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Goal of the talk

Discuss the (potential) relevance of (pseudo-)spontaneous
symmetry breaking to transport across the phase diagram of
cuprate high Tc superconductors.

Discuss the impact of (pseudo-)Goldstone dynamics on
hydrodynamic transport and how this leads to bad metallic
transport.

Present an effective holographic toy-model of transport in cdw
states and compute the dc resistivity in holographic critical
phases.
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Central motivation: bad metallic transport
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Two experimental challenges for theorists [Hussey, Takenaka & Takagi’04]:
T -linear resistivity violating the MIR bound: no
quasiparticles
Optical conductivity: far IR peak (∼ 102cm−1) moving off
axis as T increases to room temperature.
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Planckian dynamics

ρ = m
ne2τtr

∼ T ⇒ τtr = τP ≡
~

kBT

Universal scale in all systems at finite temperature which follows
from dimensional analysis

[~] = J .s , [kB] = J .K−1 , [T ] = K ⇒ τP = ~
kBT

In strongly-coupled, quantum systems, expected to be the fastest
equilibration time allowed by Nature and Quantum Mechanics
[Sachdev,Zaanen]. At room temperature

τP ∼ 25fs
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Off-axis peaks in optical conductivity data

La2126 YBa2(Cu1−xZnx )3O7−δ
[PRB 67 134526 (2003)] [PRB 57 081 (1998)]
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Off-axis peaks in optical conductivity data (2)
Bi2Sr2CuO6 Ca2RuO3 La1.9Sr0.1CuO4

[PRB 55 14152 (1997)] [PRB 66 041104 (2002)] [Phil Mag 84 2847 (2004)]

Bi2Sr2CaCu2O8+δ Na0.7CoO2 Tl2Ba2CuO6+δ
[J. of Phy: Cond Mat 19 125208 (2007)] [PRL 93 237007 (2004)] [PRB 51 3312 (1995)]
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Off-axis peaks in optical conductivity data (3)

La2126 θ-(BEDT-TTF)2I3 (a) θ-(BEDT-TTF)2I3 (c)
[PRB 67 134526 (2003)] [PRL 95 227801 (2005)] [PRL 95 227801 (2005)]

YBa2(Cu1−x Znx )3O7−δ V2O3 LiV2O4
[PRB 57 081 (1998)] [PRL 75 105 (1995)] [PRL 99 167402 (2007)]
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Planckian dynamics in the optical conductivity [arXiv:1612.04381]

~ωpeak ∼ kBT , ~∆ω ∼ kBT ,
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These observations suggest that Planckian dynamics is a
defining feature of both ac and dc transport in bad metals.

Planckian dynamics also emerge in the low energy effective
description of strongly-coupled (holographic) quantum
matter.

Universal low energy effective theory?
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Universal low energy Planckian dynamics
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Next part of this talk
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I will offer a theory based on hydrodynamics and spontaneous
translation symmetry breaking which

leads to small dc conductivities;
accounts for the far IR off-axis peak in σ(ω);
naturally relates the dc and ac transport timescales.

Disclaimer: effective low energy theory of transport, not a
microscopic theory.12



Spontaneous translation symmetry breaking

[Keimer et al, Nature 518 179 (2015)]
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Late time dynamics from hydrodynamics
Short-lived quasiparticles: conserved quantities are more
fundamental for late-time transport

∂tε+ ~∇~je = 0
∂tπ

i +∇kτ
ik = 0

∂tρ+ ~∇~j = 0
Hydrodynamics: long wavelength description of the system

[credit: Beekman et al’16]
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Electronic crystal

[credit: Beekman et al’16] [credit: Beekman et al’16]

We also wish to include a CDW [Grüner’88, Chaikin & Lubensky]:

ρ(x) = ρ0 cos [Qx + φ(x , t)]

The phase φ(x , t) is a new dof coming from the SSB of
translations (Goldstone): ‘phonon’ of the electronic crystal.
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CDW hydrodynamics [Grüner’88, Chaikin-Lubensky,1612.04381]

Constitutive relation for the current and the Goldstone

j = ρv − σo∇µ+ . . . , φ̇ = v + . . .

σo is a diffusive transport coefficient encoding charge
transport without momentum drag.

ρ(x) = ρ0 cos [Qx + φ(x , t)]

Define v = Qẋ . Then the ‘Josephson’ relation comes from the
shift symmetry of the low energy dynamics.
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Conductivity of a pinned, non-Galilean CDW

Standard procedure to extract retarded Green’s functions
[Kadanoff & Martin’63].

Weak disorder: finite momentum lifetime 1/Γπ, pins the
Goldstone φ with a small mass ωo.

σ = σo + ρ2

χPP

−iω
(−iω)(Γπ − iω) + ω2

o

Non-zero dc conductivity
σdc = σo + O(Γπ)

Can be small even for weak
momentum relaxation: bad
metal.
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Phase disordering

In 2d, crystals can melt by proliferation of topological
defects in the crystalline structure [Nelson & Halperin’79].

At T = 0: quantum melting [Kivelson et al’98, Beekman et al’16].

The phase gets disordered (∼ BKT) at a rate Ω: flow of
mobile dislocations [arXiv:1702.05104].
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Conducting, phase-disordered CDWs [arXiv:1612.04381]

Now the conductivity reads

σ = σo + ρ2

χPP

(Ω− iω)
(Ω− iω) (Γπ − iω) + ω2

o
, σdc = ρ2

χPP

1
ΓCDW

ΓCDW = Γπ + ω2
o

Ω
New transport inverse timescale, non-zero even if Γπ ∼ 0.

