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Hydrodynamics

Universal description of interacting systems in the long wavelength
x & `eq, late time regime t & τeq (‘small gradients’).

Based on a truncation of the dynamics to the relaxation of a few
conserved densities, following from the symmetries of the system.
Eg in a fluid: conservation of translations, rotations, particle
number and possibly boosts.

Provides an effective description of many interesting systems that
cannot be described perturbatively: liquid phase of water, electrons
in ultra-pure Graphene, Quark-Gluon-Plasma, superfluids, etc.
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Classical diffusive hydrodynamics

Credit: [Wikipedia]

In this talk, I will focus on diffusive hydrodynamics: relaxation of
the gradient of a conserved density ρ.

Examples: particle number (chemical potential), energy
(temperature gradient), shear momentum (transverse velocity), etc.
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Classical diffusive hydrodynamics

Conservation equation (Fick’s law)

∂tρ+∇i j i = 0

Constitutive relation

j i = −D
χ
∇iρ+ O(∇2, ∂t∇) , χ = ∂ρ

∂µ

Decompose linear perturbations in plane waves

ρ(t, x) = ρ0 + δρe−iωt+ikx

Retarded Green’s function

GR
ρρ(ω, k) = iχDk2

ω + iDk2

In this low frequency, low k approximation, single, diffusive pole

ω = −iDk2 + O(k4) ⇒ Gρρ(t, x) ∼ ∇2 e−x2/(4Dt)

td/2
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Limits of applicability: causality

Causality: upper bound on the
diffusivity [Hartman et al’17]

D . v2τeq

v : ‘effective lightcone velocity’.

Emergent infrared Lorentz
invariance: expect v = cir .

More generally:
Lieb-Robinson velocity?
Butterfly velocity?
Fermi velocity?

More precise definition of local
equilibration scales τeq, `eq?

Adapted from [Hartman et al’17]

?There are other limitations on the applicability of hydrodynamics
(eg unstable frames, long time tails) but I won’t discuss them in this
talk.

6

http://arxiv.org/abs/1706.00019
http://arxiv.org/abs/1706.00019


Limits of applicability: convergence

In principle, the hydro series can be pushed to any order in k

ω = −i
+∞∑
n=1

ω2nk2n

Does this series converge?
Hard question to answer in general. Use holography to compute the
series: in real space (constitutive relation) [Heller&al’13], [Heller&al’20]

and in Fourier space (dispersion relation) [Withers’18].
In Fourier space, [Withers’18] showed that the radius of convergence
keq of the series of the shear diffusive mode of the RN-AdS4 black
brane matches a singularity in the complex k plane.

Adapted from [Withers’18]
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Limits of applicability: convergence

Further recent confirmation that the convergence radius is set by
the collision of the hydro mode with the nearest non-hydro mode by
[Jansen&Pantelidou’20].

Further related studies and arguments for the above in
[Grozdanov&al’19], [Grozdanov&al’19], [Abbasi&Tahery’20].

Are there cases where the convergence radius can be determined
without referring to a specific microscopic theory?

Yes, provided there is a hierarchy of scales: examples using
holography.
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Neutral translation-breaking black brane: model

Classical solution to the action, [Bardoux&al’12], [Andrade&Withers’13]

S =
∫

d4x
√
−g
(

R + 6− 1
2

2∑
i=1

(∂ϕi )2
)

Metric and matter fields (breaks translations homogeneously)

ds2 = −r2f (r)dt2 + r2dx2
i + dr2

r2f (r) , ϕi = mx i ,

f (r) = 1− m2

2r2 −
(
1− m2

2r2
0

)
r3
0

r3 ⇒ T = 3r0
4π

(
1− m2

6r2
0

)
.

At high temperature T � m, translations are weakly broken at a
rate Γ ∼ m2/T [Davison&Goutéraux’14]:

∂tP = −ΓP
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Slow relaxation in the presence of weak explicit breaking

Momentum couples to energy fluctuations:
motion of poles governed by the equation

ω2 + iΓω + c2
s k2 = 0 , Γ� Λuv

in the scaling limit ω ∼ k ∼ Γ.

Crossover between diffusion of energy + weak
relaxation of momentum when k . keq ∼ Γ

ω = −i c2
s

Γ k2 + . . . , ω = −iΓ + i c2
s

Γ k2 + . . .

and propagating modes when k & keq ∼ Γ

ω = ±csk + . . .

