

+oo
. d
0p(r) = ¢n (1 + lwrﬁ/ rT’;c + O(w2)>
@ | can now expand the previous equation close to the boundary r — +o0
and read off 5
5o — et L4
r—+oo r
@ Finally, we find that
Im (G£¢(w, k= 0))

2

lim =r
w—0 w
m=0
which we can plug into the expression for I’
m?  Im(Gf,(w, k=0))
= — lim
sT w—o0 w
m=0

Recalling that s = 4xr?, our final result is

m? rﬁ m?

sT  4xT
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Thermal conductivity away from the coherent regime

[Davison & B.G., 1505.05092]

@ We can compute the first deviations away from the coherent regime
analytically

Aw) = % ., xpp=sT (L+4xTAM + O(1%)) ,

m? _ V3w —9log3

. 2 4
M= g LrmA+0m), A= =5

@ Corrections both to the momentum relaxation rate and to the static
susceptibilities.

@ The corrections combine in a non-trivial way such that the dc limit is still

4rtsT
m?

R =
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Thermal conductivity in the incoherent regime

[DavisoN & B.G., 1411.1062]
@ In the incoherent regime, momentum is short-lived and not part of the

late time effective theory:
Ore+V - je=0, je=—-Rk VT

@ Thermal transport occurs by diffusion of energy rather than sound waves
Js iwWko
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