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The influence of nonlinear ion acoustic waves on the stimulated Brillouin backscattering
process is investigated with the help of the hydrodynamic description of the ion fluid.
Numerical calculations were systematically performed for a wide range of relevant
parameters in the presence of an ideal plasma. It is shown that the scaling of steady-state
solutions due to spatially amplified scattering deviates significantly from the theory

where only linearized ion acoustic waves are considered. An analytic approach using harmonic
expansion confirms the similarity parameters found numerically. The significance of

kinetic effects, such as anomalous heat transport due to fast ions and ion trapping in the
presence of weakly damped ion waves, is also studied using particle simulations.

I. INTRODUCTION

The description of resonant wave-wave interaction
with the use of the equations for the slowly varying com-
plex envelopes (SVE) of the coupled wave components is
rather universal for parametric processes.

Scattering of electromagnetic radiation on periodic
modulations of the refractive index due to electrostatic or
acoustic waves in the medium usually is treated as a three-
wave interaction process. Most of the theoretical investiga-
tions of stimulated scattering are based on the equations
for the wave envelopes. They take into account the domi-
nating nonlinear coupling terms in which the mutual in-
fluence of the waves under consideration results in a
change of their amplitudes and their phases.

In the approximation of slowly varying envelopes, each
wave is assumed to keep its initial shape as a linear wave
would. Since this method makes use of the linear disper-
sion relations in order to eliminate the rapid oscillations in
space and time, the phase of any wave is not allowed to
depend on the respective amplitude. However, it is well
known from nonlinear waves that the deformation of an
initially sinusoidal shape is a result of the dependence of
the propagation velocity on the local amplitude. An excel-
lent example in the context of stimulated Brillouin scatter-
ing (SBS) can be given by the equation for a simple wave
representing a freely propagating (ion) acoustic wave!'™

dv 81}_0
5+[S(v)+v]$— ) (1)

where s stands for the sound speed and v for the velocity
perturbation. For an initial wave profile v(x,0), adjacent
fluid elements a and 8 with v(x,)5%v(xg) propagate along
different characteristics. This results in the formation of
shocklike structures in the wave profile and in wave break-
ing, which may be regulated and prevented by dispersive
and dissipative effects. Although this is a long-time-scale
effect, it can cause considerable reduction of the average
backscattering level, as long as the excitation due to SBS is
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not diminished by incoherency. The influence of nonlinear
ion sound wave propagation on SBS is the subject of this
paper. The importance of incoherent and nonstationary
behavior is considered in other papers.*

In previous publications,” nonlinear features of ion
acoustic waves (IAW) were included by an extension of
the system of coupled equations for the envelopes with a
finite number of excited harmonics. In these and in further
papers,®’ it was shown that the scaling of the parameters
determining the level of backscattering deviates from the
standard theory'®!? when IAW nonlinearities or only ad-
ditional nonlinear terms® are taken into account. In con-
trast to the standard approach where only a linear IAW is
assumed, the analytic solutions found in Refs. 5 and 6 are
based on a particular balance of the energy flow between
the fundamental IAW and its second harmonic, but disre-
garding linear dissipative terms.

Although harmonic generation is a well-known effect
connected with nonlinear waves, the commonly used ex-
pansion becomes erroneous if the equation for the consid-
ered wave does not completely fulfill a simple wave equa-
tion (1), even if the deviation is small, This will be shown
in Appendix A.

In the current paper, an extended model is used that
intrinsically takes into account all harmonics of the IAW.
The results are obtained by solving the full set of the non-
linear hydrodynamic equations of the ion fluid so that an
unsatisfactory treatment of SBS by an incomplete system
of 3 + n wave-envelope equations (one fundamental IAW
resonant with two electromagnetic wave contributions and
n ion acoustic daughter waves) is avoided.

The dependence of the SBS level on the governing pa-
rameters, as the incident laser intensity, is elaborated with
particular emphasis on the parameter scaling. It will be
shown that only for low laser intensities, the resuit from
standard theory can be reproduced, which yields a scaling
with a single similarity parameter for the case of spatial
ampliﬁcation.lo'12 We show that, beyond this regime, the
simple scaling no longer holds, the parameter dependence
splits, and the corresponding solutions lead to reduced
backscattering.

© 1991 American Institute of Physics 3317



Although the decomposition of the electromagnetic
field into two spectrally well-separated components proves
to be a satisfactory approximation in homogeneous media,
we still use the original wave equation after the elimination
of the high-frequency time dependence. This is advanta-
geous since the full spatial dependence is maintained.
Therefore even inhomogeneous profiles with such domains
can be treated where the WKB (Wentzel-Kramers—
Brillouin) approximation is no longer applicable.

In addition to the hydrodynamic calculations and with
the aim to study the influence of nonlinear kinetic effects
on the evolution of the IAW, particle-in-cell (PIC) simu-
lations are performed. This approach also covers the do-
main of weakly damped IAW’s, which cannot be ade-
quately treated by a fluid description. The ions are
represented by an ensemble of individual “one-dimen-
sional” (1-D) particles. In contrast to previous simulation
models,'* we assume that the electrons, because of their
high thermal conduction, form an almost isothermal back-
ground. This reduces the numerical expense considerably.

The paper is organized in the following way. In Sec. II,
we preseni the extended model that describes the stimu-
lated backscattering off nonlinear ion sound waves more
adequately than the standard system of linearized equa-
tions for the wave envelopes. In addition, we reduce the
coupled 1-D hydrodynamic equations of the ion fluid to a
“quasisimple” wave equation,'* This enables a facilitated
approach to the analytic determination of the steady-state
solutions in presence of ion acoustic nonlinearities. Section
III is concerned with numerical solutions of the extended
model. The dynamic evolution will be discussed and illus-
trated. The scaling of the parameters for asymptotically
attained steady-state solutions will be pointed out in Sec.
IV. A path to obtain the scaling of the steady-state problem
analytically is sketched. From this, we derive the solution
in lowest order of the approximation that already yields a
scaling to a comparable combination of similarity param-
eters as obtained from the numerical calculations. In Sec.
V, we discuss the results from PIC-code simulations of
SBS.

