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Goal of the talk

Discuss the (potential) relevance of (pseudo-)spontaneous
symmetry breaking to transport across the phase diagram of
cuprate high Tc superconductors.

Discuss the impact of (pseudo-)Goldstone dynamics on
hydrodynamic transport and how this leads to bad metallic
transport.

Present an effective holographic toy-model of transport in cdw
states and compute the dc resistivity in holographic critical
phases.
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Central motivation: bad metallic transport
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Two experimental challenges for theorists [Hussey, Takenaka & Takagi’04]:
T -linear resistivity violating the Mott-Ioffe-Regel bound: no
quasiparticles
Optical conductivity: far IR peak (∼ 102cm−1) moving off
axis as T increases to room temperature.
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Planckian dynamics

ρ = m
ne2τtr

∼ T ⇒ τtr = τP ≡
~

kBT
Universal scale in all systems at finite temperature which follows
from dimensional analysis

[~] = J .s , [kB] = J .K−1 , [T ] = K ⇒ τP = ~
kBT

In strongly-coupled, quantum systems, expected to be the fastest
equilibration time allowed by Nature and Quantum Mechanics
[Sachdev,Zaanen]. At room temperature

τP ∼ 25fs
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Planckian dynamics in the optical conductivity [arXiv:1612.04381]

~ωpeak ∼ kBT , ~∆ω ∼ kBT ,
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These observations suggest that Planckian dynamics is a
defining feature of both ac and dc transport in bad metals.

Planckian dynamics also emerge in the low energy effective
description of strongly-coupled (holographic) quantum
matter.

Universal low energy effective theory?
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Universal low energy Planckian dynamics
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Next part of this talk
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I will offer a theory based on hydrodynamics and spontaneous
translation symmetry breaking which

leads to small dc conductivities, ie bad metal;
accounts for the far IR off-axis peak in σ(ω);
naturally relates the dc and ac transport timescales.

Disclaimer: effective low energy theory of transport, not a
microscopic theory.
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Spontaneous translation symmetry breaking
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Late time dynamics from hydrodynamics
Short-lived quasiparticles: conserved quantities are more
fundamental for late-time transport

∂tε+ ~∇~jε = 0
∂tπ

i +∇kτ
ik = 0

∂tρ+ ~∇~j = 0
Hydrodynamics: long wavelength description of the system

[credit: Beekman et al’16]
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Electronic crystal

We also wish to include a CDW [Grüner’88, Chaikin & Lubensky]:

ρ(x) = ρ0 cos [Qx + Ψ(x , t)]

The phase Ψ(x , t) is a new dof coming from the SSB of
translations (Goldstone): ‘phonon’ of the electronic crystal.

[π,Ψ] = −iδ

⇒ Ψ̇ = i [H,Ψ] = i
[∫

πv ,Ψ
]

= v

Josephson relation for the
phonon

[credit: Beekman et al’16]
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CDW hydrodynamics [Grüner’88, Chaikin-Lubensky,1612.04381]

Constitutive relation for the current

j = ρv − σo∇µ+ . . . ,

σo is a diffusive transport coefficient: charge transport
without momentum drag [Davison, Goutéraux & Hartnoll’15].

An analogy: particle-hole creation in a CFT.

P = Pp + Ph = 0 J = Jp + Jh = 2Jp
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Pinning of CDW

A CDW is ‘pinned’ by
impurities: sliding only
occurs beyond a threshold
electric field.

More formally: the
Goldstones acquire a small
mass ωo.

Momentum is relaxed by
impurities

∂tπ
i +∇jT ij = −Γπi

[Thorne’96]
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Consequences on charge transport

Weakly-disordered metal
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The dc conductivity is dominated
by momentum relaxation

Weakly-pinned CDW
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The dc conductivity is set by the
incoherent conductivity
computed in the clean theory.
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Phase disordering
In 2d, crystals can melt by proliferation of topological
defects in the crystalline structure [Nelson & Halperin’79].

At T = 0: quantum melting [Kivelson et al’98, Beekman et al’16].

The phase gets disordered (∼ BKT) at a rate Ω: flow of
mobile dislocations [arXiv:1702.05104].

⇒ Ψ̇ + ΩΨ = v
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Conducting, phase-disordered CDWs [arXiv:1612.04381]

Now the conductivity reads

σ = σo + ρ2

χPP

(Ω− iω)
(Ω− iω) (Γπ − iω) + ω2

o
, σdc = σo + ρ2

χPP

1
ΓCDW

ΓCDW = Γπ + ω2
o

Ω
New transport inverse timescale, non-zero even if Γπ ∼ 0.

