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Diffusivities: early days of AdS/CFT

Diffusivities have played an important role in the history and
development of applications of AdS/CFT [Policastro, Son &

Starinets’01, ’02, Herzog’02]

Shear viscosity of d + 2-dimensional Schwarzschild AdS:

Tµν = (ε+ p)uµuν + pgµν − 2ησµν + O(∇2)

σµν = Pα
µPβ

ν∇(αuβ) −
1
d gµν∇ · u

GR
π⊥π⊥

= (ε+ p)Dπ⊥q2

iω − Dπ⊥q2 , Dπ⊥ = η

ε+ p = η

sT = 1
4πT
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Diffusivities: early days of AdS/CFT

Diffusivities have played an important role in the history and
development of applications of AdS/CFT [Policastro, Son &

Starinets’01, ’02, Herzog’02]

R-charge diffusion in d + 2-dimensional Schwarzschild AdS:

Jµ = −σoT∇µ
(
µ

T

)
+ O(∇2)

GR
J‖J‖

= χnnDRω
2

iω − DRq2 , DR = σo
χnn

=
d=3

1
2πT
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Experimental evidence
How does the diffusivity behave in real, strongly-coupled systems?
Thermal diffusivity measurements in high Tc superconductors

[Zhang et al, PNAS 2017 114 (21)]
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Diffusivities and Planckian dynamics

Diffusivities are defined via Einstein relations ’Σ = D · X ’.
But, dimensional analysis

[D] = [v2][τ ]
Interesting to express them in terms of a timescale and a
velocity [Hartnoll’14].

Reinstating units in previous results [Kovtun & Ritz’08]:
D ∼ c2τP , τP ∼ ~/(kBT )

’Planckian’ timescale [Zaanen’04]: conjectured to provides an
upper bound on how fast (strongly-coupled) systems
thermalize. Governs dynamics near QCPs [Sachdev].

Lower bound on diffusivities [Hartnoll’14]?
D & v2τP
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Main questions addressed in this talk

D ∼ c2τP , τP ∼
~

kBT

Should we generally expect that D ∼ 1/T in strongly-coupled
systems? (depends)

What are the timescale and velocity naturally appearing in the
diffusivity?

When are lower bounds on diffusivities useful (ie tight)?
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Plan of the talk

Two qualitatively different cases:

1 Diffusivities in systems with a long lived operator: eg slow
momentum relaxation, systems with slowly fluctuating
Goldstone bosons (superconductors, charge density waves),
probe branes, higher form global symmetries...

2 Diffusivities in incoherent systems without long lived
operators: bounds on diffusivities, relation to chaos
parameters...
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How early can the onset of diffusive transport be?

[Hartman, Hartnoll & Mahajan’17]

In relativistic theories, v = c. More generally, a Lieb-Robinson
velocity that controls the linear-in-t growth of operators and
provides a definition of an ‘operator lightcone’.

How is this short time cutoff implemented in ‘microscopic’
theories?
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Systems with a long lived operator
If an operator is long lived, its lifetime can formally be computed
using the memory matrix formalism [Forster’75]

Ȧ = [H,A] = ε[∆H,A] , ε� 1
1
τ

= ε2

χAA
lim
ω→0

lim
ε→0

1
ω

ImGR
[∆H,A] [∆H,A](ω)

The memory matrix formalism relates τ to microscopic parameters
of the theory, eg [Goetze & Woelfle’72, Rosh & Andrei’00, Hartnoll & Hofman’12].

τ also governs the late time dynamics of any operator B
overlapping with A, ie χAB 6= 0.

Example: if A = P, τ = τmr appears in the phenomenological
‘conservation’ equation

π̇ = − 1
τmr

π
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Slow momentum relaxation [Davison & BG’14]

At high temperatures, assume momentum relaxes slowly:

∂tδε+ ∂iπi = 0 , ∂tπ
i + ∂jτ ij = − 1

τmr
πi , τmr T � 1

The collective excitations (assuming relativistic, conformal
hydrodynamics) are qualitatively different at small and large ω, q:

ω, q � 1/τmr � T : ω = −iDq2+. . . , ω = − i
τmr

+iq2
(

D − η

ε+ p

)

1/τmr � ω, q � T : ω = ±csq −
i

2τmr
+ . . .

There is a crossover between diffusive and (damped) ballistic
propagation from long to short distances.