il. THE NONLINEAR MODEL

The mutual interaction of electromagnetic radiation
and almost-neutral density flucutations due to acoustic
waves requires a polarizability of the (quasineutral) me-
dium. Of course, this is guaranteed in ideal plasmas, which
are the only media considered in this work. The action of
the ponderomotive force of the electromagnetic (or elec-
tron-plasma) wave on the long-time-scale motion of the
electrons is then transferred to the ion fluid. This can be
expressed with the help of the 1-D hydrodynamic equa-
tions, written here in quantities that are already normal-
ized with respect to the IAW fluid,

dn; dv 0 )
E+ﬂ;5;— , (2a)
dv 1dp ad %
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Here, m;, n, Z, and v represent the ion mass, ion density,
ion charge number, and speed, respectively, w, and k, are
the frequency and the wave number of the IAW, and ¢ is
the electrostatic potential. In an unnormalized presenta-
tion, the quantities in Eqs. (2) have to be replaced by
X = kX, t > wgt, v-v/s, ¢ — ed/(kgTL), v — v/o,
B - pkifw, and p — nkgT/(ms?), using s°
= kgT,/m;with kg a5 the Boltzmann constant and T, T, as
the ion and electron temperatures. The ion pressure p can
either be eliminated by an equation of state or be deter-
mined by introducing an additional energy (or entropy)
equation. The coefficient v phenomenologicalily represents
any linear damping. The dynamical coefficient
p{=p " (4/3)n + ¢ + «lcy' — ¢;71)]} contains all
viscous effects (coefficients 7 and £), but also the dissipa-
tion by heat conduction (coefficient k, specific heat cy,
¢,) assuming that adiabaticity (p ~ n?) is only slightly
invalidated'* (as in weak shocks) and the heating itself is
negligible, i.e., we assume T,,T; = const.

The high-frequency motion of the electrons results in a
time-averaged nonlinear force, even in the time scale
longer than the ion oscillations, and thus acts on the whole
fluid. The corresponding ponderomotive potential ®, can
be determined from the solution of the electromagnetic
(em) wave equation in the medium. This is because the
electron oscillatory velocity v, is in first order propor-
tional to the electric field of the em wave. Thus, for D,
results

@,= (mu/2kgT,) (L) = (/2m ks TH(E?).  (3)

In the absence of charge separation, ie., Ap (Debye
length) =0, n, = Zn,, ® is given by the ponderomotive po-
tential and electron pressure. In any other case, where
Ap#0, the electrostatic potential must be calculated from
Poisson’s equation where the electron density #, has to be
evaluated from an assumed quasistatic electron motion.
This assumption leads to a Boltzmann factor where the
ponderomotive potential appears in the exponent similar to
a chemical potential,

2
ne=nge!®— Pp—2%2), (4)

The v}, term arises from the assumption of irrotational
flow (VX v4, = 0) and is due to any dc current appearing as
(Vg0 * V)v4, in the electron momentum equation. This term
will be disregarded for simplicity. Hence the Poisson equa-
tion becomes the nonlinear expression

82<I>_ 1 ne—2Zn 1 oo Zn
3 (kAp)®  mo  (kap)? (e ) '
(5)

For small Ap compared with the wavelength A,
= 2m/k, Le., (kAp)? € 1, Eq. (4) can be written in an
iterative operational form as
. 62 Zfi,’
d’::(l + (kAp) é;z) (¢p—— In —n—) ’

€

(6)

where (koAp)?8,,(...) leads to a dispersive term in Eq.
(2b), equivalent to d%v/8x® in the Korteweg—de Vries
equation,
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The density perturbations originating from the sound
wave and the ponderomotive force action take place over a
much longer time scale than the laser light period. This
allows the usual reduction of the time derivatives of the
envelopes of E and the current density j in the em wave
equation, with E=e, Ee ™0, j = e, je ' e, 1 e
= k/k, as well as Ohm’s law. Using n(x,t) = n, = Zn; one
obtains

= — g~ — i—

dj n(x,t)e v\ !
9g . (x,2) (1+. e) E
ot m, g

where v,; denotes the absorption coefficient due to inverse
Bremsstrahlung. The resulting em wave equation, which
still includes the high-frequency oscillations in space, can
be written as

iw,0E &FE 1
Taogor T e

n(x,t) Ver\ 7!
- (1 +i——> ]E:O.
nc [0
(N

It completes the system of model equations. Herein we
used V-E =0, the definition of the critical density #,
= é%/(egmuw}), € = 1 — ng/n, as well as the relation
between the acoustic and em wave numbers, k, = 2kg
~ 2€'2wy/c. This last condition is necessary for Brillouin
backscattering because of the small frequency ratio,
w,/wy € 1. This homogeneous partial differential equation
(7) is quasilinear since its coefficients depend on x and ¢,
and remains unchanged after normalization with respect to
the incoming electric field E = E(x =0).

The hydrodynamic part [Eqs. (2)] of the complete sys-
tem of equations (2), (3), (5), and (6) can be simplified
by the assumption that the behavior of the density p
= mun; and pressure p = po(p/py)? deviate only slightly
from that of a simple wave. The density of an ideal simple
wave ]5, as all other quantities describing the wave, can be
expressed as a function of only one of them, for example as
a function of v, i.e., p =p(v) and p = p(v). This results in
the differential

~ dp
— 2 [ -
dp=u ( a'v) dv,
where u stands for the Eormalized speed of sound, defined
by w* = d(p, + p;)/dp = 1 + y,T/(ZT,). The correct
density p(x,t), however, consists of ﬁ(u) and a small per-
turbation 1(<p) explicitly depending on x and ¢,

p(x,t) =p(v) + P(x,1).

The resulting equation (see Appendix A) for “quasisim-
ple” waves

dv dv 1 V2% ao,
5 + [#) + 0] —2(#

53 (15— ) + O, ®

is the basis for a harmonic expansion of the IAW.> Start-
ing from the fundamental (m = 1) IAW component w,,
the differential equation for the snth harmonic w, reads
(using u=1)
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ow, dw,
ar T ox TVt
1 n
=-2-¢p5n’1—-§'( 2 wmw"_‘m—z Z wmw,,,+,, .
m<n m

(9)

This equation contains a wave-number-dependent damping
v, = wv(n), as well as the ansatz v(x,2) = Z,v,
= X, Ww,,sin m(x — t). Furthermore, it is sufficient to as-
sume a single-harmonic contribution for the ponderomo-
tive potential ®, = @, cos(x — ¢). The symbol §, | denotes
the Kronecker delta. Besides the coupling between IAW
and the ponderomotive force of the em waves, defined by

