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September 28, 2020

Contents

1 Introduction 2

2 Theoretical frameworks 3
2.1 Dipole picture of deep inelastic scattering and low-xBj evolution . . . . . . . . . 3
2.2 Diffractive dissociation in DIS (DDIS) . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 QCD evolution at low-xBj as a stochastic process . . . . . . . . . . . . . . . . . . 6

3 Thesis progress 7
3.1 Onium-nucleus scattering in different frames . . . . . . . . . . . . . . . . . . . . . 7
3.2 Rapidity gap ditribution in DDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Tip of BRWs: a Monte Carlo investigation . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Particle density in the tip . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusions and prospects 13

Bibliography 14

1



1 Introduction

The high-energy regime of QCD is a unique playground for studying the field properties at
high field strength (in other words, when the parton densities are large) but weak coupling,
which allows for perturbative expansions as a starting point. The dynamics of hadronic matters
in this regime is one of the most exciting, and challenging, problems for high energy physics,
which has been being addressed in different theoretical studies. On the experimental side,
various investigations toward better understandings of the low-xBj physics have been conducted
in high-energy colliders in different laboratories such as HERA [1], Tevatron [2] and LHC (for
example, the CMS experiment [3]). Furthermore, future electron-ion colliders (EICs) [4, 5] are
expected to provide new opportunities for the study of the low-xBj dynamics in the near future.

One important theoretical question is the behavior of QCD evolution at low-xBj . Soft gluon
emissions at the high-energy limit of QCD requires the resummation of the large longitudinal
logarithm which, at leading logarithmic approximation (LLA), leads to an evolution equation
(BFKL) [6] in the linear regime, i.e. the low-density regime in which the dynamical equations
are linear. This equation predicts a rapid rise in the gluon density and, hence, the scattering
amplitude when decreasing xBj , which eventually violates the Froissart-Martin unitary bound
[7]. The restoration of the unitarity by including non-linear dynamics relevant at high densities
is realized in various approaches proposed, for example, by Gribov, Levin and Ryskin [8], Mueller
and Qiu (GLR-MQ equation) [9], by Ayalan, Gay Ducati and Levin (AGL equation) [10], or more
systematically, by Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK
equation) [11], and Balitsky and Kovchegov (BK equation) [12]. The JIMWLK approach results
in a renormalization group equation for the color glass condensate (CGC) describing the low-xBj
dynamics in the regime of very high density, which is particularly difficult to investigate due to its
infinite hierachy structure. In the limit of large number of colors, it reduces to the BK equation,
a non-linear integro-differential equation which is practically simpler for investigations of the
properties of its solution in both analytical and numerical aspects (for a throughout review, see
[13]).

It was known that, the high energy QCD is similar to a reaction-diffusion problem [14], and
that [15] the BK equation is in the same universality class of the Fisher-Kolmogorov-Petrovsky-
Piscounov (FKPP) equation [16] which belongs to the class of reaction-diffusion equations in
statistical physics. This asymptotic universality allows to solve for the asymptotic solution to
the BK equation in a certain kinematic region [15], and to reproduce the geometric scaling in
deep inelastic scattering [17]. Also, one can adapt the statistical approach to study fluctuations
in partonic evolution [18, 19] to which the dynamics in the dilute tail of the BK front is very
sensitive. Statistical physics, therefore, can provide powerful tools to attack various problems
related to the QCD high-energy evolution.

In this project, we concentrate on the QCD evolution in the context of deep inelastic virtual
photon-nucleus scattering. On the theoretical side, we are working on a better understanding of
nonlinear evolutions in the BK framework which emerge from QCD in the high-energy regime
using tools of field theory and of statistical physics. In particular, we would like to look into
the structure of evolution of the virtual photon in the interaction with nucleus from a picture of
parton fluctuations. This picture also provides a new approach to the diffractive dissociation, in
particular the rapidity gap distribution, in DIS, which is another interest of the thesis. Further-
more, as the understanding of the tip of branching-diffusion processes is important from both
statistical physics and QCD points of view, we develop new techniques to examine this specific
region. Finally, we perform a numerical analysis on the diffractive dissociation in DIS with the
scope to product qualitative predictions to EIC projects.

