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Goal of the lecture and Acknowledgments

@ The goal of this lecture is to give a short introduction to
non-quasiparticle approaches to transport at strong coupling, e.g.
hydrodynamics, memory matrices and AdS/CFT.

@ After setting up the stage, | will mostly focus on momentum relaxation in
metallic phases.

@ | will also mention the possibility of fundamental bounds on transport
coefficients.



Main references

@ Lectures on hydrodynamics, Pavel Kovtun, [arxXiv:1205.5040].

@ Holographic quantum matter, Sean Hartnoll, Andrew Lucas and Subir
Sachdev, [arxiv:1612.07324].



Transport with long-lived quasiparticles

@ Transport in a weakly-coupled metallic phase is accounted for by tracking
the dynamics of the weakly-interacting quasiparticles.

@ Infinite number of quasi-conserved quantities 7, > h/(kgT) (or
Tel K Tinel)-

@ Kinetic Boltzmann equation: captures the dynamics of nsk, the qp
density at wavector 6k = k — ke. Difficulty: solving the collision integral
but this is a technical obstacle, not a conceptual one.

@ From the point of view of transport, this typically means that the ac
conductivity
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There is a sharp Drude-like peak at w = 0 and
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This can be taken as an operational definition of a good metal.



The MIR bound
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@ The gp mean free path is bounded from below by Quantum Mechanics:
kel 2k

@ This implies a lower bound on the conductivity of a good metal
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@ This can also be reformulated using the uncertainty principle on energy
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Transport without long-lived quasiparticles

@ What about cases without long-lived quasiparticles 7q, ~ 1/T7?

@ Specifically, | will focus here on cases with an emerging long lived
collective mode: momentum (tomorrow, Goldstone boson as well).

@ Hydrodynamics: relaxation towards equilibrium 7> 74 ~ 1/T.
Expansion in small gradients which encapsulates the assumption that
T/Ten > 1 or equivalently £/Cmg > 1.

@ The memory matrix formalism does not assume small gradients:
‘disorder’ can vary importantly on microscopic scales. However it is only
practically useful if there is only a small number of long-lived operators.

@ AdS/CFT gives results consistent with both previous approaches, and
allows to describe the crossover from weak to strong breaking.



Hydrodynamics of clean electronic fluids

@ The starting point is conservation equations for energy (entropy),
momentum and charge densities (symmetries).

des + O <J7"_> =0, O +97" =0, Op+08j =0

@ Next, we add an applied electric field E; ~ O(9):
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@ We give a constitutive relation to currents order by order in gradients
ji = pvi — 0o ((9'@ — Ei) — a0 T + 0(82),
j(; =sTv — Tae (8'@ - Ei) — TR.Oi T + 0(5'2)7
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Spectrum of modes

w
@ There are three longitudinal modes: two acoustic and a diffusive mode

wt = ek — i’Yskz, Winc = _iDian2

@ The sound modes are carried by momentum and pressure fluctuations
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@ The diffusive mode is carried by a combination of charge and entropy
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Thermoelectric conductivities

@ Finally, solve for linearized fluctuations in terms of E;, using the relations
between vevs and sources

= XPP v )
dp
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ﬂ'i
_ Xpp  Xps op
Xps  Xss 6T
@ Generalized Ohm'’s law

(1)=(7 7)) (o)



Thermoelectric conductivities

o(w) =00+ XL:P (é + 776(0.1))
a(w) = a, + Xp—; (i + 775(0.1))

R(w) = Fo+ % (i +mo(w))

@ Their dc limit w — 0 is formally infinite. This is due to momentum
conservation and the non-zero overlap between the electric and heat

currents With momentum:
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Finite dc thermal conductivity

@ Consider the heat conductivity with open circuit boundary conditions
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@ The open circuit boundary conditions remove the contribution of the
sound modes from the thermal conductivity.

@ This is the thermal conductivity measured in experiments.
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Familiar limits

@ When we have (Galilean or Lorentz) boosts, we can fix some of the hydro
coefficients.

@ Galilean boosts
Xpp=mn, p=ne, 0o,=0,=0
T = mj = mnev

@ Lorentz boosts

Xpp=€+p=up+Ts, a=——00, Ho=ﬂ7oo
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Introducing weak, long wavelength disorder
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@ Finite dc conductivities? Relax momentum, ie break translations explicitly.
The simplest way to treat disorder perturbatively in a ‘mean field" way.

O’ + 07" = —Tr' + p (E'+ wFY), T <N~ 1/

@ The conductivity and associated resistivity become
1

) pdcszvO(r);éO
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Disorder is a (dangerously) irrelevant deformation for the resistivity.




Hydrodynamic signatures in electronic flows

@ Wiedemann-Franz law for conventional metals
2
Ke 2 ké
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The WF law holds because both ke, o ~ 7qp.

@ In very clean Graphene near the charge neutrality point

_ Xpp N ~ofl
Ke = "FF, 0~0o = L O(r)>>£o
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[CROSSNO ET AL, SCIENCE 351 6277 (2016)]
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Hydrodynamic signatures in electronic flows

Other recent experiments

@ Backflows and negative resistance in Graphene due to viscous effects
[LEviTOV & FALKOVICH, NAT. PHYS. 12 (2016)], [BANDURIN ET AL, SCIENCE 351 (2016)].

@ Viscous contributions to the resistance in restricted channels in PdCoO;

[MOLL ET AL, SCIENCE 351 2016].

@ Viscous contributions to the resistance, violations of WF law and Hall
measurements in WP, [Goorn g1 AL, ARX1v:1706.05925].

@ Dirk van der Marel's talk on Thursday.
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Beyond simple hydrodynamics

@ How do we compute oo, I'?
@ Short-scale disorder?

@ Strong disorder?

Need a more microscopic approach!
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