(using E=x—1),

ob 2
— <v—a—f) 1= fo v(§)ppsin §dE

1 1
=E % (ppwmsm,l =§ PpW1,

the interaction of the harmonic contributions causes addi-
tional nonlinear terms [on the right-hand side (rhs)] in the
energy balance
',  du? ad
> ( T4 2vmwf,,) + 2(01 ——")
m

ot ax ox

= 2 (2 Z Wy WpWpy o p — z wmwnwm—n) .

m n m<n

(10)

It is obvious that merely the fundamental wave compo-
nent, which is the only one considered in linearized
theory,'® can interact resonantly with the em waves. Any
other harmonic (nw, =~ nsk,) cannot simultaneously fulfill
the SBS matching conditions for frequency o and wave
vector k with the nth harmonic

nw,=~w, — o™ <y
and
|nk,| = ko — k{™|,

because w{” < wy and |k{"| > |nk,| — |ko| = (2n
— 1)]ky| contradict for n> 1. The subscript O represents
the incident em wave, whereas 1 represents the (back)-
scattered em wave components for which o{® and k{"
correspond to the respective harmonic IAW.

This harmonic expansion is helpful in understanding
the mutual interaction in the frame of second quantization.
The dynamics of the amplitude can be interpreted by an
exchange between photons and phonons in case of SBS, or
between phonons and phonons in case of harmonic excita-
tion. [The interaction circuit belonging to the process de-
scribed above is illustrated in Fig. 1, where a4 and a, stand
for the incident and (back-)scattered em wave compo-
nents, respectively.] On the other hand, one should keep in
mind that the expansion due to Eq. (8) up to a certain
harmonic (m>2) becomes erroneous when the amplitude
of this daughter wave has values below the accuracy of Eq.
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FIG. 1. Circuits describing the interaction between ion acoustic waves
and electromagnetic waves. The left circuit represents the resonant cou-
pling between the incident electromagnetic wave (“pump wave"} a,, the
backscattered wave @, and the fundamental IAW w, due to SBS. The
interaction between the JAW harmonics w, (right circuit) is connected to
the SBS process only via the fundamental IAW w,,

(8). In Appendix A, the error caused by the limited accu-
racy is evaluated for the steady-state case in the wave
frame, It essentially leads to dispersion of the wave.

Therefore it is neither reasonable to include high-har-
monic contributions into a system of model equations nor
to break off after a limited number (m) of daughter waves,
ie,w,,,,=0.

For this reason, we only use the harmonic expansion in
order to find analytically the scaling parameters of the so-
lutions. We shall see later that this will confirm principally
the numerically determined scaling behavior. But, for the
numerical investigations themselves, we still use the pri-
mary hydrodynamic equations (2).

{il. NUMERICAL SOLUTION
A. Model equations and parameters

For the purpose of numerical investigations, the hy-
drodynamic equations are written in Lagrangian
coordinates'®!”

X ()=X, + f Ve dt,

where (x,, v,) represent a fluid element o of fixed mass,
myand X, = x,(t = 0). Also,

3v, 1 dp; 3P 3% 1"
B Tmedx| T am| etz o (11a)
xa Xa Xa
Ox, dx,\ !
E-:Ua, Zna=no (‘a?a) y (llb)
where we assume an adiabatic law  p(n,)

= (noT//ZT,) (ny/n)" with y; = 3, representing a plane
wave. Here, T; denotes the equilibrium ion temperature.
Poisson’s equation

82<I> l P S Zn,- 12
79?‘(1«0/19)5(8 ”‘Tzli)’ (12)
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using

TR 2h T P2

®,=I(E") with I=€,F"/(4nkpT,), (13)
can be evaluated at x,, though the Lagrangian grid is not
equally spaced!’ and nonstationary with respect to the lab
frame. However, it is necessary to determine the mass and
charge distribution n(x,t) also in Eulerian coordinates, in
order to solve the em wave equation (7) without causing
any phase shift in £ as a consequence of expanding bound-
aries.

A similar set of equations was investigated by Candy et
al. in Ref. 9, but they use an Eulerian scheme to solve the
hydrodynamic equations (2). This requires a highly accu-
rate procedure in order to avoid numerical diffusion. We
applied the set of equations (7) and (11)-(13) to a trap-
ezoidal density profile, representing a homogeneous plasma
of length L between two short linear ramps that avoid
considerable reflection by an abrupt transition from vac-
uum to a finite density . In this geometry, with the neigh-
boring vacuum, we obtain natural boundary conditions
and are not forced to assume any hypothetic behavior of
the IAW at a fixed location in the plasma. In Ref. 4, we
also discuss results of our scheme applied to an inhomoge-
neous linear density profile going from vacuum to an over-
dense plasma region,

The equations (7) and (11)=(13) reveal a set of pa-
rameters that determine the dynamics of the evolution of
the scattering process. It is necessary to distinguish be-
tween two groups of parameters of different importance.
Obviously, the intensity J of the incoming laser flux, the
equilibrium density 1, the profile length L, and the coef-
ficients causing dissipation v, g,

~
{I’ nO:L; Vyf-‘}

have direct influence on the dynamics of SBS. On the other
hand, the Debye screening, causing dispersion in the case
of k,Ap > 0, as well as the frequency ratio w,/w, only be-
come decisive in extreme situations of SBS in plasmas. The
parameters applied in the calculations correspond to inten-
sities up to 10%,...,101 W cem—2 (for Nd lasers) in plas-
mas with electron ternperatures between 500 eV and 5 keV
[e.g., 7 = 0.8 corresponds, according to Eq. (13), to 10"
W cm ~2 with 5 keV, or 10! W cm ~ 2 with 500 eV], and
homogeneous profiles up to 160 acoustic wavelengths
( =80 em wavelengths). The used values for the coefficient
pl~ Ty/vy ~ TV 2 pk/ o, = 0.05,...,0.3) have been com-
puted from Braginskii’s formulas in Ref. 18 considering
heat conduction and viscosity corresponding to tempera-
ture ratios T,/7; below 100 for Z = 1. We shall concen-
trate on the main set of parameters when discussing sys-
tematic changes in the numerical calculations. Before this
(subject of Sec. IV), we examine the importance of those
effects due to parameters that appear additionally in the
context of this extended model. The main differences for
the numerical treatment between the standard model with
envelope equations and the extended model are displayed
in Appendix D.

