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Goal of the talk

e Discuss the (potential) relevance of (pseudo-)spontaneous
symmetry breaking to transport across the phase diagram of
cuprate high T, superconductors.

@ Discuss the impact of (pseudo-)Goldstone dynamics on
hydrodynamic transport and how this leads to bad metallic
transport.

@ Present an effective holographic toy-model of transport in cdw
states and compute the dc resistivity in holographic critical
phases.
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Central motivation: bad metallic transport
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Two experimental challenges for theorists (mussey, Taxevaxa & Taxacrodl:

@ T-linear resistivity violating the MIR bound: no
quasiparticles

@ Optical conductivity: far IR peak (~ 102cm~!) moving off
axis as T increases to room temperature.



Planckian dynamics
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Universal scale in all systems at finite temperature which follows
from dimensional analysis

Hl=Js, [kel=JKk, [T]=K = rp= "

In strongly-coupled, quantum systems, expected to be the fastest
equilibration time allowed by Nature and Quantum Mechanics
[SACHDEV,ZAANEN]. At room temperature

TP ™~ 25fs



Off-axis peaks in optical conductivity data
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Off-axis peaks in optical conductivity data (2)
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Off-axis peaks in optical

[PRB 67 134526 (2003)]
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conductivity data (3)
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Planckian dynamics in the optical conductivity [arxiv:1612.04381)
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@ These observations suggest that Planckian dynamics is a
defining feature of both ac and dc transport in bad metals.

@ Planckian dynamics also emerge in the low energy effective
description of strongly-coupled (holographic) quantum
matter.

@ Universal low energy effective theory?
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Universal low energy Planckian dynamics
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Next part of this talk

12

No
quasiparticles

I S .

MIR bound a1(w) (AU)

w (AU)

| will offer a theory based on hydrodynamics and spontaneous
translation symmetry breaking which

@ leads to small dc conductivities;

@ accounts for the far IR off-axis peak in o(w);

@ naturally relates the dc and ac transport timescales.

Disclaimer: effective low energy theory of transport, not a
microscopic theory.



Spontaneous translation symmetry breaking
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Late time dynamics from hydrodynamics

Short-lived quasiparticles: conserved quantities are more
fundamental for late-time transport

8,;6 =+ 6]:.3 = 0
O + Virk =0

Hydrodynamics: long wavelength description of the system
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Electronic crystal
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We also wish to include a CDW [GRUNER’88, CHAIKIN & LUBENSKY]:

p(x) = pocos [Qx + p(x, t)]

The phase ¢(x, t) is a new dof coming from the SSB of

translations (Goldstone): ‘phonon’ of the electronic crystal.
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CDW hydrOdynamiCS [Griiner’88, Chaikin-Lubensky,1612.04381]

@ Constitutive relation for the current and the Goldstone

j=pv—oVu+..., b=v+...

@ o, is a diffusive transport coefficient encoding charge
transport without momentum drag.

p(x) = pocos [Qx + ¢(x, t)]

Define v = @x. Then the 'Josephson’ relation comes from the
shift symmetry of the low energy dynamics.
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Conductivity of a pinned, non-Galilean CDW

@ Standard procedure to extract retarded Green's functions

[KADANOFF & MARTIN’63].

e Weak disorder: finite momentum lifetime 1/I, pins the
Goldstone ¢ with a small mass w,.

P —iw
xpp (—iw)(Tr — iw) + w3

O =0, +

@ Non-zero dc conductivity Fete

Ode =06+ O(T) . \
@ Can be small even for weak . \K
momentum relaxation: bad —

metal. .
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Phase disordering
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@ In 2d, crystals can melt by proliferation of topological
defects in the Crysta||ine structure [Necson & Harperin'79).

e At T =0: quantum meltlng [KIVELSON ET AL'98, BEEKMAN ET AL’16].

@ The phase gets disordered (~ BKT) at a rate Q: flow of

mobile dislocations [.rxiv:1702.05104).
18



Conducting, phase-disordered CDWs [arxiv:1612.04381]
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@ Now the conductivity reads
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Bad metallic transport from fluctuating CDWs

@ Neglect momentum relaxation I, < wp, 2 + Galilean o, = 0:

ne> Q
Ode = ——%
m w2
@ The width and position of the peak are controlled by Q, w,.
The data shows Q ~ w, ~ kg T /h
1 m kB T

:}dziwi
Pde ode nez h

T-linear resistivity!