In this example, τmr is the short time cutoff of diffusive transport.
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Motion of poles

The crossover occurs through a collision between the collective
excitations in the lower half complex frequency plane:
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Diffusivity in the presence of a long lived operator

The collision is coherent and can be modeled by solving for the
zeros of the denominator of GR :

iω
(

iω + 1
τmr

+ ηq2

ε+ p

)
− q2c2

s = 0

which automatically implies the relation

D = c2
s τmr

The natural velocity that appears is that of the sound mode
at short distances.
The natural timescale that appears is the lifetime of the
long-lived mode.
Can be modeled [Davison & BG’14] using a holographic toy model
based on [Andrade & Withers’13]: D ∼ T at high T .
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Hydrodynamics with fluctuating order

The diffusivity associated to a phase disordered Goldstone mode
will obey the same relation. Examples:

In the presence of vortices, the superfluid phase gets a (small)
gap and becomes long-lived. Superfluid sound becomes at
long distances a pair of diffusive/pseudo-diffusive modes,
[Davison, Delacrétaz, B.G. & Hartnoll’16].

Dislocations also gap out phonons in crystals. Shear sound
becomes gapped at long distances and turns into a pair of
diffusive/pseudo-diffusive modes [Delacrétaz, B.G., Hartnoll &

Karlsson’17].

Holographic realizations of pinned WC/CDW phases in [Jokela,

Järvinen & Lippert’17, Andrade, Baggioli, Krikun & Poovuttikul’17, Amoretti, Arean, B.G.

& Musso’18 (to appear), Andrade & Krikun’18 (to appear)]
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Thermal diffusivity
The diffusivities just discussed all characterize coherent transport,
ie due to a long-lived operator (see eg [Chen & Lucas’17, Grozdanov &

Poovuttikul’18, Grozdanov, Lucas & Poovuttikul’18] for more examples).

However, diffusivities also characterize incoherent transport, ie
transport at long distances of quickly relaxing operators. Two
distinct cases

No long-lived operator (see later).

There are operators without any overlap with long-lived
operators. For instance, the thermal diffusivity with open
circuit boundary conditions is not sensitive to momentum
relaxation [Mahajan & al’14]

Dth = κ

cn
∼ O(τ0

mr ) , κ = κ̄− α2/(σT )
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Incoherent diffusivity
Define an incoherent charge that characterizes transport that
doesn’t carry momentum [Davison, B.G. & Hartnoll’15, Davison, Gentle & B.G.’18]:

δninc = s2T δ
(n

s

)
, Jinc = (ε+ p)J − nP , χJincP = 0

It obeys a conservation equation

∂tδninc + ∂i j i
inc = 0

Define an incoherent susceptibility and conductivity

χinc = δninc
δµinc

, jinc = −σinc∇δninc

The retarded Green’s function is purely diffusive

GR
JincJinc (ω, q) = ω2σinc

iω − Dincq2

Dinc = σinc
χinc

, σinc = lim
ω→0,q→0

i
ω

GR
JincJinc = (ε+ p)σo
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Low temperatures

The thermal diffusivity and the incoherent diffusivity are both
insensitive to slow momentum relaxation.

So we don’t expect that they can be expressed as

D = c2
s τ , τT � 1

where τ is a long timescale compared to temperature, and cs
the velocity of a sound-like mode in the system.

Does it mean that they are governed by processes
τ ∼ τP ∼ 1/T? To test this, we need to go to low
temperatures.

For simplicity, we will consider nonzero density, translation
invariant states.
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Diffusion near QCPs

In general, the thermal diffusivity and the incoherent
diffusivity are not equal to each other:

σinc = n2Tκ

At low temperature near a QCP, there is a simplification, since

χinc ∼ n2Tcn

Then, at low temperature

Dth ∼ Dinc
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Holographic quantum critical phases

Take a simple bottom-up holographic action

S =
∫

d4x
[
R − 1

2∂φ
2 − Z (φ)

4 F 2 − V (φ)
]

Impose UV boundary conditions on V ,Z such that spacetime is
asymptotically AdS.

We are interested in setups where the flow goes in the IR to a
scaling geometry, dual to an IR quantum critical phase.

The simplest possibility is for the scalar to minimize its effective
potential

At zero density, we have an AdS4 to AdS4 domain-wall
At nonzero density, the IR geometry is AdS2×R2.
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Runaway flows

Assume that the scalar couplings have runaway branches

V (φ→∞)→ Voe−δφ , Z (φ→∞)→ Zoeγφ

The IR endpoint of the flow violates hyperscaling (θ 6= 0) and
possibly time and space isotropy (z 6= 1):

ds2 = uθ
(
− L2

t
u2z dt2 + L2

u2 du2 + L2
x

u2 (dx2 + dy2)
)

φ ∼ ln u

L, θ and z are determined by the values of Vo, γ and δ. Lt
and Lx are length scales setting the IR units of time and space.

