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Goal of the talk

e Discuss the (potential) relevance of (pseudo-)spontaneous
symmetry breaking to transport across the phase diagram of
cuprate high T, superconductors.

@ Discuss the impact of (pseudo-)Goldstone dynamics on
hydrodynamic transport and how this leads to bad metallic
transport.

@ Present an effective holographic toy-model of transport in cdw
states and compute the dc resistivity in holographic critical
phases.
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Central motivation: bad metallic transport
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Two experimental challenges for theorists (mussev, Taxevaxa & Taxacrod):
@ T-linear resistivity violating the Mott-loffe-Regel bound: no
quasiparticles
e Optical conductivity: far IR peak (~ 102cm~1) moving off
axis as T increases to room temperature.



Planckian dynamics
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p= 2 ~ T = Ttr = Tp =
Ne“Tyr
Universal scale in all systems at finite temperature which follows

from dimensional analysis
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M =Js, kel =JK, [TI=K = o=

In strongly-coupled, quantum systems, expected to be the fastest
equilibration time allowed by Nature and Quantum Mechanics
[SACHDEV,ZAANEN] . At room temperature

TP ~ 25fs



Planckian dynamics in the optical conductivity [arxiv:1612.04381)
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@ These observations suggest that Planckian dynamics is a
defining feature of both ac and dc transport in bad metals.

@ Planckian dynamics also emerge in the low energy effective
description of strongly-coupled (holographic) quantum
matter.

@ Universal low energy effective theory?



Universal low energy Planckian dynamics
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Next part of this talk
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| will offer a theory based on hydrodynamics and spontaneous
translation symmetry breaking which

o leads to small dc conductivities, ie bad metal;
@ accounts for the far IR off-axis peak in o(w);
@ naturally relates the dc and ac transport timescales.

Disclaimer: effective low energy theory of transport, not a
microscopic theory.



Spontaneous translation symmetry breaking
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Late time dynamics from hydrodynamics

Short-lived quasiparticles: conserved quantities are more
fundamental for late-time transport

atf + 6]6 =0
O’ + Virk =0

Hydrodynamics: long wavelength description of the system
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Electronic crystal

We also wish to include a CDW [GRUNER’88, CHAIKIN & LUBENSKY]:

p(x) = pocos[@x + W(x, t)]

The phase W(x, t) is a new dof coming from the SSB of
translations (Goldstone): ‘phonon’ of the electronic crystal.
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CDW hydrOdynamiCS [Griiner’88, Chaikin-Lubensky,1612.04381]

@ Constitutive relation for the current
j=pv—0oVu+...,

@ 0, is a diffusive transport coefficient: charge transport
without momentum drag [DAvVISON, GOUTERAUX & HARTNOLL'15].

@ An analogy: particle-hole creation in a CFT.

P=P,+P,=0 J=Jp+Ih=2J

Holes Particles
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Pinning of CDW

o A CDW is 'pinned’ by
impurities: sliding only
occurs beyond a threshold
electric field.

@ More formally: the
Goldstones acquire a small
mass wp.
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@ Momentum is relaxed by
impurities

[THORNE’96]

O + VTV = —rf
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Consequences on charge transport
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Weakly-disordered metal

Re[0]
10

The dc conductivity is dominated
by momentum relaxation

Weakly-pinned CDW

Re[0]

o(w) =0+

X PP —iw(r,r - iw) + wg
Ode =00+ O(I'7)
The dc conductivity is set by the

incoherent conductivity
computed in the clean theory.



Phase disordering

@ In 2d, crystals can melt by proliferation of topological
defects in the crystalline structure (Newsox & Harrer 79].

e At T =0: quantum melting [KIVELSON ET AL'98, BEEKMAN ET AL'16].