Off-axis peak for
sufficiently small Ω or
large pinning ωo

ωo ≥
Ω3

Γπ + 2Ω

0
ω

Re[σ]
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Bad metallic transport from fluctuating CDWs

Neglect momentum relaxation Γπ � ω0,Ω + Galilean σo = 0:

σdc = n e2

m
Ω
ω2

o

The width and position of the peak are controlled by Ω, ωo.
The data shows Ω ∼ ωo ∼ kBT/~

⇒ ρdc = 1
σdc
∼ m

n e2
kB T
~

T -linear resistivity!

Hydrodynamics of fluctuating CDWs provide a natural
mechanism whereby the ac and dc conductivities are
controlled by the same Planckian timescale.
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Resistivity upturns from fluctuating cdws

ρdc = m
ne2 ΓCDW , ΓCDW = Γπ + ω2

o
Ω

T (A.U.)

ρ
(A
.U
.)

[Dumm et al, PRL 88 14 (2002)]

An upturn occurs as Ω decreases and phase fluctuations dominate
ΓCDW : relation to underdoped cuprates and static charge order?
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Wiedeman-Franz law violation?

κ

Tσ ∼
1
Ω � Lo

[Dumm et al, PRL 88 14 (2002)]

22



Spatially-resolved conductivity

This is a case where Ω is large enough that σ(ω, 0) only displays a
Drude peak.

The presence of fluctuating CDWs (right) is signaled by the
broadening of the peak as k increases.

In contrast to the structure factor, the spectral weight is ne2/m.
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Magnetotransport

-2 -1 1 2

-0.8

-0.6

-0.4

-0.2

Poles

-2 -1 0 1 2
ω

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re[σ(ω)]

-2 -1 1 2

-0.8

-0.6

-0.4

-0.2

Poles

-2 -1 0 1 2
ω

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re[σ(ω)]

We estimate B > Bc ∼ m?/me · 7− 9T in NdLSCO at x = 1/8.
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Some open questions

Typical frequency scales of order T : at the edge of validity
of hydrodynamics ω � T .

The role played by the Planckian timescale is indicative of
quantum criticality: quantum critical computation.

Work in progress: use Gauge/Gravity duality to compute
non-hydrodynamic transport in phases with spontaneously
broken translation symmetry.
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An effective holographic model of spontaneous symmetry
breaking

S =
∫

dd+2x
√
−g

[
R − 1

2∂φ
2 − 1

4Z (φ)F 2 − V (φ)− Y (φ)
d∑

i=1
∂ψ2

I

]

Inspired by [Donos & Gauntlett’13, Andrade & Withers’13].

Static Ansatz: only radial dependence

ds2 = −D(r)dt2+B(r)dr2+C(r)d~x2 , A = A(r)dt , φ = φ(r)

except for ψI = kδIjx j .

Internal shift and rotation symmetry of the ψI combines with
spatial translations and rotations to preserve the translation
and rotation symmetry of the Ansatz.
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UV deformation by complex scalar operators

S =
∫

dd+2x
√
−g

[
R − 1

2∂φ
2 − 1

4Z (φ)F 2 − V (φ)− Y (φ)
d∑

i=1
∂ψ2

I

]

For simple choices of Y = φ2, Y = (sinhφ)2, the real scalars
can be rewritten as complex scalars ΦI = φ eiψI [Donos &

Gauntlett’13], ΦI = tanhφ eiψI [Donos & al’14].

Not possible to do explicitly in general, but still true
asymptotically

LCFT → LCFT −
1
2
(
λIO∗

I + λ∗
IOI

)
Same as in mean-field treatments of CDWs [Grüner’88].

If λI = 0, spontaneous breaking.
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The incoherent conductivity: computation

Recall that the conductivity of a static, pinned CDW is

σ = σo + ρ2

χPP

−iω
(−iω)(Γπ − iω) + ω2

o

σdc = σo + O(Γπ)

We computed the incoherent conductivity analytically (see A.
Donos’ talk on Friday for more on how to compute dc
conductivities in holography).

At low temperatures:

σo(T → 0) = 4B2

(µρ− 2B)2

(
Zh + 4πρ2

sk2 Yh

)
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CDW quantum critical point

Long story short: RG flows between a UV CFT
(φ = 0) and a hyperscaling violating IR
(φ→∞) [Goutéraux’14]

VIR = V0e−δφ , ZIR = Z0eγφ , YIR = Y0eλφ

ds2 = r θ
[
−dt2

r2z + L2d2r
r2 + d~x2

r2

]
, A = A0 r ζ−zdt ,

ψi = kx i , φ = κ log r

The solution is scale covariant

t → λzt , r → λr , ~x → λ~x

Typical observables (entropy density) scale

s ∼ T
d−θ

z
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Two interesting cases

[Dumm et al, PRL 88 14 (2002)] [Cooper et al’09]

z →∞: AdS2×R2

σo(T → 0)→ T 0

Underdoped cuprates?

z →∞, θ →∞, θ = −z : conformal to AdS2×R2

σo(T → 0)→ T−1

Optimally doped cuprates? ([Davison, Schalm & Zaanen’13])30