At small nonzero T , s ∼ T (d−θ)/z : hyperscaling violation.
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IR scaling of the gauge field

Generally,
At ∼ Aorα

Depending on the choice of γ, δ exponents, this sources a marginal
or an irrelevant deformation of the T = 0 IR geometry:

Marginal deformation: α = θ − 2− z , z 6= 1

Irrelevant deformation: α = 2∆Ao + θ − 3, z = 1 and
∆Ao < 0.
The gauge field does not backreact on the T = 0 IR geometry,
but sources corrections that vanish in the IR as u → +∞

1 + #A2
ou2∆Ao + O(u4∆Ao )
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Thermal diffusion near z 6= 1 QCPs

[Blake, Davison & Sachdev’17] studied Dth near holographic QCPs.
Following [Blake’16], they observed that when z 6= 1,

Dth = z
2(z − 1)v2

BτL

where τL = 2π/T and vB are ’chaos parameters’
characterizing the early time growth of bounday OTOC [Shenker

& Stanford’13].

〈[W (0, 0),V (x , t)]2〉β ∼
1

N2 e
1

τL

(
t− x

vB

)
+ . . .

These z 6= 1 QCPs are ’incoherent’ systems without long-lived
operators, that is τ ∼ 1/T (eg [Sybesma & Vandoren’15]).
More on this relation between chaos and diffusion:
’pole-skipping’ [Grozdanov, Schalm & Scopelliti’17, Blake, Lee & Liu’18, Blake,

Davison, Grozdanov & Liu’18].
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Charge response near z = 1 QCPs

[Blake, Davison & Sachdev’17] observed that the relation Dth ∼ v2
BτL

broke down near z = 1 QCPs. The same occurs for Dinc
[Davison, Gentle & B.G.’18]. This is due to the presence of the
irrelevant deformation sourced by Ao.

To understand this better, we have computed the ac charge
conductivity for these z = 1 QC states

σ(ω) ≡ i
ω

GR
JJ(ω, q = 0)

In the low frequency limit, it reads

σ(ω) = σo
1− iωτ + n2

ε+ p
i
ω
, τ ∼ 1

T

(
T ∆Ao

Ao

)2

,

∆Ao < 0 ⇒ T τ →
T→0

∞
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Breakdown of relativistic hydrodynamics near z = 1 QCPs

σ(ω) = σo
1− iωτ + n2

ε+ p
i
ω
, τ ∼ 1

T

(
T ∆Ao

Ao

)2

,

∆Ao < 0 ⇒ T τ →
T→0

∞

Emergent long lived collective mode at low T: ⇒ relativistic
hydrodynamics breaks down

∂tδninc + ∂ i j i
inc = 0

Simple improvement of relativistic hydro which produces the
desired pole in σinc :

∂t j i
inc = − j i

inc
τ

This improved EFT would be valid when T−1 . t � τ .
At times t � τ , relativistic hydro would apply.
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Thermal/incoherent diffusion near z 6= 1 QCPs

τ provides a natural timescale to express diffusivities near
these z = 1 QCPs. Indeed:

Dth,inc = 2
d + 1− θv2

Bτ

This is consistent with the arguments of [Hartman, Hartnoll &

Mahajan’17]: the correct timescale is the equilibration timescale of
the system, which in this case is τ , not τL or τP .

It is known that asymptotically z = 1, θ 6= 0 spacetimes
possess a sound mode with c2

s,θ = 1/(d − θ), [Kanitscheider &

Skenderis’09, B.G., Skenderis, Smolic, Smolic & Taylor’11]. Then

Dth,inc = c2
s,θτ

But is there such a sound mode in the full, asymptotically
AdS spacetime? (see [Betzios, Gürsoy, Järvinen & Policastro’17,’18])
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Summary and Outlook

Two types of long distance transport: coherent transport of
long lived excitations of the system; incoherent transport of
quickly relaxing operators.

Signature of coherent transport: pole collision between a
diffusive and a pseudo-diffusive pole, with (gapped) ballistic
transport at short distances.

Dcoh = c2
s τ

Coherent diffusivities are large, and typically conjectured lower
bounds [Hartnoll’14, Blake’16] on diffusivities are not tight.
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Summary and Outlook

In contrast, incoherent diffusivities appear to be governed by
’Planckian’ dynamics and ’chaos parameters’

Dinc
v2

BτL
∼ O(1)

It would be nice to understand this last statement better in
terms of an EFT (see [Blake, Lee & Liu’18] for a proposal).

Incoherent diffusivities are not large, and this is wehere
conjectured lower bounds [Hartnoll’14, Blake’16] on diffusivities are
helpful.
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