The report is organised as follows. We will start by introducing in brief the theoretical
frameworks for the study in Section 2. Section 3 is dedicated for presenting the progress of the
thesis for which we summarize our works which were already published or are in preparation.
Finally, we draw some conclusions and prospects in the last section.
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2 Theoretical frameworks

2.1 Dipole picture of deep inelastic scattering and low-xBj evolution

Deep inelastic scattering (DIS) is defined as a scattering process in which a nucleus or a nucleon
is probed by a highly energetic lepton. Here we concentrate on the DIS of a electron off a
nucleus. This scattering is mediated by a virtual photon exchange, which probes the nucleus’s
internal structure. Since the lepton current can be factorized out, the process can be viewed as
the virtual photon-nucleus interaction (see Fig. 1).

Figure 1: DIS in the dipole picture. The virtual photon interacts with the nucleus via its
quark-antiquark Fock state dressed by a gluon cascade generated by soft gluon emissions.

Let us stick to the rest frame of the nucleus. At high energy, the virtual photon of virtuality
Q2 fluctuates into a color-neutral dipole consisting of a quark and an antiquark, which hereafter
will be refered to as an onium, long before the interation with the nucleus. This onium evolves
until the interaction time, and scatters off the nucleus as a multi-parton Fock state due to
quantum fluctuations. Furthermore, since the onium has the longitudinal momentum much
larger than the momentum transfered when traversing the nucleus, the size of the onium varies
by a negligible amount during the interaction, and hence, the S-matrix is diagonal with respect
to the transverse dipole size. This picture allows to formulate the process in the transverse
coordinate space and to factorize the DIS total cross section to the dipole level as

σγ
∗A

tot (Q2, Y ) =

∫
d2r

∫ 1

0
dz
{
|ψT (r, z,Q2)|2 + |ψL(r, z,Q2)|2

}
σqq̄Atot (r, Y ), (1)

where we integrate over all possible transverse size vectors r of the onium and all momentum
fractions z of the onium carried by the quark. The net rapidity Y of the onium-nucleus scattering
is given by Y = ln (x0Bj/xBj), where x0Bj is the starting point of the evolution. The wave functions
of the quantum fluctuation γ∗ → qq̄ in the longitudinal (L) and transverse (T) polarizations are
given by:

|ψL(r, z,Q2)|2 =
αemNc

2π2
4Q2z2(1− z2)

∑
f

e2
fK

2
0 (raf ) (2)

|ψT (r, z,Q2)|2 =
αemNc

2π2

∑
f

e2
f

{
a2
fK

2
1 (raf )

[
z2 + (1− z)2

]
+m2

fK
2
0 (raf )

}
, (3)

where r = |r|, mf and ef are mass and electric charge of the quark flavor f , and a2
f = Q2z(1−

z) + m2
f . We can write the total onium cross section in term of the onium forward scattering
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amplitude N(r, b, Y ) per unit impact parameter b as

σqq̄Atot (r, Y ) = 2

∫
d2bN(r, b, Y ) = 2σ0N(r, Y ), (4)

where we assume the impact parameter independence of N in such a way that the b-integration
gives an overal dimensionful factor σ0. With this assumption, the scattering amplitude depends
only on the onium scalar size r and the net rapidity Y .

As mentioned above, the onium does not interact with the nucleus as a bare dipole, but as
a multi-parton Fock state emerging from subsequent soft gluon emissions during the evolution.
In the limit of large number of colors Nc, emitted gluons can be replaced by a zero-size quark-
antiquark pair (color dipole), and one gluon emission from the original dipole can be seen as
the one-to-two dipole branching process. The probability for the original (parent) dipole of
transverse size r to split into two subsequent (daughter) dipoles of transverse sizes r1 and
r2 = r− r1 calculated in the leading logarithmic approximation is given by the following kernel
[20]:

KLO(r, r1, r2) =
ᾱs
2π

r2

r2
1r

2
2

, (5)

wheren LO stands for ”leading order”, and ᾱs ≡ αsNc
π is the coupling of the strong interaction

fixed at some value. This is known as Mueller’s color dipole model [20]. The splitting will be
iterated in subsequent daughters to the end of the evolution and, hence, the evolution in rapidity
is essentially the sequence of independent decays of dipoles into pairs dipoles creating a dipole
cascade. This implies that the evolution of the onium scattering amplitude N is then governed,
at LO, by the Balitsky-Kovchegov (BK) equation [12]:

∂YN(r, Y ) =

∫
d2r1K

LO(r, r1, r2) [N(r1, Y ) +N(r2, Y )−N(r, Y )

−N(r1, Y )N(r2, Y )] .

