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Rich dialogue between holography and effective theories: eg KSS
bound, anomalies.
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First established in the context of asymptotically AdS black branes:
Schwarzschild, RN, etc.

Sharp definition in the context of relativistic hydrodynamics: 7,
quantifies the diffusion of transverse momentum
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T
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Weaker bound n > 0 for positivity of entropy production.

The KSS bound relates a transport coefficient to the area of the
horizon (holographic ‘membrane paradigm'). Universality?

Less symmetric cases?



@ The low energy dynamics of the ordered phase differ from those of
the disordered phase by the necessity to include new gapless
degrees of freedom (the Goldstones).

@ An important property of Goldstones is that they are
shift-symmetric: they realize non-linearly the broken symmetry.
More concretely, take broken translations along x

X—x+c = pYg—oep+cC
1 o 1o
f=2(K+ G+ 360 +...
where \| =V -3, AL =V x ¢

Shift symmetry: only gradient terms in the
effective IR action:
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where)\”:V-@’, )\J_ZVXSB.
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@ K and G are the bulk and shear moduli:
O\ 1 oA L 1

X)\H)\HZTSH—K_’_Ga XALMEE—E

They are the static response to bulk compression and shear stress.
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@ Since 7' is the charge that generates the symmetry, then
[pi(x), mi(¥)] = 1650 (x = y) + ...
@ The effective Hamiltonian contains a term

/dxv, (x) 4+ ..

which leads to the "Josephon’ relations
N =V-v+0(V?), AL =Vxv+O0(V?)

@ At higher order in gradients (+relativistic symmetry), linear,
diffusive couplings

A =Vov+muTV? (L) +6 V2 +0(v?),

M =V xv+£, VA +0(V?)



@ Constitutive relation for the electric current
. 0
j=pv—0,TV 7))~ MnVA|

@ lIsotropic crystal

§ &
K+G G

@ Bound ensuring positivity of entropy

£ —
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Fluid Wigner crystal

@ In a fluid: conservation of energy, charge and longitudinal
momentum lead to two longitudinal sound poles and one
longitudinal diffusion pole; conservation of transverse momentum to
a shear diffusion pole.

@ In a Wigner crystal: one extra 'phonon’ longitudinal diffusion pole;
the transverse phonon mixes with transverse momentum, leading to
two transverse sound poles.

wi = Gq—i(n+£¢)q2+0(q3)

T
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5= [dxv=g [R 206 - 2 pvig) - v(6) (903 + 007)

Y(¢) ="+ 0(¢%), Z(¢)=1+0(¢), V(¢)=-6+0¢"+0(¢)

Homogeneous generalized Q—lattice Ansatz [ANDRADE & WITHERS'13, DoNOS &
camvreerr13): 1p; = kx'. Breaks Translationsx Global shifts to a
diagonal U(1).

UV boundary conditions on ¢
d=Ar+o,r’+...

@ If A =0, then 1); = kx' is a vev: spontaneous breaking.

If X # 0, then v¥; = kx' is a source: explicit breaking.

But if \/u < ¢, /1%, pseudo-spontaneous breaking.
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Let us first set A = 0: purely spontaneous breaking

@ The phase does not minimize the free energy: describes the low
energy dynamics of phonons coupled to conserved densities, not the
phase transition. We can choose k, but ultimately this would be
fixed in a UV-complete model.

@ The phonon: act with Lie derivative along 0/, find that
O~ (Sw(o) where §v; = (51#(,1)/1’ + (Sw(o) + O(r)

@ Numerically recover the WC hydro retarded Green’s functions:

2
R : R P . R
Gy =G —iwn, G =— —iwo,, Gjp=p,
T
R p i P R 1 i
Gp =m + — Grp = G = 2 =
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Moreover all the diffusive couplings can be computed from a membrane
paradigm analysis (and match the numerics)

(sT+K2I)? _ ank?(ly)?0?
2 Zh 2
(XTF?T) SYh (XTF?T Y)

Arlyp(sT +pp)  pln (sT + K%ly)
sYh (Xrr)? (Xrr)?

4 (sT + pp)° | 122
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Transverse QNMs at nonzero g:
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Very good match to the hydrodynamic dispersion relation (no fitting

involved).
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Hydrodynamics at all temperatures (no fitting involved).
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The positivity of entropy production bound is obeyed

_ A7sT?Z,
001—72: il h >0

k2(X7‘r7‘r)2 Yh -

Even saturates at low T. Why?
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From

R _ _ ip

G:['(p” (w? q - O) - ’yl + Xﬂ-ﬂ-w 9

1 i
R _ _ _=_
G@Wu (wag=0) = Xrr W2 W

we can write Kubo formulae
1 R
o= JanO EImGj@(w, qg=0),

.1 R
= ollino ;ImG@p(w, qg=0).