S. Hiller 3320



n {a)
01 _/“\\\/\/\/{
wat=20
o i 1 1
30 50
kqx
. (b)
wot=30
0 t 1
30 50
kaX
(c)
n
af_ A
Wet=30
030 50
kox

FIG. 2. Density perturbation of a sound wave in an early (a) and later
stages (b) and (c) illustrating the nonlinear wave profile modifications
during their propagation. At wr= 30 (b) without charge separation,
kAp = 0, (c) with charge separation, kAp = 0.1 as a parameter in Poisson’s
equation.

B. Charge separation

The effect of charge separation causes dispersion of
IAW’s. It is illustrated in Fig. 2 by comparing a part an
IAW profile in the case of k,Ap = 0and £, Ap = 0.1. In both
cases, an initially sinusoidal wave v(x) deforms due to the
different velocities of propagation dependent on the local
amplitude. Without the action of any dissipative and dis-
persive processes, the wave profile becomes multivalued
after the coordinates of two fluid elements overtake (in the
sense of the hydrodynamic waterbag model'®). When this
occurs, the transformation from the Lagrangian to the Eul-
erian grid is no longer unique."!® In the presence of fric-
tion, the discontinuities, which occur periodically for an
initially periodic structure, are prevented (“shock fitting””)
by a jump in v over a finite interval of the width>'* &
= 2u/Av. The resulting periodic weak shock wave with
the jump Av in v(x) from x — 8/2 to x + 6/2 exhibits a
different structure when the mutual excitation of harmon-
ics is more and more suppressed because of the mismatch

Aw,=nsk,[ (1 + n?kK2AS) ~' — 1]
~ —n*skiAY for (kAp)i<l.

It is caused by the non-neutrality due to charge separation
below scales of the Debye radius Ap. Although the mis-
match might be unimportant for the fundamental IAW,
higher harmonics experience considerable dispersion, in-
creasing strongly with the order of the harmonic “n.” Then
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the spectrum of the IAW harmonics is cut off above n
> 1/(kAp) and thus structures with characteristic lengths
8 > Ap appear to be favored as is obvious from Fig. 2.

The latter effect has been studied in Ref. 9 in absence
of a strongly k-dependent damping of the IAW due to
viscosity. We will refer to weakly damped, but dispersive
IAW’s in Sec. IV since they are inseparably connected with
kinetic processes of the ions.

However, the influence of dispersion due to charge sep-
aration, i.e., whether 0 < (kAp)? € 1or k Ap = 0O, is insig-
nificant for the scattering as long as lower harmonics
(m<3) are not affected by a considerable spectral shift.
From the computational point of view, the case kAp
= 0 avoids the solution of Poisson’s equation since the po-
tential ¢ is simply given by

=P, + In(n,/ng) (129

with n,|, = Zn,. If k,Ap70, the nonlinear equation (12)

has to be solved with the help of an iterative procedure'’
by setting exp(®?) =~ exp(®“~V)-(1 + @
— ®Y~ 1) and repeating the integration / = 1,...,3 times
to achieve good convergence. On the other hand, the
boundary conditions, which become necessary in this case,
may be advantageous since an undesired expansion of the
profile can be suppressed. For the region left of the bound-
ary x = 0, where the laser (pump) wave enters the plasma

from x = — o0, the electron density should remain, n,
= (), and the condition
&P )
e =(kAp) T — Zni/ng) =0, (14a)
x,<0

together with 3,®(x < 0) = 3,®@,(x < 0) is used. The
same condition is possible for x > L, where L denotes the
total length of the profile including the ramps, but we pre-
ferred setting

I P

) =0, (14b)

Xo>L

which means n.(x > L) = Zn(x > L), and which is
reasonable as long as no counterpropagating light wave
enters from the right.

C. The electromagnetic wave

The parameter w,/wg, which only appears in the em
wave equation (7), influences the character of this qua-
silinear differential equation. For w,/@, — O, the resulting
ordinary differential equation physically describes the em
field E as following the dynamics of the ion fluid instanta-
neously without memory, as in an already-established
steady state.

In the case of nonstationary solutions and during the
initial SBS instability, starting from tiny perturbations of
the equilibrium, Eq. (7) has to be solved as a partial dif-
ferential equation (w,/wy70). We examined the time ev-
olution by solving both the case w,/wy = 0 with the help of
the NAG Adams routine?® D02CBF, and the case 0
< w,/wg € 1 using a Crank—Nicolson scheme. Since the ac-
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curacy of the spatial integration by the Adams routine was
only insignificantly better, we preferred the implicit
Crank—Nicolson scheme because of the higher efficiency in
computation time. In most of the numerical calculations,
we used the same value w,/0q = 1/400, which is already
remarkably high for laser plasmas, but differences with
lower values as well as w,/wq = 0 proved to be insignificant.

At the boundary x = 0, it is reasonable to assume E to
be composed of an incoming “pump” wave of fixed ampli-
tude £ and a reflected or backscattered wave E;, both with
almost equal wave vectors ky and k; of opposite sign, k;
=~ —ko = (wp/c)e,. The condition at x =0 using E(x
= 0) = £ 4+ E;{x = 0) results, after normalization of the
spatial coordinate with k,, in the expression

3E
- Ox

LW i

=17k—a (2E"‘Elx=0)'

(15a)

x=0

At the opposite boundary x = L, we exclusively considered
the usual case of partial transmission of the pump wave
[with wave vector ky = (wg/c)e,]

aE

Ix

wy 1
=i——FE

c (15b)

x=L x=1I

and neither any counterpropagating component from x
= oo nor a reflective boundary. However, the shape of the
equilibrium density profile causes tiny amplitudes of a
counterpropagating wave inside the plasma. This can only
insignificantly contribute to the value of the backscattered
or reflecied wave amplitude at x = 0, which is defined by

|E\|=RV?E
with

R=|[E(x=0:)/E] — 1|2 (16)

D. Initial conditions

When SBS evolves, the eventually dominant IAW
mode has to grow up out of the competition with all other
IAW modes in white thermal noise. In order to avoid a
delay caused by this competition in the calculations, we
superpose a coherent initial perturbation of the expected
dominant mode on the equilibrium density profile by ap-
plying a small driving electrostatic field on the fluid. This
method is equivalent to the assumption of an initial IAW
amplitude perturbation in the usual coupled wave envelope
theory.