(6)

The initial condition is some function representing the scattering amplitude at a certain starting
rapidity. We can start at Y = 0 with the McLerran-Venogupalan model [21],

NMV(r, Y = 0) = 1− exp

{
−r

2Q2
s0

4
ln

(
e+

4

r2Λ2
QCD

)}
, (7)

where ΛQCD is the QCD scale, and Qs0 is the so-called saturation momentum characterizing
the nucleus at zero rapidity. One can see that, NMV → 0 as r → 0 (color transparency), and
NMV → 1 as r → +∞ (black-disk limit). In addition, there is a sharp transition between those
two limits at r ' 2/Qs0. When the evolution is turned on, the transition occurs at some Y -
dependent size r = 2/Qs(Y ), where Qs(Y ) is the saturation momentum at rapidity Y , defined,
for example, from the following requirement:

N(r = 2/Qs, Y ) =
1

2
. (8)

It was known [15, 17, 22–26] that the nuclear saturation scale Qs from the LO kernel grows
fast, which remarkably limits the application of the LO BK equation on the phenomenological
studies. The inclusion of the running coupling, on the other hand, significantly slows down
the evolution, making theoretical predictions more realistic for experimental data. The running
coupling BK (rcBK) equation was found [27] to be in the same form as Eq. (6), with the LO
kernel replaced by a running coupling kernel Krc, which is not uniquely determined, since it
depends on the scheme used to regularize an UV divergence. Different prescriptions for Krc can
be found in [27, 28].
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2.2 Diffractive dissociation in DIS (DDIS)

One of the most fascinating observations at DESY HERA for the deep inelastic virtual photon-
proton scattering is the single diffractive dissociation [29] in which the proton is kept intact,
leaving a rapidity gap, namely an angular sector around the direction of the scattered proton
which can be characterised by the rapidity variable Y0, with no particles produced. This diffrac-
tion is analogous to what happens in optics: if light is incident on a black disk, the shadow of
the disk is not perfectly black, but dressed by a pattern due to diffraction. In the same way, the
counterpart of absorption of a quantum particle by a disk (e.g., a large nucleus) is diffraction,
which is characterised by the elastic scattering. Therefore it is naturally to expect the same
thing to happen for the scattering of a virtual photon off a large nucleus from the quantum
mechanical point of view.

Figure 2: Diffractive dissociation in DIS with a minimal rapidity gap Y0. The vertical continuous
line represents the final state at x− = x′− = +∞. The amplitude is to the left and the conjugate
amplitude is to the right of this line. Interactions at x− = 0 (x′− = 0) with the nucleus are
mediated by color-neutral objects represented by double wavy lines.

In fact it was realized that the dipole picture of DIS led to phenomenological successes
[30] in describing the DESY HERA data on total and diffractive DIS. A crucial point of this
model is that, the understanding of the photon scattering is translated into the understanding
of the onium scattering. For the latter, an exact non-linear evolution equation to describe the
diffractive dissociation was derived from QCD in the limit of large Nc [31], which reads

∂YN
D
Y0

(r, Y ) =

∫
d2r1K

LO(r, r1, r2)
[
ND
Y0

(r1, Y ) +ND
Y0

(r2, Y )−ND
Y0

(r, Y )

−2N(r1, Y )ND
Y0

(r2, Y )− 2N(r2, Y )ND
Y0

(r1, Y )

+ND
Y0

(r1, Y )ND
Y0

(r2, Y ) + 2N(r1, Y )N(r2, Y )
]
,

(9)

where ND
Y0

(r, Y ) is the diffractive cross section with a minimal rapidity gap Y0 at a net rapidity
Y of an onium of size r off a nucleus at fixed impact parameter. Since the scattering with the
rapidity gap equal to the net rapidity is elastic, the equality

ND
Y0

(r, Y = Y0) = N2(r, Y0) (10)

is used as the initial condition of Eq. (9). As for the case of the BK equation (6), Eq. (9) is
written in the leading order. The running coupling version can be obtained [32] by replacing the
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LO kernel KLO by the running coupling kernel Krc which is used to solve the rcBK equation
for the initial condition (10).

Eq. (9) together with its running coupling versions form an elegant formalism for the onium-
nucleus diffractive dissociation. However, due to their complex structure, no analytical solutions
are known and, therefore, other approaches are required. On the other side, they can be solved
numerically, providing a powerful tool for numerical and phenomenological studies (see, for
example, [33]).