@ The phase gets disordered (~ BKT) at a rate Q: flow of
mobile dislocations [ixxiv:1702.05104).
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Conducting, phase-disordered CDWs [arxiv:1612.04381]

@ Now the conductivity reads
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w
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New transport inverse timescale, non-zero even if [; ~ 0.
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o Off-axis peak for
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Strange metallic transport from fluctuating CDWs

@ Neglect momentum relaxation ', < wqp, 2 + Galilean o, = 0:

ne* Q
Ode = —— "%
m w?
@ The width and position of the peak are controlled by Q, w,.
The data shows Q ~ w, ~ kg T /h
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:}dzir\/i
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T-linear resistivity!

@ Hydrodynamics of fluctuating CDWs provide a natural
mechanism whereby the ac and dc conductivities are
controlled by the same Planckian timescale.
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Some open questions

@ Typical frequency scales of order T: at the edge of validity
of hydrodynamics w < T.

@ The role played by the Planckian timescale is indicative of
quantum criticality: quantum critical computation.

e Work in progress: use Gauge/Gravity duality to compute
non-hydrodynamic transport in phases with spontaneously
broken translation symmetry.
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Holographic model of spontaneous symmetry breaking
S=[da R-Lag? —1z(e)P2 v Y 232
= [ dx/TE|R =506~ ZZOF ~ V() - Y(9) v

"] InSpired by [DoNos & GAUNTLETT'13, ANDRADE & WITHERS'13].

@ Static Ansatz: only radial dependence
ds® = —D(r)dt*+B(r)dr*+C(r)dz®, A=A(r)dt, ¢=¢(r)

except for ¢y = ké,jxf.

@ Internal shift and rotation symmetry of the v); combines with
spatial translations and rotations to preserve the translation
and rotation symmetry of the Ansatz.
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UV deformation by complex scalar operators

2
S = / d*xv=g [R - %%2 - %Z(¢)F2 = V(@) = Y() Y ovi
i=1

e For simple choices of Y = ¢?, Y = (sinh gb)z, the real scalars
can be rewritten as complex scalars ¢, = qSe’w’ [Donos &
GAUNTLETT’13], q)[ = tanh qf)e”p’ [DoNos & AL'14].

o Can always be done asymptotically provided Yy, ~ ¢
1
Lcrr — LcFT — 5 ()\IOT + /\7(9’)
Same as in mean-field treatments of CDWs [crinerss).

e If A\; =0, spontaneous breaking.
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Match to crystal stress tensor

Dual stress-tensor: equilibrium stress-tensor for an isotropic crystal

(TE) =[p— (G + K)0- W] 37 —2G |90wh) — 579 w|, W =x

eq

with the bulk modulus (elastic resistance to compression)

k2 0
K= —?/ drvBDY
rh

Isotropy = The shear modulus G does not appear at equilibrium.
4 N E——
O}
‘ / E
Shear modulus

Bulk modulus
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The incoherent conductivity: computation

@ Recall that the conductivity of a static, pinned CDW is

p —iw
XPP (—I(,u)(r7T — Iu)) + wg

O =00+

Ode =00+ O(Iy)

@ We computed the incoherent conductivity analytically.

@ At low temperatures:

4K? 47 p?
T —_ " (7 4+ P
oo(T = 0) (up — 2K)2 < ht sk? Yh>
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CDW quantum critical point

@ Long story short: RG flows between a UV CFT CFT uv

(¢ = 0) and a hyperscaling violating IR
(¢ — OO) [GouTERAUX14]

ViR =Voe %, Zir= 2", YRr=Yoe

dt>  1%2d?r  dxX?
2 _ 0 = 0 _ (—z
ds® =r T 2 + 2| A=Ay r>"?dt
i =kx', ¢=rlogr
@ The solution is scale covariant
t— Nt, (r,x)—= A(r,x) v

@ Typical observables scale, eg s ~ T Z06,0 IR
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Two interesting cases
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Hole doping p

[DumM ET AL, PRL 88 14 (2002)] [COOPER ET AL'09]

@ z — 0o: AdS,xR?, underdoped cuprates?
oo(T —0) = T°

@ z,0 — 00, § = —z: conformal to AdS,xR?
oo(T - 0) = T71

Optlma||y doped cu prates? ([DA\'IS()NA SCHALM & ZAANEN'lB])
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