Since the instability saturates because of nonlinear ef-
fects, the eventual state must be independent of the initial
perturbation unless the solution is nonstationary and is
sensitive to any phase shift. But the latter case cannot be
observed together with the boundary conditions applied
because of the geometry investigated here; nevertheless, a
divergent evolution of solutions with closely neighbored
initial conditions is a decisive point in the understanding of
real situations in (inhomogeneous) laser plasmas.
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FIG. 3. Ion density and electromagnetic field amplitude in an early (a)
and a later stage (b} of the SBS instability, in a trapezoidal profile cor-
responding to (a) wt= 13 and (b) wz = 100. (¢} shows the temporal
evolution of the backscattering level R*? for the shown trapezoidal pro-
file, Parameters: J = 0.8, n, = 0.1, L = 200, v; = 0.12 (v = 0.02,u =0.2),
wy/w,= 1000,

E. Evolution and final state

The details of the initial SBS instability and its
threshold—which is usually extremely low for SBS-—can
be described sufficiently by the usual linearized theory.
Therefore our interest concentrates on the nonlinear evo-
lution and the particular parameter dependence of the as-
ymptotic steady state.

A typical temporal evolution of the backscattering am-
plitude, as well as the spatial profiles of the density and the
em field in an early and a later stage, are shown in Fig. 3.
The high-density perturbations of the JAW exhibit strong
nonlinear deformation as shown enlarged in Fig. 2. Rec-
ognize that the oscillations in x of the em field amplitude
|E| are a consequence of the superposition of the counter-
propagating wave contributions. The envelope of the oscil-
lation amplitudes exhibits the local level of backscattering.

As long as the pump wave is not depleted, the ampli-
tude of the backscatiered wave grows during its passage
through the AW density perturbation. Its superposition
with. the incident wave causes a ponderomotive force act-
ing on the fluid, even in absence of already existing con-
siderable IAW levels (e.g., the region left of x = 30).
Hence the SBS process comes up everywhere, even in the
ramp of the considered trapezoidal profile on which the
incident laser impinges, but less in the density ramp on the
right (where the light does not enter). The laiter effect,
which has also been observed by Forslund et o/. in Ref, 13,
occurs independently of the depletion of the incident wave
at the rear side of the profile,

Nonetheless, pump depletion is the main nonlinear ef-
fect that saturates the SBS instability. The saturation pro-
cess and the pump depletion are consequences of the finite
number of quanta (photons and phonons) that can be ex-
changed between the interacting modes and the flux of
quanta that are dissipated irreversibly,
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FIG. 4. Ion density and electromagnetic field amplitude as in Fig. 3 after
the onset of an almost steady state’\for different parameters, (a) I = 0.8,
no=0.1, (b) I = 1.6, ny = 0.1, (¢) I = 0.4, ny = 0.35. Further parameters:
L =200,v,=0.12 (v=0.02, 4 = 0.2), wy/w, = 1000.

The nonlinear evolution of the IAW involves many
more modes (i.e., harmonics) in the interaction process
than the single IAW mode, which is usually assumed to
contribute to stimulated scattering of em waves. When the
exchanging flux between the harmonics and the dissipative
flux proceeds to equilibrate, the backscattering will be di-
minished compared with the ordinary (or pure) SBS pro-
cess without any IAW nonlinearities. The length of time
before the equilibrium will be attained is mainly deter-
mined by the mutual coupling. This is dependent on exter-
nal parameters, such as the intensity and the temperature,
which determines the damping of the different wave com-
ponents. However, as is obvious from Eq. (9) and Fig. 1,
one has to distinguish between two different coupling cir-
cuits, one describing the interaction between the funda-
mental IAW and the ponderomotive force of the em waves,
and another including the rather complex exchange be-
tween the harmonics of the IAW. After saturation of the
SBS instability and after the onset of equilibrium, a final
steady state appears which exhibits a constant level of
backscattering in time.

IV. PARAMETER SCALING
A. Numerical results

As a result of numerous numerical calculations, we
find the scaling of the parameters that determine the value
of the backscattered light flux R observed at the location
x = 0, where the incident light enters the plasma profile.
Examples of variations in parameters in single calculations
are presented in Figs. 4 and 5, which show snapshots of
spatial profiles and the corresponding IAW and em wave
spectra. As can be seen from Fig. 3, the envelopes (!) of the
em wave and the IAW are slowly varying in x and are
purely aperiodic. The observable spatial amplification of
the backscattering from the rear to the front side of the
plasma profile are typical solutions for the case of suffi-
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FIG. 5. Spectra of the ion acoustic waves for the parameters L = 200,
v = 0.12, wg/w, = 1000. In branch (a), the equilibrium density of the
homogeneous profile is val;\ied: ny = 0.1, 0.35, 0.7, whereas in branch (b),
the intensity is increased / = 0.4, 0.8, 1.6.

ciently damped IAW’s.!>?! Other types of solutions cannot
be observed because they are less stable.

A parameter dependence summary is given in Fig. 6.
The boundary condition for the electromagnetic wave is
chosen according to Eq. (15b). The edges in the density
ramps cause a small reflection.?? This seeds the SBS pro-
cess at an intensity of 5 X 10~ related to the incident
light flux at the rear side of the profile, x = L. The scaling
of the abscissa in Fig. 6 was chosen in such a way that all
curves should merge into the single one that appears in the
case of a purely linear IAW according to the particular
spatially aperiodic solution.'? In order to see the actual
features of SBS in presence of nonlinear IAW’s, it was also
necessary to reproduce also the behavior of the linearized
case fitted to the considered trapezoidal profile. This is
achieved by suppressing the higher-harmonic IAW modes.
Both parameters / and ny were changed simultaneously
whereas their product remained constant. This mainly
causes a change in the refractive index n = (1
— ng/n.)"2, which has almost no influence on harmonic
excitation, but which changes the decisive gain parameter
G for spatial amplification.

