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Hydrodynamics

@ Universal description of interacting systems in the long wavelength
x 2 Lo, late time regime t 2 7oq (‘small gradients’).

@ Based on a truncation of the dynamics to the relaxation of a few
conserved densities, following from the symmetries of the system.
Eg in a fluid: conservation of translations, rotations, particle
number and possibly boosts.

@ Provides an effective description of many interesting systems that
cannot be described perturbatively: liquid phase of water, electrons
in ultra-pure Graphene, Quark-Gluon-Plasma, superfluids, etc.



Classical diffusive hydrodynamics
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CREDIT: [WIKIPEDIA]

@ In this talk, I will focus on diffusive hydrodynamics: relaxation of
the gradient of a conserved density p.

@ Examples: particle number (chemical potential), energy
(temperature gradient), shear momentum (transverse velocity), etc.


https://commons.wikimedia.org/w/index.php?curid=10169193

Classical diffusive hydrodynamics

@ Conservation equation (Fick's law)
Dep+Vij =0
@ Constitutive relation

. D_.
j'= —;V’er O(V?,0:V), x=+-

Decompose linear perturbations in plane waves

p(t,x) = po + Spe W+

@ Retarded Green's function
ixDk?

R
K) = X2
Goplw- k) = = ipie

In this low frequency, low k approximation, single, diffusive pole
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Limits of applicability: causality

@ Causality: upper bound on the
difFUSiVity [HARTMAN ET AL'17]

2
D < viTeq
=V Dt
@ v: ‘effective lightcone velocity'.
¢ Diffusion
g allowed
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@ Emergent infrared Lorentz e |
invariance: expect v = ;. :
[
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@ More generally: disallowed
. - - |
o Lieb-Robinson velocity? T L
° Butterﬂy VelOCity? ADAPTED FROM [HARTMAN ET AL'17]

e Fermi velocity?

*There are other limitations on the applicability of hydrodynamics
(eg unstable frames, long time tails) but | won't discuss them in this
talk.

@ More precise definition of local

equilibration scales 7oq, foq?


http://arxiv.org/abs/1706.00019
http://arxiv.org/abs/1706.00019

Limits of applicability: convergence

@ In principle, the hydro series can be pushed to any order in k

—+o0
w=—i E wWank®"
n=1

Does this series converge?

@ Hard question to answer in general. Use holography to compute the
series: in real space (constitutive relation) [Heisnear13], [Heisrear20]
and in Fourier space (dispersion relation) [wiruens1s).

@ In Fourier space, rwimers'1s] showed that the radius of convergence
keq of the series of the shear diffusive mode of the RN-AdS, black
brane matches a singularity in the complex k plane.
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Limits of applicability: convergence

@ Further recent confirmation that the convergence radius is set by
the collision of the hydro mode with the nearest non-hydro mode by

[JANSEN& PANTELIDOU 20].

@ Further related studies and arguments for the above in

[GrozDANOV&AL'19], [GROZDANOV&AL'19], [ABBASI& TAHERY'20].

@ Are there cases where the convergence radius can be determined
without referring to a specific microscopic theory?

@ Yes, provided there is a hierarchy of scales: examples using
holography.


http://arxiv.org/abs/2007.14418
http://arxiv.org/abs/1904.01018
http://arxiv.org/abs/1904.12862
http://arxiv.org/abs/2007.10024

Neutral translation-breaking black brane: model

@ Classical solution to the action, [BARDOUX&AL'12], [ANDRADE& WITHERS'13]
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@ Metric and matter fields (breaks translations homogeneously)
2

d
2 2 2 2 4.2
ds® = —r°f(r)dt® + rodx; + () w;i = mx',

m? m*\ rd 3n m?
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@ At high temperature T > m, translations are weakly broken at a
rate [ ~ m2/T [DAVISON& GOUTERAUX'14]

atP == —rP


http://arxiv.org/abs/1202.4458
http://arxiv.org/abs/1311.5157
http://arxiv.org/abs/1411.1062

Slow relaxation in the presence of weak explicit breaking

Data from [Davison&GouTiraux'14]

o mT=1/2
@ Momentum couples to energy fluctuations: _omm ‘f
. H 3 ooosf
motion of poles governed by the equation g
!
2 . 2,2 oooz;t‘
wt+ilw+cck =0, T<KA, o,
in the scaling limit w ~ k ~T. el
@ Crossover between diffusion of energy + weak
relaxation of momentum when k < koq ~ T
2
.C,
OJ:—I?S/(2+..., :—/F—l—/ \
]

and propagating modes when k 2 keq ~ T

W:j:Csk+ \
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http://arxiv.org/abs/1411.1062

Slow relaxation in the presence of weak explicit breaking

@ We can be more precise about k.q. The solutions to

W4 iTw+ k> =0,

r / r2
il [k
Wi i <=7

@ The first non-analyticity is then at (weolr, keon1) == (=il /2,1 /(2¢s))
= (Weq» keq) = (M/2,T/(2¢5)).

are

o Differently from [wirners1s], the dispersion relation is very well
approximated by truncating to the first non-trivial terms in ' and k
= analytical determination of the convergence radius: consequence
of the hierarchy of scales ' < A,,.

