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Goal of the lecture and Acknowledgments

The goal of this lecture is to give a short introduction to
non-quasiparticle approaches to transport at strong coupling, e.g.
hydrodynamics, memory matrices and AdS/CFT.

After setting up the stage, I will mostly focus on momentum relaxation in
metallic phases.

I will also mention the possibility of fundamental bounds on transport
coefficients.
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Main references

Lectures on hydrodynamics, Pavel Kovtun, [arXiv:1205.5040].

Holographic quantum matter, Sean Hartnoll, Andrew Lucas and Subir
Sachdev, [arXiv:1612.07324].
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Transport with long-lived quasiparticles

Transport in a weakly-coupled metallic phase is accounted for by tracking
the dynamics of the weakly-interacting quasiparticles.

Infinite number of quasi-conserved quantities τqp � ~/(kBT ) (or
τel � τinel).

Kinetic Boltzmann equation: captures the dynamics of nδk , the qp
density at wavector δk = k − kF . Difficulty: solving the collision integral
but this is a technical obstacle, not a conceptual one.

From the point of view of transport, this typically means that the ac
conductivity

σ(ω, k = 0) ∼
ω2

p

Γ− iω , Γ = 1
τqp

There is a sharp Drude-like peak at ω = 0 and

σdc = lim
ω→0

σ(ω) = ne2τqp

m � 1
T

This can be taken as an operational definition of a good metal.
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The MIR bound

The qp mean free path is bounded from below by Quantum Mechanics:
kF ` & ~

This implies a lower bound on the conductivity of a good metal

σdc = ne2τqp

m &
e2

~
This can also be reformulated using the uncertainty principle on energy

EF kBT & ~ ⇒ σdc &
EF

kBT
e2
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Transport without long-lived quasiparticles

What about cases without long-lived quasiparticles τqp ∼ 1/T?

Specifically, I will focus here on cases with an emerging long lived
collective mode: momentum (tomorrow, Goldstone boson as well).

Hydrodynamics: relaxation towards equilibrium τ � τth ∼ 1/T .
Expansion in small gradients which encapsulates the assumption that
τ/τth � 1 or equivalently ξ/`mfp � 1.

The memory matrix formalism does not assume small gradients:
‘disorder’ can vary importantly on microscopic scales. However it is only
practically useful if there is only a small number of long-lived operators.

AdS/CFT gives results consistent with both previous approaches, and
allows to describe the crossover from weak to strong breaking.
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Hydrodynamics of clean electronic fluids

The starting point is conservation equations for energy (entropy),
momentum and charge densities (symmetries).

∂ts + ∂i

(
j i
q

T

)
= 0 , ∂tπ

i + ∂jτ
ij = 0 , ∂tρ+ ∂i j i = 0

Next, we add an applied electric field Ei ∼ O(∂):

∂tδs + ∂i

(
j i
q

T

)
= Ei j i

T , ∂tπ
i + ∂jτ

ij = ρ
(
E i + vkF ki)

We give a constitutive relation to currents order by order in gradients

j i = ρv i − σo
(
∂ iµ− E i)− αo∂i T + O(∂2) ,

j i
q = sTv i − Tαo

(
∂ iµ− E i)− T κ̄o∂i T + O(∂2) ,

τ ij = pδij − η
(
∂ i v j + ∂ jv i) + (ζ − η) ∂kv kδij + O(∂2)
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Spectrum of modes

There are three longitudinal modes: two acoustic and a diffusive mode
ω± = ±csk − iγsk2 , ωinc = −iDinck2

The sound modes are carried by momentum and pressure fluctuations

GR
ππ,GR

δpδp ∼
1

ω2 − c2
s k2 − 2iγsk2

The diffusive mode is carried by a combination of charge and entropy

GR
δρincδρinc ∼

1
ω + iDinck2 , δρinc = sδρ− ρδs

8



Thermoelectric conductivities

Finally, solve for linearized fluctuations in terms of Ei , using the relations
between vevs and sources

πi = χPPv i ,(
δρ
δs

)
=

(
χρρ χρs
χρs χss

) (
δµ
δT

)

Generalized Ohm’s law(
j
jq

)
=

(
σ Tα

Tα T κ̄

) (
E

−∂δT/T

)
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Thermoelectric conductivities

σ(ω) = σo + ρ2

χPP

( i
ω

+ πδ(ω)
)

α(ω) = αo + ρs
χPP

( i
ω

+ πδ(ω)
)

κ̄(ω) = κ̄o + s2T
χPP

( i
ω

+ πδ(ω)
)

Their dc limit ω → 0 is formally infinite. This is due to momentum
conservation and the non-zero overlap between the electric and heat
currents with momentum:

χJP = δj i

δv i = ρ

χJQP =
δj i

q

δv i = sT
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Finite dc thermal conductivity

Consider the heat conductivity with open circuit boundary conditions

κ ≡ T δjq
δ∂T

∣∣∣
j=0

= κ̄− α2

Tσ

Finite as ω → 0
κ = κ̄o −

2sT
ρ
αo + s2T

ρ2 σo

The open circuit boundary conditions remove the contribution of the
sound modes from the thermal conductivity.

This is the thermal conductivity measured in experiments.
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Familiar limits

When we have (Galilean or Lorentz) boosts, we can fix some of the hydro
coefficients.

Galilean boosts

χPP = mn , ρ = ne , σo = αo = 0

π = mj = mnev

Lorentz boosts

χPP = ε+ p = µρ+ Ts , αo = − µT σo , κ̄o = µ2

T σo
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Introducing weak, long wavelength disorder

Finite dc conductivities? Relax momentum, ie break translations explicitly.
The simplest way to treat disorder perturbatively in a ‘mean field’ way.

∂tπ
i + ∂jτ

ij = −Γπi + ρ
(
E i + vkF ki) , Γ� Λ ∼ 1/τth

The conductivity and associated resistivity become

σ(ω) = σo + ρ2

χPP

1
Γ− iω , ρdc = 1

σdc
∼ O (Γ) 6= 0

Disorder is a (dangerously) irrelevant deformation for the resistivity.
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Hydrodynamic signatures in electronic flows

Wiedemann-Franz law for conventional metals

L = κe

σT = π2

3

(
k2

B
e

)2

≡ L0

The WF law holds because both κe , σ ∼ τqp.

In very clean Graphene near the charge neutrality point

κe = χPP

T Γ , σ ∼ σo ⇒ L ∼ O
( 1

Γ

)
� L0

[Crossno et al, Science 351 6277 (2016)]
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Hydrodynamic signatures in electronic flows

Other recent experiments
Backflows and negative resistance in Graphene due to viscous effects
[Levitov & Falkovich, Nat. Phys. 12 (2016)], [Bandurin et al, Science 351 (2016)].

Viscous contributions to the resistance in restricted channels in PdCoO2
[Moll et al, Science 351 2016].

Viscous contributions to the resistance, violations of WF law and Hall
measurements in WP2 [Gooth et al, arXiv:1706.05925].

Dirk van der Marel’s talk on Thursday.
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Beyond simple hydrodynamics

How do we compute σo , Γ?

Short-scale disorder?

Strong disorder?

Need a more microscopic approach!
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