As a result of our numerical calculations, we can con-
clude that the backscattering generally grows less fast as a
function of any of the parameters than expected from the
theory assuming a linearized JAW. The growth due to
spatial amplification, when changing only the incident light
intensity ~J by a factor A, proves to be the least pro-
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FIG. 6. Temporally asymptotic values of the backscattered light flux R at
the transition to the vacuum (x = 0) determined from numerous calcu-
lations as a function of different parameters as indicated by the symbols.
V: R=R(L), At R = R(ny), O: R = R(]I), and each other parameter
fixed, X: case of a linearized JAW R = R(G). Starting from the indicated
point, each increment of a single parameter is equally scaled correspond-
ing to the values of the gain parameter G on the axes.

nounced. However, any change by A in either the profile
length L or no/n (keeping I constant) causes an equivalent
increment in R as a function of their product nyL/%. That
is,

Hy A~ Ang ~ He ~
R(AL,——,I)::R(L,———,I)>R<L,~—,AI for A>1,
n n Ui

where the product nyl/m remains a similarity parameter,
ie.,

R(no/n,L)=R(nyL/7),

as_ in the theory for a linearized IAW, where the product
(I/v)) ngL/m ~ G determines the parameter scaling of R.
It is physically apparent that the profile length or the equi-
librium density are noncritical quantities from the view-
point of harmonic excitation, as long as frictional damping
is non-negligible, and thus the original scaling law is unaf-
fected by any change of these parameters.

The resulting scaling of the parameters I, ng, and L
leads to the apparent conclusion that none of those non-
linear analytic steady solutions™® satisfy the considered
physical situation. In the analytic solutions, only the dissi-
pation of the fundamental JAW due to harmonic excitation
is considered and no dissipation by friction causes the sat-
uration of the scattering. These all are restricted to the case
of weakly damped IAW’s when the frictional terms be-
come totally negligible compared with nonlinear dissipa-
tion. We shall see later that this case cannot be treated as
decoupled from the onset of considerable kinetic effects,
namely wave-particle interaction.
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B. Analytical approach

In the following, we show that the same scaling is also
a result of an analytic model using the conventional system
of envelope equations for the em waves and a set of JAW
harmonics, which all are sufficiently damped, making the
convection of their energy negligible.

The assumption that the damping of each IAW har-
monic is sufficiently large, which allows one to neglect the
spatial derivative of the respective envelopes, is justified by
the increase due to the k-dependent dissipation v,
= v(nk). Even for the fundamental wave, this usually is
reasonable, and therefore we will disregard all terms
3.w, in the steady-state limit of Eq. (9), i.e., dw, = 0. The
resulting system of nonlinear equations,

1 n
Vnwn='£ @p‘sl,n —3 ( Z Wby — m

<

-2 2 u'mwm+n), (17)
mn

can be iteratively solved by assuming that all harmonics
w, . are determined by the fundamental w,, which is the
only harmonic that couples to an external process, i.e., the
ponderomotive force due to SBS. This procedure may be
justified by the fact :that all Eqgs. (17) are homogeneous
except the one for # = 1. When we then assume that all
harmonics can be expressed by a series expansion in w,, we
find

1 /v
W1=gy, Gt P =750,
(18}
with
1 1
Pl =5 () + 5 5wl ).
! (19)

In practice, a representation of P as a rapidly converging
expansion of w, can be achieved using Padé’s summation
approximation with continued fractions. The coefficients of
P(w,) depend on the Camping factors v, == v(nk). Since we
search for a solution ¢f w| that guarantees the transition to
the linearized case w,.,( = 0, P(w;) can be successively ex-
panded around w(® = & = (1/2v, )@, This finally yields

wy=w{® =w-[1/(1 - P*)]. (20)
Here, the function P= (iv), which now depends on the ex-
ternal parameter w, rzplaces P(w;) and is asymptotically
determined from the recursive iteration P () that starts
with PYY(D) = P(&). For details of the procedure, we
refer to Appendix B.

In order to determine the steady-state solution of the
backscattering process, the em field in Eq. (7) can be split,
as usual, into two counterpropagating contributions, rep-
resenting the incoming “pump” wave ¢y and the backscat-
tered wave e,. Since we want to concentrate on the problem
of parameter scaling, ‘we restrict ourselves to the case of a
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homogeneous plasma slab and the assumption of ideal SBS
matching, resulting in

at’.’o Wy

Ver 3 = — Moz Wien, (21a)
ael )

gr ax — Ny —— 2 wiegp. (21b)

Here, ey, e), and w), are pure real-valued quantities, vy,
= ¢ is the group velocity, and ng, normalized to n,, is the
equilibrium density. We can assume that w, and w; are
almost equal. Hence the square amplitudes I, = ej and
I, = ef experience the same differential decrement

d]o dI] [0
dx  dx  2u,

proportional to the correlation of the coupling between
IAW and ponderomotive force. With the use of Eq. (20),
we can eliminate w; in Eq. (22). In Eq. (20), @, stands for
the oscillation amplitude of the ponderomotive force. In
this notation it assumes the form ¢, = I-ege;. Since the
photon number is conserved,

; (22)

eoe1w1~<v(x) ch

W, A
10_£1]z10_11=(1—R)I=const, (23)

the spatial amplification of SBS is a result of the following

integral using the boundary values I;(L) = a® and
I1,(0) = R, with [(0) =
JR - P Uol) f o I
————dl|= — n
o Iol, d °4v

(24a)

Here, a denotes the mean level of the backscattered wave
due to thermal noise. Disregarding the function P> (),
Eq. (24) is the well-known integral of the aperiodic spatial
amplification based on a linearized IAW, %12

R dr L (RU=R) o\
_L: I(1+1—-R)=1—R1n( PR )_G'
(24b)

The external parameters f ng, @o/Vg, and the profile
length L then appear only on the rhs combined in a simple
scaling: G = (woL/4c)(n0/~q) X (I/vl) This scaling is
now spoiled since 7 and the damping coefficients v, also
appear in P*. However, it turns out that the scaling of
ny/n and L, resulting in their product ngl/7, remains un-
affected and is still the same as obtained from the numer-
ical data. The presence of IAW nonlinearities causes en-
ergy to be transferred from the fundamental into its
harmonics. Therefore the function P* diminishes the spa-
tial amplification of the backscattering. Its inclusion also
requires that the gain parameter G must assume a larger
value in order to achieve the same backscattering level R at
x =0 as in the presence of a pure linear IAW. Similar to
Fig. 6, Fig. 7 shows the influence of this effect. Here, we
compare the analytic solution of R(G) in the case of an
assumed linearized JAW with the solutions in the presence
of nonlinear IAW’s. Because of the different scaling, now
two curves result: one when solely the parameter ngl/7 is
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FIG. 7. Backscattered light flux values R obtained from the analytic
steady-state solutions. The solid curve shows the behavior for a linearized
IAW. Both of the other curves represent the simplest approximation for
a nonlinear IAW by varying the laser flux [ (dashed curve) for
nol/m = 17, and the similarity parameter noL/% (chain-dashed curve)
for I = 0.4. Further parameters: v = 0.02 and u = 0.2, and backscattering
noise level a = 0.01.