@ Hydrodynamics of fluctuating CDWs provide a natural
mechanism whereby the ac and dc conductivities are
controlled by the same Planckian timescale.
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Resistivity upturns from fluctuating cdws
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[Dumm ET AL, PRL 88 14 (2002)]

An upturn occurs as {2 decreases and phase fluctuations dominate
I cpw: relation to underdoped cuprates and static charge order?
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Wiedeman-Franz law violation?
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Spatially-resolved conductivity

o1(w, k)

w w

This is a case where Q is large enough that o(w, 0) only displays a
Drude peak.

The presence of fluctuating CDWs (right) is signaled by the
broadening of the peak as k increases.

In contrast to the structure factor, the spectral weight is ne?/m.



Magnetotransport
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We estimate B > B, ~ m*/me -7 —9T in NdLSCO at x = 1/8.
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Some open questions

@ Typical frequency scales of order T: at the edge of validity
of hydrodynamics w < T.

@ The role played by the Planckian timescale is indicative of
quantum criticality: quantum critical computation.

e Work in progress: use Gauge/Gravity duality to compute
non-hydrodynamic transport in phases with spontaneously
broken translation symmetry.

25



An effective holographic model of spontaneous symmetry

breaking

1 d
s— [y [R - Loe - L2(0)F - V() - V()Y 07
i=1

(*] |nspired by [DoNOs & GAUNTLETT’13, ANDRADE & WITHERS'13].

@ Static Ansatz: only radial dependence
ds® = —D(r)dt*+B(r)dr*+C(r)dz®, A=A(r)dt, ¢ =¢(r)
except for 1) = kdjx/.

@ Internal shift and rotation symmetry of the v); combines with
spatial translations and rotations to preserve the translation

and rotation symmetry of the Ansatz.
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UV deformation by complex scalar operators

d
s= [a2xyg [R — 306~ SZ(B)F ~ V(o) ~ Y(6) Y 00}
i=1

@ For simple choices of Y = ¢?, Y = (sinh gb)2, the real scalars
can be rewritten as complex scalars ¢, = qSe”Z” [Doxos &
GAUNTLETT'13], q)[ = tanh qf)e”p’ [Donos & AL'14].

@ Not possible to do explicitly in general, but still true
asymptotically

1
Lcrr — Lcrr — 5 ()\IOT + /\70’)
Same as in mean-field treatments of CDWs [Grinerss].

e If A\; =0, spontaneous breaking.
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The incoherent conductivity: computation

@ Recall that the conductivity of a static, pinned CDW is

p2 —iw

xop (—i)(Tr — i) + 2

0O =0, +

Ode =00+ O(Iy)

@ We computed the incoherent conductivity analytically (see A.
Donos' talk on Friday for more on how to compute dc
conductivities in holography).

o At low temperatures:

4B? 47 p?
To0)=— [ Zy+ ——
7olT =0 (up — 2B)° ( e Yh)
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CDW quantum critical point

@ Long story short: RG flows between a UV CFT
(¢ = 0) and a hyperscaling violating IR CFT uv
(¢ — OO) [GOUTERAUX 14]

ViR = Voe %, Zir= 2", Ygr= Yoe

_d7t2 [2d?’r  dx?

— (—z
r22+T+rT 3 A—Aor dt

ds® = r?

vi=kx', ¢=rlogr

@ The solution is scale covariant

t— Nt, r—=Ar, X— X I
\j

@ Typical observables (entropy density) scale ZB,C IR

d—6
SNTZ
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Two interesting cases
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@ z — oo: AdS,xR?
oo(T —0) = T°
Underdoped cuprates?

@ z— 00, § — 00, § = —z: conformal to AdS,xR?
oo(T—0) = T71

20 Optlma||y dOped Cuprates? ({DA\'ISON. SCHALM & ZAANEN‘liiJ)