Data from [Davison&Goutéraux’14]

keq
k

ωeq

Γ

-Im[ω]

keq
k

Re[ω]
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Slow relaxation in the presence of weak explicit breaking

We can be more precise about keq. The solutions to

ω2 + iΓω + c2
s k2 = 0 ,

are

ω± = −i Γ
2 ±

√
k2c2

s −
Γ2

4

The first non-analyticity is then at (ωcoll, kcoll) ' (−iΓ/2, Γ/(2cs))
⇒ (ωeq, keq) ' (Γ/2, Γ/(2cs)).

Differently from [Withers’18], the dispersion relation is very well
approximated by truncating to the first non-trivial terms in Γ and k
⇒ analytical determination of the convergence radius: consequence
of the hierarchy of scales Γ� Λuv .

Different than the usual hydro expansion in k, which would diverge
as k → k−eq
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Slow relaxation in the presence of weak explicit breaking

Even though energy diffusion ω = −i(c2
s /Γ)k2 + . . . can be

augmented to incorporate slowly-relaxing momentum
ω = −iΓ + . . . when Γ� Λuv , it formally breaks down at (ωeq, keq).

The diffusivity is Dε ' c2
s /Γ and is naturally expressed in terms of a

velocity and a timescale, which are directly related to the motion of
poles in the complex frequency plane.

The diffusivity can also be written in terms of the local equilibration
scales:

D ' c2
s

Γ '
1
2
ωeq

k2
eq

Valid in the regime when Γ� Λuv .
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D ' 1
2
ωeq

k2
eq

= 1
2v2

eqτeq , τeq = 1
ωeq

, veq = ωeq

keq

Thanks to the hierarchy of scales Γ� Λuv , we could obtain a simple
relation between a diffusivity, the local equilibration timescales and
a characteristic velocity.

What about more generally, when no symmetry is weakly broken,
but still in the presence of a hierarchy of scales? Here, low
temperature.

Relation between diffusivity and ‘chaos parameters’ D ' v2
B/λL

[Blake’16], valid for low temperatures?

We will investigate this question using solvable models of transport:
holography, SYK, focusing on the diffusion of energy and transverse
momentum.
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Neutral translation-breaking black brane: low T spectrum

At low temperatures m� T , translations are strongly broken and
the only hydrodynamic mode is that of diffusion of energy:

ω = −iDεk2 + O(k4) , Dε(T → 0) =
√
3√
2
1
m

The horizon geometry becomes AdS2×R2 at T = 0 (re =
√
6m).

At small temperatures T � m, the emergent SL(2,R)×SL(2,R)
symmetry fixes the form of the IR retarded Green’s function

GIR ∝ T 2∆(k)−1 Γ
( 1

2 −∆(k)
)

Γ
(
∆(k)− iω

2πT
)

Γ
( 1

2 + ∆(k)
)

Γ
(
1−∆(k)− iω

2πT
) ,

∆(k) = 1
2 +

√
9
4 + 2 k2

m2 ,

and generates an infinite tower of gapped, IR modes

ωn = −i2πT (n + ∆(0)) + O(k2), n = 0, 1, 2, . . .
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Neutral translation-breaking black brane: low T spectrum
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Red line: analytical approximation to the location of the hydro pole
in the scaling limit ω ∼ T ∼ k2 ∼ ε, for T/m = 1/1000:

ω(k) = −iε
√

3
2

k2

m

(
1 + ε

k2

m2 + ε2
(
4πT 2

3m2 + k4

m4

)
+ . . .

)
.

Crosses IR poles at ω ' ωn = −i2πT (n + 2) , k2 ' k2
n = iωn/Dε

T � m⇒ agreement way beyond k � T (usual hydro expansion).
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Neutral translation-breaking black brane: avoided crossings
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k/T
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Avoided crossings (with vanishingly small gaps as T → 0 rather than
pole collisions) as a function of real k. The red line is the analytical
approximation around ω = ωn + δω, k2 = k2

n + δ(k2)(
Dnδ(k2)− iδω

)
(1− iτnδω)− iλnδω = 0 ,

Dn → Dε , τn →
9m

16
√
6(2 + n)π2T 2

, λn →
√

3
2 (n(n + 4) + 3)πT

m ,
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Neutral translation-breaking black brane: complex collision
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The collision occurs for complex values of k (see also [Withers’18],
[Grozdanov&al’19], [Grozdanov&al’19], [Abbasi&Tahery’20], [Jansen&Pantelidou’20])

φk →
24

63/4

(
πT
m

)3/2
, k2

eq ≡ |k|2 →
ωeq
Dε

(
1− 4

√
6πT
3m + . . .

)
,

ωeq ≡ |ω| → 4πT
(
1 + 8

√
6πT
9m + . . .