2.3 QCD evolution at low-xBj as a stochastic process

In the limit of large Nc, the QCD evolution of the onium is a dipole branching-diffusion process
in the space of (logarithmic) dipole size with evolution variable Y , which turns out to belong to
the class of one-dimensional branching Brownian motions (BBMs). It was also conjectured [15]
that the LO BK equation (6) governing the parton evolution at fixed impact parameter is in
the universality class of the Fisher- Kolmogorov-Petrovsky-Piscounov (FKPP) equation [16], a
partial parabolic differential equation which characterizes some properties of the realizations of
BBMs (for a review, see [34]). This universality allows the BK equation to admit a traveling wave
solution, namely a front translated at some velocity while its shape is essentially unchanged, at
asymptotic large rapidities. In other words, the asymptotic amplitude N does not depend on
ln 1

r and Y separately, but depends on the so-called scaling variable ln 1
rQs(Y ) . This traveling

wave behavior is corresponding to the geometric scaling [35, 36] manifested in DIS. In particular,
the traveling wave solution with the finite-Y correction reads

N(r, Y ) = cN
(
r2Q2

s(Y )
)γ0 ln

(
1

r2Q2
s(Y )

)
exp

− ln2
(

1
r2Q2

s(Y )

)
2χ′′(γ0)ᾱY

 , (11)

where cN is some constant, and the saturation momentum scale at large rapidities is given by

Q2
s(Y ) = Q2

s0 exp

[
χ′(γ0)ᾱY − 3

2γ0
ln ᾱY + const +O

(
1√
Y

)]
, (12)

where χ(γ) = 2ψ(1)−ψ(1−γ)−ψ(γ) is the characteristic function of linearized BK kernel (ψ(γ) is
the digamma function). The critical value γ0 is determined from the condition χ′(γ0) = χ(γ0)/γ0,
whose numerical value is γ0 ≈ 0.63. The solution (11) is valid for Y � 1, and for r in the so-called
(geometric) scaling region:

1 < ln
1

r2Q2
s(Y )

<
√
χ′′(γ0)ᾱY . (13)

For the sake of convenience, and for the link to the branching-diffusion problems, we will use
the following variables:

y ≡ ᾱY ; x ≡ ln
1

r2Q2
s0

;

X̄y ≡ ln
Q2
s(Y )

Q2
s0

.

(14)

In term of these new variables, the amplitude N can be rewritten as

N(x, y) = cN (x− X̄y)e
−γ0(x−X̄y)− (x−X̄y)2

2χ′′(γ0)y , (15)

and the scaling window (13) is translated into 1 < x− X̄y <
√
χ′′(γ0)y. The variable x, which

is the logarithmic size of the onium, is now refered to as position. The parameter X̄y is called
the ”position” of the traveling wave solution (front), which is nothing but the logarithm of the
saturation scale. Its expression is

X̄y = χ′(γ0)y − 3

2γ0
ln y + const +O

(
1
√
y

)
. (16)

6



Let us now look at the partonic configuration of the onium in the interaction with a nucleus
in the scaling window at a total rapidity y. As the onium lying outside the nuclear saturation
boundary, the interaction is triggered by rare fluctuations [18, 19, 37] in the onium’s Fock state
occurring in the course of the evolution. One can picture the rare fluctuations as follows. In
the reference frame where the nucleus is boosted to the rapidity y1, the onium will evolve to the
rapidity ỹ1 ≡ y − y1. The evolution of a single onium at position x from zero rapidity to some
rapidity ỹ1 by branching and diffusion processes develops a stochastic tree with the boundary
(tip) Xỹ1 , which is a random variable defined to be the smallest position (largest size) of dipole
in the realization. At low rapidities when the number of dipoles is small, the tree is subject to
fluctuations that shift its typical shape, namely the mean value of the boundary 〈Xỹ1〉, by a
certain amount. They are called ”front fluctuations”. On the other hand, fluctuations can also
occur near the tip at large rapidities ỹ1 � 1 when the number of dipoles is dense, which are
refered to as ”tip fluctuations”. This model of rare fluctuations can provide us some insights
into the onium-nucleus scattering process, and hence, will be employed in our investigations.

3 Thesis progress

At this stage, we have published our work [38] which is to establish a Monte Carlo (MC) event
generator to generate particles in the tip of branching random walks (BRWs). In addition, we
discussed the analogy between the diffraction and the genealogy of partonic evolution in [39, 40].
For the time being, our works on the onium-nucleus scattering configuration and genealogy, and
on the phenomenology of diffraction in the virtual photon-nucleus scattering are in preparation,
which would be available soon. For the remaining time of the Ph.D. study, we are expecting to
finish the study of the tip region using the established MC algorithm, and to figure out the full
asymptotics of the diffraction. Let us discuss in some detail these projects.