Off-axis peak for
sufficiently small Ω or
large pinning ωo

ωo ≥
Ω3

Γπ + 2Ω

0
ω

Re[σ]
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Strange metallic transport from fluctuating CDWs
Neglect momentum relaxation Γπ � ω0,Ω + Galilean σo = 0:

σdc = n e2

m
Ω
ω2

o

The width and position of the peak are controlled by Ω, ωo.
The data shows Ω ∼ ωo ∼ kBT/~

⇒ ρdc = 1
σdc
∼ m

n e2
kB T
~

T -linear resistivity!

Hydrodynamics of fluctuating CDWs provide a natural
mechanism whereby the ac and dc conductivities are
controlled by the same Planckian timescale.
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Some open questions

Typical frequency scales of order T : at the edge of validity
of hydrodynamics ω � T .

The role played by the Planckian timescale is indicative of
quantum criticality: quantum critical computation.

Work in progress: use Gauge/Gravity duality to compute
non-hydrodynamic transport in phases with spontaneously
broken translation symmetry.
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Holographic model of spontaneous symmetry breaking

S =
∫

d4x
√
−g

[
R − 1

2∂φ
2 − 1

4Z (φ)F 2 − V (φ)− Y (φ)
2∑

i=1
∂ψ2

I

]

Inspired by [Donos & Gauntlett’13, Andrade & Withers’13].

Static Ansatz: only radial dependence

ds2 = −D(r)dt2+B(r)dr2+C(r)d~x2 , A = A(r)dt , φ = φ(r)

except for ψI = kδIjx j .

Internal shift and rotation symmetry of the ψI combines with
spatial translations and rotations to preserve the translation
and rotation symmetry of the Ansatz.
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UV deformation by complex scalar operators

S =
∫

d4x
√
−g

[
R − 1

2∂φ
2 − 1

4Z (φ)F 2 − V (φ)− Y (φ)
2∑

i=1
∂ψ2

I

]

For simple choices of Y = φ2, Y = (sinhφ)2, the real scalars
can be rewritten as complex scalars ΦI = φ eiψI [Donos &

Gauntlett’13], ΦI = tanhφ eiψI [Donos & al’14].

Can always be done asymptotically provided YUV ∼ φ2

LCFT → LCFT −
1
2
(
λIO∗

I + λ∗
IOI

)
Same as in mean-field treatments of CDWs [Grüner’88].

If λI = 0, spontaneous breaking.
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Match to crystal stress tensor
Dual stress-tensor: equilibrium stress-tensor for an isotropic crystal

〈T ij
eq〉 = [p − (G + K ) ∂ ·Ψ] δij − 2G

[
∂(i Ψj) − δij∂ ·Ψ

]
, Ψi = x i

with the bulk modulus (elastic resistance to compression)

K = −k2

2

∫ 0

rh
dr
√
BDY

Isotropy ⇒ The shear modulus G does not appear at equilibrium.

Bulk modulus
Shear modulus
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The incoherent conductivity: computation

Recall that the conductivity of a static, pinned CDW is

σ = σo + ρ2

χPP

−iω
(−iω)(Γπ − iω) + ω2

o

σdc = σo + O(Γπ)

We computed the incoherent conductivity analytically.

At low temperatures:

σo(T → 0) = 4K 2

(µρ− 2K )2

(
Zh + 4πρ2

sk2 Yh

)
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CDW quantum critical point

Long story short: RG flows between a UV CFT
(φ = 0) and a hyperscaling violating IR
(φ→∞) [Goutéraux’14]

VIR = V0e−δφ , ZIR = Z0eγφ , YIR = Y0eλφ

ds2 = r θ
[
−dt2

r2z + L2d2r
r2 + d~x2

r2

]
, A = A0 r ζ−zdt ,

ψi = kx i , φ = κ log r

The solution is scale covariant
t → λzt , (r , x)→ λ(r , x)
Typical observables scale, eg s ∼ T

d−θ
z
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Two interesting cases

[Dumm et al, PRL 88 14 (2002)] [Cooper et al’09]

z →∞: AdS2×R2, underdoped cuprates?

σo(T → 0)→ T 0

z , θ →∞, θ = −z : conformal to AdS2×R2

σo(T → 0)→ T−1

Optimally doped cuprates? ([Davison, Schalm & Zaanen’13])
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