All we need is a mechanism producing a nonzero 0.
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The saturation at low temperatures can be explained by universal
relaxation into the heat current

AH:/ Tl o p=do
Xﬂjq XT(J‘q

— 1 i R = - M
o= o limy—0 ImGJJq( =0) N _XTJ'qUO’
i 2
= — 1 .
== (XTA;)) limg,s0 SImGY (w,9 =0) = <X7T1q) "

These values verify 72 = 0,= and match our numerics

/
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. . . =0 Imic]
Spacetime symmetries can be explicitly broken:

focus on the case of broken translations.
Momentum relaxes slowly l rao

0 Re[w]
>

=—Im+... ‘

The Goldstones become massive, which breaks their shift symmetry
1 2, 1 2, 1 50
f:E(K+G)(V~¢) +§G(V><q$) +om ¢+ ...
and damps them at a rate Q. Also relaxes momentum

7=—Tn—Gm?p+...

All pol d q=0 ™
poles are gappe oT Refw]

(Q - iw)(M = iw) + w2 =0 \

with w, = m\ﬂG/XM) the pinning frequency.
w, I, Q0
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Weakly-disordered metal

2
_ pm 1
o(w)=o0,+ I
1
Odc F

The dc conductivity is
dominated by momentum
relaxation

Weakly-pinned Wigner crystal

\

o(w)=0,+

Odc
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s= [axv=g [R 206 - 2 Evig) - v(6) (903 + 003)

Y(¢) =¢*+0(¢%), Z(¢)=1+0(¢), V(d)=-6+¢>+0(¢°)

@ UV boundary conditions on ¢
G=Ar+pur’+. ..

@ If A\ £ 0, then 1); = kx' is a source: explicit breaking.

@ Butif \/u < ¢,/u?, pseudo-spontaneous breaking.
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Numerically compute vector QNMs at g =0

“Im[w, )T
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Red lines: plot of the solutions of (Q — jw)(—iw) + w? = 0 together with
Q > Xrrw?= =~ —Im[wonm k=0

Phonon relaxation dominated by k = 0 dynamics.



The small w behavior of the ac conductivity is in excellent agreement
with the WC/Drude hydro predictions (no fit).
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@ At k =0, no breaking of translations. For A =0 (A # 0), it breaks
the global shift symmetry spontaneously (explicitly).

@ Accordingly, for small A\, expect a pseudo-Goldstone boson
w=—iQ— quz +0(q%), (XW,)*1 =m*+q°

@ Confirmed numerically, and analytically for small w, g, with

2 —
Dy ~Q/m* ~ G=
Im(w/p)
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Q~ m2D¢ ~m’G=

This relation still holds at k # 0, at all Ts where the WC hydro
picture is valid.

Consequence of the fact that G, K are always ‘small.
G =2K = k*ly + O(k*)

Suggest that perhaps true for non-holographic systems with small
bulk/shear moduli? Eg close to the translation-ordering phase
transition or in phases with fluctuating charge density waves (eg
cuprate high T, superconductors).
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@ There is another positivity of entropy production bound

2 Qo,
= erwg
1.00} ......~.:.:.—.T.‘..‘.—..—.r.—..-.—_.\..n____~'
~<
\\
\
oo8p . wo? X v12 \,
do Q \\
\\
096f ... n? \
0o = \\
\\
0.94¢ \
VT
0.002 0.004 0.006 0.008 H

@ Almost saturates: relaxation of phonons into the heat current.

@ Violation when we get close to pole collision: breakdown of WC
hydro picture.
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Now turn on a magnetic field: the longitudinal and transverse sound
modes hybridize into (gapless) magnetophonons and gapped
magnetoplasmons.

Upon turning on disorder, the magnetophonons are pinned at
w2 /we ~ O(1/B): within hydrodynamics at large magnetic fields.

Write down a similar hydrodynamic theory as before: conservation
of charge, Josephson for magnetophonon, constitutive relations,
solve and get conductivity.

Also positivity of entropy production bound.
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Fit to data on GaAs heterojunctions (2DEG)
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Different microscopic mechanisms appear to be at play in less/more
disordered samples: phase relaxation by mobile dislocations or universal
dissipation into hydrodynamic currents.
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Summary and Outlook

Effective field theories (hydro) predict specific functional forms for
conductivities, dispersion relation for modes, etc. in terms of a few
transport coefficients and given an equation of state.

The EoS and the transport coefficients must be computed from
MisCroscopics.

When symmetries are explicitly broken weakly, the departures from
hydrodynamics can be encapsulated in a few extra relaxation
parameters.

We have seen several examples in holography and real systems
where it appears that relaxation is universal, in the sense that it is
controlled by dissipation into a hydrodynamic operator.

Deep statement? Artifact of the toy model? Overinterpretation of
the data? Jury still out...