3.1 Onium-nucleus scattering in different frames

We consider the scattering of a single onium at position x in the deep scaling region 1 �
(x−X̄y)�

√
χ′′(γ0)y off a nucleus at a net rapidity y. As mentioned in the previous section, the

interaction in this set up is induced by rare fluctuations. We shall examine how rare fluctuations
manifest in three different scenarios: i) the nucleus is kept at rest and all evolution is in the
onium, ii) the nucleus is slightly boosted to a rapidity y0 such that 1 � y0 � (x − X̄y)

2, and
iii) the nucleus is highly boosted to a rapidity y0 such that y0 � (x− X̄y)

2.
In the frame where the nucleus is boosted to a rapidity y0, the onium will evolve to the

rapidity ỹ0 ≡ y−y0. Each dipole at position x′ in the state of the onium interacts independently
with the nucleus with the amplitude given by the solution to the BK equation:

N̄(y0, x
′) = CN (x′ − X̄y0)e−γ0(x′−X̄y0 ) exp

(
−(x′ − X̄y0)2

2χ′′(γ0)y0

)
Θ(x′ − X̄y0), (17)

for y0 � 1. For the nucleus at rest, y0 = 0, N(0, x′) is given by the McLerran-Venogupalan
profile, which can be safely replaced by a Heaviside step function.

Suppose that there is a fluctuation in the onium Fock’s state after the evolution rapidity
ỹ1 < ỹ0 which sends a single dipole to a distance δ > 0 from the mean-field tip 〈Xỹ1〉 . The
distribution of this fluctuation size also solves the BK equations:

p(δ, ỹ1) = Cδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

)
. (18)

We also assume that this fluctuation will develop a deterministic front upon further rapidity
evolution (from now on, this front is refered to as the δ−front) whose overlap with the nucleus,
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Figure 3: A schematic illustration of the configuration in the onium-nucleus scattering in the
scaling window at net rapidity y and in the frame where the nucleus is boosted to the rapidity y0.
The onium at x will evolve to a front in the evolution up to rapidity ỹ0 ≡ y− y0. At rapidity ỹ1

with respect to the onium, there is a fluctuation δ beyond the mean-field tip 〈Xỹ1〉 of the main
front originated from the initial onium. This fluctuation eventually develops a deterministic
front during the rapidity ỹ0 − ỹ1 which overlaps with the nucleus profile. Each dipole at x′

in the onium’s Fock state is probed by the nucleus with the probability N̄(y0, x
′) (scattering

amplitude, red curve).

in the concerning kinematic region, dominatedly contributes to the scattering (see Fig. 3). The
density of dipoles at position x′ of this front reads

n̄δ(ỹ0−ỹ1, x
′) = C1

(
x′ − 〈Xỹ0−ỹ1〉+ δ

)
e
γ0(x′−〈Xỹ0−ỹ1〉+δ)−

(x′−〈Xỹ0−ỹ1〉+δ)
2

2χ′′(γ0)(ỹ0−ỹ1) Θ
(
x′ − 〈Xỹ0−ỹ1〉+ δ

)
,

(19)
where

〈Xỹ0−ỹ1〉 = x− χ′(γ0)(ỹ0 − ỹ1) +
3

2γ0
ln (ỹ0 − ỹ1) + const +O

(
1√

ỹ0 − ỹ1

)
. (20)

Within this model, we can write down the onium-nucleus scattering amplitude as follows:

N(y, x) =

∫ y

y0

dy1

∫ ∞
0

dδp(δ, ỹ1)
(

1− e−I(δ,y1)
)
, (21)

where

I(δ, y1) =

∫
dx′n̄δ(ỹ0 − ỹ1, x

′)N̄(y0, x
′) (22)

is the overlap of the δ-front with the nucleus. We showed that the boost invariance is indeed
manifested in this model: three scenarios give the same result for the scattering amplitude as in
Eq. (15). However, the scattering configuration strongly depends on the choice of the frame. In
the rest frame of the nucleus, since the the nucleus does not evolve to a front, we need fluctuations
to send at least one dipole cross the nuclear boundary, so that it can be completely absorbed by
the nucleus. The most likely picture in this case is the combination of a front fluctuation in the
early stage and a tip fluctuation occuring in the very end of the onium evolution. For the second
scenario in which the nucleus is slighly boosted, the fluctuation occurs at rapidity ỹ1 close to
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ỹ0 such that (ỹ0 − ỹ1) ∼ y0 , so that the fluctuation-induced front can significantly overlaps
with the front of the nucleus. Finally, the scattering configuration in the case of highly-boosted
nucleus is dominated by fluctuations occuring very early in the course of the evolution, namely
front fluctuations.