varied, the other when only the intensity T is increased
continuously. Both curves (dashed and dotted) shown in
Fig. 7 correspond to the solution based on the first approx-
imation P () of the function P* (&) when one takes
into account only products w,,w, up to the order m + n
<4, ie.,

Vi = (?/2)806] + wiw,,

2
V= — Wi + 2w ws, (25)
VilWy= — 3w1w2,
using ¢, = [-ege;. In a first approximation, one assumes

w; = wl — PO~ and PV(D) = P(W). This
yields

wi/ (vivy) S\l

(D) = POy — 1 Y2 _ o1
P (w)=P(w) 1+6wT,/,(v2v3) 15 Sl
(26)

using S| = 1%/ (4v2v,) and S, = 374/ (2v3vyvy).

The function obtained ‘above enables the evaluation of
the integral equation (24) in this approximation, for which
the solution yields an implicit and transcendental depen-
dence in R on I. We refer to Appendix C for the presen-
tation of this particular approximation. Figure 7 shows the
result corresponding to the usage of Eq. (26). A better
approximation would result in a slightly different behavior
of R as a function of the external parameters, but would
obey the same scaling properties. We gbserve in Figs. 6 and
7 that both curves R(ngl/7n) and R(I) merge into the case
of a linearized IAW for G + Ina® < 1 or equivalently o
< R « 1. Both remain below the solution for a linearized
IAW, R(G), beyond this range of small amplification. Ac-
cording to the analytic approximation, all three solutions
do not saturate below R = 1, but approach this level with
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delay in the gain parameter G. The same can be concluded
from the values obtained apalytically, except for the high-
intensity regime where R([) clearly tends to remain below
R = 1. For very high intensities, the analytic approxima-
tion fails since the nonlinear terms in Eq. (17) can no
longer be compensated by only the damping terms. In this
case, the spatial derivative of the IAW amplitudes in Egs.
(17) or (25) have to be included.

1t is worthwhile to emphasize that the scaling of the

backscattering due to our assumption of sufficiently
damped IAW’s is not restricted to a particular £ depen-
dence of v, = v(nk) as long as v, already fulfills the as-
sumptions ww, » sduw;, [we always used v, = v
+ (u/2)n’k* and v was chosen as the Landau damping
v, on the fundamental TIAW?]. Scaling due to a balance of
certain nonlinear terms in the harmonic; as obtained in
Refs. 5 and 6, proved to be unsuitable to the results of our
numerical scheme.

In our numerical calculations, we iried to examine the
onset of the transition into the regime of less-damped
IAW’s. This is shown in Fig. 8, where R saturates and the
type of the solution (see Ref. 12) changes to nonlinear
trigonometric (Jacobi-elliptic) functions. These solutions
are independent of damping and noise level @, which plays
a role in the solution of aperiodic spatial amplification. The
influence of IAW nonlinearities on this type of solutions
has recently been investigated by Candy et al. (Ref. 9). It
is questionable whether weakly damped TIAW’s can be
treated when one disregards the onset of kinetic effects,
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FIG. 8. Backscattered flux R as a function of the gain parameter by
varying the damping v, of the fundamental wave for L =200, nqy
= (0.1,and 7 = 0.8.

which invalidates the assumption of a simple ion velocity
distribution in phase space, as is used for the hydrody-
namic description. A discussion of this problem is the sub-
ject of the following section.

V. KINETIC EFFECTS

In order to examine the role of kinetic effects in the
presence of SBS, we performed particle simulations of the
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FIG. 9. Local backscattered flux 7,(x), heat flux of the ions ¢ ~ S’ f(v)db, ion density #, and electromagnetic field amplitude before (2) and after (b)
and (c) the onset of anomalous heat transport due to trapped particles. The density of particles with z speed above the phase velocity of the wave,
m,(v > ), is indicated by the dashed lines, Particle simulation with the parameters L = 200, ny = 0.1, T/ T, = 0.02 (initially), and I = 0.4,
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ions instead of solving their hydrodynamic equations. In
Ref. 13, the high-frequency oscillations of the electrons
were also treated by using a particle code for both the
electron and ion species. In the more compact model in-
vestigated here, electrons are still assumed to form an iso-
thermal background, so that, in the set of Eqgs. (11) to
(13), only (11) is replaced by

v, P P x, 57
5= " ax|, and —==v, (27)
Similar models were investigated in  previous

publications,?* but in absence of a driving ponderomotive
force due to SBS. In the 1-D particle code, up to 50 000
“particles” of size comparable to Ap were used. Equation
(27) does not include any dissipation due to external ef-
fects, and also no ion-ion collisions are included so that
thermalization is not considered.”” However, we ensured
that the corresponding times due to ion-ion encounters
and the times in which ion—electron collisions show influ-
ence on the ions were longer than the typical time of a run
(ie., w,t < 60). (For T/T; = 50 and T, = 2 keV this is
approximately the time in which a collision should occur.)

From the simulations, we observe that in an early
stage, when the dynamic process of the instability growth
is still active, the ion motion behaves as in the hydrody-
namic case. This changes after some interval, resuiting in
strong “anomalous” heat transport that does not corre-
spond to an irreversible thermal equilibration process, but
to wave—-particle interaction. Both stages are illustrated in
Fig. 9. Strong wave-particle interaction occurs mainly
close to the shock fronts of the successive IAW potential
barriers where the potential jumps almost from — @ to P,
6P =2P. Particles that move with respect to the JAW
frame will be reflected off the potential walls from v
< Uptov > v, 0r vice versa when their relative energy is
toolow ie., (1/2) (v — v,)?* < 2®. Here, v, = o/k denotes
the phase speed of the JAW. As long as the width of the
velocity distributions of the ions (centered around v = 0)
is small (i.e., “cold ions”), strong wave—particle interac-
tion will only appear for wave amplitudes o[ ~ #?(k/w)®]
above v, 2®'2, This results in ® > 1— 2% or
® > 0.17, since sound and phase velocity are almost equal
(v = v¢) for IAW’s., Because of this symmetry of the
reflection of particles at walls moving with speed u, a jet of
ions with a velocity of up to 2u can form, which succesively
results in phase space mixing.