@ Different than the usual hydro expansion in k, which would diverge
as k — koq
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http://arxiv.org/abs/1803.08058

Slow relaxation in the presence of weak explicit breaking

@ Even though energy diffusion w = —i(c2/I)k? + ... can be
augmented to incorporate slowly-relaxing momentum
w=—il+... when I < A, it formally breaks down at (Weq, keq)-

@ The diffusivity is D. ~ c2/T and is naturally expressed in terms of a
velocity and a timescale, which are directly related to the motion of
poles in the complex frequency plane.

@ The diffusivity can also be written in terms of the local equilibration

scales: )
Do G o L%
= = 2
I 2 keq

@ Valid in the regime when ' < A, .

12



13

1 Weq 1 2 1 Weq

~ - = =V . T T = —_— V., = —_—
> eqleq > eq ) eq
2ks, 2 Weq keq

D

Thanks to the hierarchy of scales ' < A,,, we could obtain a simple
relation between a diffusivity, the local equilibration timescales and
a characteristic velocity.

What about more generally, when no symmetry is weakly broken,
but still in the presence of a hierarchy of scales? Here, low
temperature.

Relation between diffusivity and ‘chaos parameters’ D ~ v3/\,
mraxe'ie], valid for low temperatures?

We will investigate this question using solvable models of transport:
holography, SYK, focusing on the diffusion of energy and transverse
momentum.


http://arxiv.org/abs/1603.08510

Neutral translation-breaking black brane: low T spectrum

@ At low temperatures m > T, translations are strongly broken and
the only hydrodynamic mode is that of diffusion of energy:

w=—iDk*+ O(k*), DT —0)= ==
2m

@ The horizon geometry becomes AdS; xR? at T =0 (r. = v/6m).

@ At small temperatures T < m, the emergent SL(2,R)xSL(2,R)
symmetry fixes the form of the IR retarded Green's function

T20(k) -1 (53— AK)T(AK) — 52%7)

g X i )
: FE+AK)T(1-AK) - 22)
1 9 k2
A(k) = 5 + 1 + 2? ,

and generates an infinite tower of gapped, IR modes
wn = —i2r T(n+ A(0)) + O(k?), n=0,1,2,...

14



Neutral translation-breaking black brane: low T spectrum
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@ Red line: analytical approximation to the location of the hydro pole
in the scaling limit w ~ T ~ k? ~ ¢, for T/m = 1,/1000:

3 k2 k? 4rT? k4
w(k) = —ie 5 1+e—+e P tog) )

@ Crosses IR poles at w ~ w, = —i2r T(n+2) ,k? ~ k2 = iw,/D.
@ T < m = agreement way beyond k < T (usual hydro expansion).
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Neutral translation-breaking black brane: avoided crossings
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Avoided crossings (with vanishingly small gaps as T — 0 rather than
pole collisions) as a function of real k. The red line is the analytical
approximation around w = w, + dw, k? = k2 + §(k?)

(Dnd(k?) — idw) (1 — iTyéw) — iXpdw =0,
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Neutral translation-breaking black brane: complex collision
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The collision occurs for complex values of k (see also fwirners'1s],

[GrozDANOV&AL'19], [GROZDANOV&AL'19], [ABBASI&TAHERY’20], [.]A\IMIN&T’\Nl'u,mm'20})
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Neutral translation-breaking black brane: complex collision

2030
10
2025
00015 2
202)
oq 110) Weq
x 00010 ke vy
b 100| 2nT 201
2010
0.0005| 0
o) 200
00000 ) 200
00000 00bos 0000 boois 000 00000 bo0os o0 0ool 000 0 Goos o000 ooois 000
i Tim Tim

The analytical approximations work very well
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Neutral translation-breaking black brane: diffusivity
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Agreement between the approximation and the numerics implies

Weq
2
ke

D.(T —0) =

Relates hydrodynamic data at (w, k < T) to data that mark the edge of
validity of hydrodynamics (|w| >~ weq ~ T, |k| 2 keq ~ vV Tm > T)
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Reissner-Nordstrom black brane
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@ We find exactly similar results for the Reissner-Nordstrom black
brane, both for energy diffusion and shear momentum diffusion: not
specific to energy diffusion. Instead, hierarchy of scales T < p.