Let us now look into the genealogy of the onium evolution. If we trace back the evolution,
all dipoles probed by the nucleus should originate from a single dipole, which is refered to as the
last common ancestor. In the above discussion, the last common ancestor should split between
ỹ1 and ỹ0 when measured from the onium. A natural question arises: what is the distribution
of the rapidity y1 measured form the nucleus at which the last common ancestor splitted?

To quantify this problem, let us call G(y, r; y1) the joint probability distribution of y1 and
the interaction probabiliy. One can derive [39, 40] the exact equation for G in the color dipole
model in the similar way to derive the BK equation for N . In the model of rare fluctuations
plus the mean-field approximation, G can be computed from the following formula:

G(y, x; y1) =

∫ ∞
0

dδp(δ, ỹ1)
{

1− [1 + I(δ, y1)] e−I(δ,y1)
}
, (23)

with I(δ, y1) defined in Eq. (22). We found that the distribution is expressed as:

G(y, x; y1)

N(y, x)
=

1

γ0

1√
2πχ′′(γ0)

(
y

y1(y − y1)

)3/2

, (24)

which is identical, up to a correspondence, to the result of a similar genealogical problem on
branching random walks and directed polymers [41]. Eq. (24) is valid for an asymptotically
large y, and for y1, (y− y1)� 1. This distribution was conjectured [37, 39, 40, 42] to be related
to the rapidity gap distribution in the onium-nucleus diffractive dissociation, which are going to
be discussed.

3.2 Rapidity gap ditribution in DDIS

Consider the scattering of quantum particles on a disk. If the disk is almost transparent, or
S ∼ 1, elastic events are unlikely to be observed since σel = (1−S)2 ∼ 0. If, instead, the disk is
fully absorptive (black-disk), or S ∼ 0, then σel ' σinel ' σtot/2, and the elastic scattering occurs
in half of events. Furthermore, the elastic scattering is due to the particles which are diffracted
in the disk’s shadow. Therefore, to have diffraction, one needs to approach the black-disk limit.

Back to the onium-nucleus interaction in the scaling window, let us consider a frame in
which the nucleus is boosted to a rapidity y0 � 1, and hence, the onium will evolve to the
rapidity ỹ0 = y − y0 (ỹ0 � 1). The onium does not interact with the nucleus as a bare dipole,
but as a highly evolved Fock state. The state of the onium at ỹ0 can be subject to a rare
fluctuation which could create a few unusually large dipoles in the evolved onium state whose
sizes are greater than the inverse nuclear saturation scale 1/Qs(y0). These dipoles interact with
the nucleus with a probability of order unity. From the above discussion, the black-disk limit is
realized, and the scattering with nucleus is elastic in half of events, which results in a diffractive
event with a rapidity gap y0. Meanwhile, partons loose their coherence due to independent
interactions with the nucleus, so the onium is dissociated and fragmentated to the final state.
As a result, we have the single diffraction. Adopting this picture of fluctuation and a statistical
interpretation of the BK equation, one can deduce [37, 42] the distribution for the rapidity gap
which reads

1

σqq̄Atot

dσqq̄Adiff

dy0
(y0|y, x) = cdiff

[
y

y0(y − y0)

]3/2

. (25)

We see that the gap distribution (25) is similar to the ancestry distribution (24), up to an
overall constant. In addition, two distributions are related to the history of the evolution at
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some moderate rapidity y0. Therefore, we expect a subtle relation between these two problems,
which we are trying to figure out.

One can also employ the above formulation for the model of rare fluctuations plus mean-
field approximation, together with the Good-Walker formulation of diffraction [43], to compute
the rapidity gap distribution in the diffractive onium-nucleus scattering. We ended up with
a formula of the same functional form as Eq. (25), and with the overall constant completely
determined. However, there are still some fuzzy points of this approach that we need to clarify.
Therefore, we shall leave the result of this approach to a future discussion.

Figure 4: Rapidity gap distributions for the diffractive onium-nucleus scattering at net rapidity
Y = 5. The first graph is for the fixed coupling, while two remaining ones are for the running
coupling but with two different prescriptions. Onium sizes are picked according to the condition
ln 1

r2Q2
s(Y )

= 2κY 1/4.