)
.
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Neutral translation-breaking black brane: complex collision
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The analytical approximations work very well

φk →
24

63/4

(
πT
m

)3/2
, k2

eq ≡ |k|2 →
ωeq
Dε

(
1− 4

√
6πT
3m + . . .

)
,

ωeq ≡ |ω| → 4πT
(
1 + 8

√
6πT
9m + . . .

)
.
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Neutral translation-breaking black brane: diffusivity
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+ . . .

)
.

Agreement between the approximation and the numerics implies

Dε(T → 0) = ωeq

k2
eq

Relates hydrodynamic data at (ω , k � T ) to data that mark the edge of
validity of hydrodynamics (|ω| ' ωeq ∼ T , |k| ' keq ∼

√
Tm� T )
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Reissner-Nordström black brane

10-5 10-4 0.001 0.010

1.00

1.05

1.10

T/μ

ωeq

2 π Δ T

■
■

■

■
■

■
■

■ ■ ■

10-6 10-5 10-4 0.001 0.010

10-4

0.001

0.010

0.100

T/μ

ϕk

10-5 10-4 0.001 0.010
0.85

0.90

0.95

1.00

T/μ

keq
2 D

ωeq

We find exactly similar results for the Reissner-Nordström black
brane, both for energy diffusion and shear momentum diffusion: not
specific to energy diffusion. Instead, hierarchy of scales T � µ.

The irrelevant deformation is different for the two diffusive modes

∆ε(k = 0) = 2 , ∆Π(k = 0) = 1 .

Temperature dependence of the collision phase consistent with

φk ∼ T ∆−1/2
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Sachdev-Ye-Kitaev chain

Credit: [Gu&al’16]

The Sachdev-Ye-Kitaev model ([Sachdev&Ye’93], [Kitaev’15]) and its
higher-dimensional generalizations [Gu&al’16] are another set of
solvable models of strongly-coupled matter.

H =iq/2
M−1∑
x=0

 ∑
1≤i1<...<iq≤N

Ji1...iq ,xχi1,x . . . χiq ,x

+
∑

1≤i1<...<iq/2≤N
1≤j1<...<jq/2≤N

J ′i1...iq/2j1...jq/2,xχi1,x . . . χiq/2,xχj1,x+1 . . . χjq/2,x+1

 .

In the limit of infinite coupling J , J ′ → +∞, emergent
reparameterization invariance suggests duality to near-AdS2 gravity.
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Exact large q solution

Credit: [Choi&al’20]

By allowing q → +∞, the model can be solved analytically for all
coupling strengths [Choi&al’20].

The pole spectrum at strong coupling v → 1 is very close to the
holographic results. One difference is that collisions occur for real p
at strong enough coupling v & 0.65.
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Diffusivity relation
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We have reproduced their results and extracted the local
equilibration scales.

In the limit of strong coupling v → 1, the q = +∞ SYK chain also
verifies

Dε = ωeq

k2
eq
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Diffusivity bound

Our results are compatible with
the upper bound formulated by
[Hartman et al’17]

D . v2
eqτeq

with veq ≡ ωeq/keq.

In particular, they are
compatible with the emergence
of an ‘effective lightcone
velocity’ veq even for
non-relativistic systems. Adapted from [Hartman et al’17]
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Relation to chaos exponents

In the examples of energy diffusion we studied, the diffusive
approximation to the location of the pole is very good including at
the energy pole skipping point [Grozdanov&al’17], [Blake&al’18], [Blake&al’18].

This is the origin of the chaos relation

Dε = v2
B/λL

Credit: [Grozdanov&al’17] Credit: [Blake&al’18]
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Summary and outlook
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Translation-breaking RN-AdS black brane SYK chain
black brane

In states with a near-AdS2 infrared fixed point, the excellent
applicability of diffusive hydrodynamics across avoided crossings
with an infinite tower of gapped infrared poles results in the relation

D = ωeq

k2
eq

where ωeq and keq are determined by infrared data, fixed by the
symmetries of the state.

As for the slow momentum-relaxing case, consequence of a
hierarchy of scales.
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Summary and outlook

Extension to other near-AdS2 states with non-universal leading
irrelevant deformation [Blake&Donos’16]?

Addition of charge to the neutral, translation-breaking black brane:
extra diffusive mode, governs the resistivity, of direct interest for
strange metallic transport [Hartnoll’14].

Other types of fixed points with different scaling symmetries
(Lifshitz, hyperscaling violation)?

Other hierarchy of scales (eg angular momentum, magnetic field)?
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