@ The irrelevant deformation is different for the two diffusive modes
Ak=0)=2, Apnk=0)=1.

@ Temperature dependence of the collision phase consistent with

(bk ~ TA—1/2

20



Sachdev-Ye-Kitaev chain
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CREDIT: [GU&AL’16]

@ The Sachdev-Ye-Kitaev model (:S.\CIll)l‘?\'&:Yl]'QS], [Krr.uc\"]i]) and its
higher-dimensional generalizations [Gueavis) are another set of
solvable models of strongly-coupled matter.

M—1

H =i9/? E E Jiy i x Xy - -+ Xigyx

x=0 \1<i<...<ig<N

!
+ Z Jil"'iq/zfl~"jq/2vxxi1”‘ s Xigax Xjrx 1 -+« Xjgj2:x+1
1S <. <igja <N
1<ji<...<Jjg2<N

@ In the limit of infinite coupling J, ) — +00, emergent
reparameterization invariance suggests duality to near-AdS; gravity.
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Exact large g solution
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CREDIT: [CHOI&AL20)]

@ By allowing g — +0o0, the model can be solved analytically for all
coupling strengths [croiearao].

@ The pole spectrum at strong coupling v — 1 is very close to the
holographic results. One difference is that collisions occur for real p
at strong enough coupling v 2 0.65.

29


http://arxiv.org/abs/2010.08558
http://arxiv.org/abs/2010.08558

Diffusivity relation
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@ We have reproduced their results and extracted the local
equilibration scales.

@ In the limit of strong coupling v — 1, the ¢ = +00 SYK chain also
verifies

w
D.=—4
k2
eq
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Diffusivity bound

@ Our results are compatible with

the upper bound formulated by
[HARTMAN ET AL’17] _
== VDt
D < Vi Teq
¢ Diffusion
i allowed ~—
With Veq = wWeq/ Keq- o Toqmm — o — — — -z =vt
|
|
. |
@ In particular, they are |
. . Diffusion
compatible with the emergence sl
of an ‘effective lightcone |
velocity’ veq even for T ety
eq
non-relativistic systems ADAPTED FROM [HARTMAN ET AL'17]
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Relation to chaos exponents

@ In the examples of energy diffusion we studied, the diffusive
approximation to the location of the pole is very good including at
the energy poIe sklpplng point [GROZDANOV&AL'1T], [BLAKE&AL'18], [BLAKE&AL'18].

@ This is the origin of the chaos relation

2
DS = VB/)\L
= x'
7 Im[w]
x x A
Tmro | ™ X
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= vpq .
/2T et
3/4t o i
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/4 05
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/4T X u/2nT v
—1/a} H . : : : -2 tm[k]
i 02 04 06 08 1 1.2 A
CREDIT: [GROZDANOV&AL'1T] CREDIT: [BLAKE&AL'18]
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Summary and outlook

1

1.000| p

Ry 1.15}
110}®

1.05|

)

095
K De s N

9

T
.
4

we weq i

q 05| Sees
........

0.985] 090)

L 0|
0.980]
00000 00005 00010 00015 00020 1078 1074 0,001 0010 070 075 080 085 09 095 100

Tim T

Translation-breaking RN-AdS black brane SYK chain

black brane

@ In states with a near-AdS, infrared fixed point, the excellent
applicability of diffusive hydrodynamics across avoided crossings
with an infinite tower of gapped infrared poles results in the relation

Weq

k2,

D:

where weq and kqq are determined by infrared data, fixed by the
symmetries of the state.

@ As for the slow momentum-relaxing case, consequence of a
hierarchy of scales.

2



Summary and outlook
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Extension to other near-AdS, states with non-universal leading
irrelevant deformation [Braxe&Donos'16)?

Addition of charge to the neutral, translation-breaking black brane:
extra diffusive mode, governs the resistivity, of direct interest for
strange metallic transport [iarrvor14).

Other types of fixed points with different scaling symmetries
(Lifshitz, hyperscaling violation)?

Other hierarchy of scales (eg angular momentum, magnetic field)?


http://arxiv.org/abs/1611.09380
http://arxiv.org/abs/1405.3651