An analytical understanding of the asymptotic distribution of rapidity gap is important as
it is the first step toward a formulation of the rapidity gap distribution for moderate rapidities,
which are useful for phenomenological investigations. However, since we are still far from this
goal, a numerical analysis is necessary to figure out some properties of the distribution for
practical values of net rapidity. This is available with the dipole model of DIS and the nonlinear
BK and KL evolution equations in both fixed-coupling and running-coupling scenarios. As it
is still in progress, we just show here (Fig. 4) some preliminary numerical results in the case of
onium-nucleus scattering for both fixed and running coupling scenarios.

3.3 Tip of BRWs: a Monte Carlo investigation

As discussed above, the scattering of an onium off a nucleus in the case of the onium size
much smaller than the nuclear saturation scale is sensitive to the tip of the dipole branching-
diffusion front, i.e. the region close to the rightmost (or leftmost) particle. In many other
applications of BBMs and BRWs, it is also important to understand the tip region. Therefore,
it is particularly important to examine this region in both analytical (for example, [44, 45]) and
numerical aspects. For the latter, we establish a Monte Carlo (MC) algorithm to generate the
tip of branching randoms walks evolved to large times [38].
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3.3.1 The algorithm

Figure 5: A realization of constrained BRW up to T = 50, with X = 85.1 and ∆ = 5. This
figure is adapted from [38].

Since the direct MC simulation for BRWs and BBMs is impractical due to the exponential
increase of particle number with the simulation time, we proposed an effective algorithm [38]
which allows to generate an one-dimensional BRW to a large time T , keeping only the particles
that arrive within an interval [X −∆,+∞) with the condition that there is at least one particle
to the right of X (for an illustration, see Fig. 5). The algorithm can be summarized as follows.

We consider a BRW on an one-dimensional lattice with step size δx forward in time with
step δt. This BRW is originated from a particle at x = 0 at the initial time t = 0. For each
evolution step from t to t + δt, a particle at position x in the system can evolve in following
three manners:

i Jumping from x to x+ δx, with probability pr,

ii Jumping from x to x− δx, with probability pl,

iii Branching into two particles without moving, with probability r,

with pr + pl + r = 1. Let Rt be the position of the rightmost particle at time t, and introduce
u(x, t) = P(Rt ≥ x), the probalility that Rt lie to the right of position x. Then u solves the
following equation:

u(x, t+ δt) = pru(x− δx, t) + plu(x+ δx, t) + ru(x, t) [2− u(x, t)] , (26)

with the initial condition u(x, 0) = 1− δ(x).
The first goal of the algorithm is to generate realizations of the trajectories of all red particles

which are defined as those whose rightmost offspring lies in [X,+∞) after the time horizon T ,
given that the initial particle is also red. This can be done by employing, instead of pr, pl and
r, following probabilities:

i. Probability that a particle at (x, t) jumps right given that it is red:

P (right|red) = pr
U(x+ δx, t+ δt)

U(x, t)
. (27)

ii. Probability that a particle at (x, t) jumps left given that it is red:

P (left|red) = pl
U(x− δx, t+ δt)

U(x, t)
. (28)
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iii. Probability that a particle at (x, t) branches into two red particles given that it is red:

P

(
red
red

∣∣∣∣red

)
= r

U2(x, t+ δt)

U(x, t)
. (29)

iv. Probability that a particle at (x, t) branches into one red and one non-red given that it is
red:

P

(
red

non− red

∣∣∣∣red

)
= r

2U(x, t+ δt)[1− U(x, t+ δt)]

U(x, t)
. (30)

In these formulae, U(x,t) is the probability that a given particle at (x, t) is red, and by definition,
related to u(x, t) as: U(x, t) = u(X − x, T − t).

The above procedure can be extended to the second goal of the algorithm, that is to follow
paths of all particles whose rightmost offspring is in the interval [X −∆, X) for some ∆ > 0
after the time T , which are refered as the green particle. In addition, for completeness, we
define blue particles to be those whose rightmost offspring is in the range (−∞, X −∆). Since
non-red = green + blue, we can replace the probability Eq. (30) by two following probability:

P

(
red

green

∣∣∣∣red

)
= r

2U(x, t+ δt)V∆(x, t+ δt)

U(x, t)
(31)

and

P

(
red
blue

∣∣∣∣red

)
= r

2U(x, t+ δt)[1− U(x+ ∆, t+ δt)]

U(x, t)
, (32)

where V∆(x, t) = U(x + ∆, t) − U(x, t), which is the probability for a particle at (x, t) to be
green. For a particle which is conditioned to be green, the probability that it moves or branches
into two greens are given, correspondingly, by Eqs. (27) to (29), with U replaced by V∆. Finally,
the branching to one green and one blue from an green is given by the following probability:

P

(
green
blue

∣∣∣∣green

)
= r

2V∆(x, t+ δt)[1− U(x+ ∆, t+ δt)]

V∆(x, t)
. (33)

While the above algorithm allows to follow all particles ending in the interval [X −∆,+∞) at
time T conditioned that there is at least one particle to the right of X, one can readily modify
it to the case in which the rightmost particle is fixed at X precisely. In addition, we can take
the continuous limit to see how, in principle, can generate the tip for the BBM, which gives a
starting point for further analytical investigations of the frontier region.

The algorithm allows to study observables of the tip for which no other method is available
to date (for example, the distribution of particles at distance a to the left of the rightmost
particle). Furthermore, it can be employed to study other problems, such as the genealogical
structure of particles in the tip, which is closely related to the genealogical problem of the QCD
evolution.

3.3.2 Particle density in the tip

Prior to the establishment of the above algorithm, we already published a preprint [46] in
which we introduced an algorithm to generate realizations of BRWs in which there is at least
one particle to the right of some predefined position Xmin at the final time T at which one
analyzes the set of particles. Using the implementation of that algorithm, we were able to
generate ensembles of realizations in which the position X of the rightmost particle is effectively
unconstrained (by setting Xmin to a value smaller than the mean position of the rightmost
particle 〈RT 〉) or constrained (with Xmin chosen in the scaling region). With those ensembles,
we were able to derive some numerical results on the probabilities pn(∆x) of the particle numbers
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n in an interval of variable size ∆x to the left of the rightmost particle, and on the mean and
typical numbers of particles in this tip region.

However, that algorithm itself contains a flaw, which was pointed out by Éric Brunet and
then, brought to our attention. Fixing that flaw not only produces the above correct algorithm to
generate the tip of BRWs but also gives a theoretical description of the conditioned BBM which
may be useful to give a mathematical description of the tip. Furthermore, we have checked that,
in the case of T = 1000 and Xmin = 1400, the numbers obtained for the observables calculated
with the new, correct, code are indistinguishable from the old one. So, we expect that some
conclusions in the preprint [46] are still valid.

At present, we are collecting and analysing the data. The results are expected to be released
in the upcoming time.

4 Conclusions and prospects

In conclusion, the aim of this thesis is to gain some theoretical understandings on different
problems relevant to the QCD evolution at low-xBj . And to date, we have advanced the study
in numerous aspects. In the first place, we developed the model of rare fluctuations in the wave
function of the onium and used it to examine the onium’s configuration in the scattering off a
nucleus. We showed that the shape of fluctuations dominantly contributing to the interaction
strongly depends on the scenario of boosting the nucleus. In addition, the model provides an
elegant appoach to the study of the genealogical structure of the partons in the tip of the
branching-diffusion front of the onium which are probed by the nucleus. Notably, we obtained,
from the model, the distribution of the branching time of their last common ancestor, which
well agrees with the result for a problem of the same class in statistical physics. Furthermore,
we developed an effective Monte Carlo algorithm to generate realizations of the tip in BRWs
evolved to large times, which enables the study of various observables of the tip as well as the
history of particles in the tip of the evolution.

In the meantime, there are several works which are in preparation. The model of rare
fluctuations also enables to study the rapidity gap distribution in the diffractive onium-nucleus
scattering for which we are trying to clean up all the points. Besides, we are also looking for
some behaviors of the diffractive DIS from a numerical calculation, which could be a starting
point for the connection to the EIC experiments. For the statistical physics aspect, a numerical
investigation of some characteristics of the tip of BRWs by employing the established algorithm
is being conducted.

The study opens up many possible developments. On the statistical aspect, one can examine
the genealogical problem from a more rigorous point of view of statistical physics. Furthermore,
we intend to develop a theoretical formulation of branching-diffusion processes which allows
to provide a method to calculate observables of the tip. This approach is important since an
analytical, and systematic, understanding of the frontier and relevant structures is always a big
request.

There are also many things to do, and to expect, from the QCD point of view. One
probable consideration is to inherit the mechanism to generate the tip of BRWs to construct
a Monte Carlo algorithm for the QCD dipole evolution which can produce ensembles for the
configurations of nuclear scattering. In addition, since the current analysis on the diffraction is
in the asymptotic region, it would be worth to work out sub-asymptotic corrections, and hence,
to be more phenomenologically relevant. Also, we would like to extend our work to address the
diffraction in proton-nucleus collision, which is another dilute-dense scattering comparing to the
onium-nucleus scattering considered in this study.
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