The IAW shock fronts can show structure due to dis-
persion as discussed in Sec. IV B and in Ref. 9, and the
wave—particle interaction may be affected by the finite tran-
sition width. The dominant process, however, that influ-
ences the SBS process will be the following: “Anomalous”
heat transport is caused by fast ions, that have been accel-
erated up to twice that of the sound velocity, v, < 2u¢
=~ 2u, by the potential barriers, as seen in the phase space
plots in Fig. 10. The spatial amplification of backscattering
is considerably reduced, as shown Figs. 9 and 11, due to
the fact that fast ions do not contribute to the collective
oscillatory motion of ions in the IAW field. The correlation
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FIG. 10. Phase space snapshots
showing all ions of particle sim-
ulations in the indicated inter-
vals of x with an initial temper-
ature ratio of /T, = 0.02. (a)
Time wt = 20Aand I=04, (b)
wt=20 and I=1.6, (¢) as in
(a) at wt =40 shown enlarged
in a smaller interval in (d). (a),
(c), and (d) correspond to
Fig. 9.

particle velocity v/s
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between the ion (electrostatic) wave field v(x) and the
ponderomotive force caused by SBS, namely [see Egs. (10)
and (22)]

ax/lf

is diminished because of the reduced number of harmoni-
cally oscillating ions. The backscattered wave intensity
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FIG. 11. As in Fig. 9, but with the initial temperature 7,/T, = 0.1 and the
laser intensity /= 1.6, showing structures sometimes called *‘x-type”
wave breaking. Figure 11 corresponds to the situation in Fig. 10(b).
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I,, illustrated in Figs. 9 and 11, has been calculated by
integrating in space over successive IAW periods of
d,®,. The fluctuations in /; clearly correspond to the pres-
ence of anomalous heat flux due to fast ions. Their mean
velocity v, = f,, uf (v,x)}dv/n;, > u[using the number den-
sity 1, = f,. f (v,x)dv] is almost constant in x and yields
oscillations when evaluating the integral

X 4 Xg E)(I)p ,

f v,,—a;dx =[P,y (x 4 xp) — Pp(x)].
X

These oscillations cancel out over an entire wave period

A, because @, is almost periodic, ie, ®,(x + 4,)

=(DF(X ).

Of course, considerable ion or electron heat flux is also
accompanied by a dc current and an ambipolar field in
order to satisfy charge conservation, This results in an ad-
ditional flow as indicated by Eq. (4) for Poisson’s equa-
tion, in order to balance the electrostatic field of escaping
electrons and ions, and also in a spatial temperature de-
pendence. However, this does not strongly influence the
considerations concerning the spatial amplification of SBS
over subsequent periods of the IAW.

In previous publications, e.g., by Kruer et al. in Ref.
26, models estimating the compensation of laser flux, back-
scattered flux, and heat transport were introduced to de-
termine qualitatively a mean level of SBS. On the other
hand, the onset of an eventual, almost time-independent
backscattering level strongly depends on the duration of
the equilibration process connected with wave—particle in-
teraction and heating of the ions in the plasma. This dura-
tion can be much longer than in cases that guarantee a
sufficiently damped IAW’s, and meanwhile, even high
backscattering levels can occur.

(29)

V1. CONCLUSIONS AND DISCUSSION

We systematically investigated the influence of the in-
herent nonlinear properties of ion acoustic waves on SBS.
We numerically solved an extended model using the hy-
drodynamic equations of the ion fluid as well as the elec-
tromagnetic wave equation. This set of equations is applied
to almost homogeneous density profiles in order to enable
a comparison with the usual theory.

The typical approach of SBS uses a linearized IAW.
For sufficiently damped IAW’s, it yields a simple scaling of
the physically relevant parameters for the steady-state so-
lutions with spatial amplification of the backscattering.
This scaling no longer holds in the presence of IAW non-
linearities. The transition from the scaling with a single
similarity parameter in the linearized case into several sep-
arate parameters becomes apparent for pronounced non-
linearities, particularly with increasing laser intensity. This
is also reproduced using an analytic approach that involves
ion wave harmonics. The resulting reduced backscattering
compared with standard theory is similar to some experi-
mental results with preformed homogeneous plasmas.”’
There, a strongly reduced increment in the backscattering
level R as a function of the intensity without showing a
saturation below R = 1 was observed.
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The influence of IAW-—particle interaction on SBS is
also analyzed with the help of particle simulations. Such
kinetic phenomena, as ion trapping and the accompanying
anomalous heat transport, appear for weakly damped
IAW’s when the nonlinear shape of the wave affects the
particle distribution function significantly. The IAW elec-
trostatic field must b highly correlated to the ponderomo-
tive force of the em wave in order to achieve an efficient
scattering process. Therefore, a de current due to fast par-
ticles weakens the amplification of the scattering process
since only a reduced number of ions contribute to the field
of the TAW. The subsequent phase space mixing may re-
main for a long time until the velocity distribution is in
equilibrium with the dynamic processes. In contrast to the
case of sufficiently damped IAW’s, which can be expected
for electron—ion temperature ratios 7./ T; < 50 (consider-
ing also normal heat conduction and viscosity in the dissi-
pation), this results in strongly nonstationary backscatter-
ing. Although the mean level of the backscattered signal
will be lower than expected from the usual theory, inter-
mediate values of R(2) can still be considerably high.
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APPENDIX A: DERIVATION OF THE EQUATION FOR
“QUASISIMPLE” WAVES

The same procedure as for a simple wave can be ap-
plied to Eqgs. (2) when p? = (dp/dv)?u®. Here, we used the
definition for the normalized sound speed #° = 1
+ vT/(ZT,), and the additional condition that

From Egs. (2), we obtain the following differential equa-
tion for u:

L {dp avy dy g F 3o,
P(E*”é?c)’“""dr“”ax*”"(_“?i?“ ax)
i v :
= ug TV (AD

where the deviations from Eq. (1) in absence of charge
separation are of the same order of magnitude in ¢ as the
terms on the rhs of Eq. (2b) or of Eq. (A1). Using

dv v
b= — YUz + O,

we arrive at the equation for “quasisimple” waves, which is
in second-order accurate in ¥,
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v dv 1 3% o,
Ty {u(v) 4+ v] =2 (#W—E‘) + O(¥?).

(A2)

In the following, we shall determine the deviation from the
original hydrodynamic equations (2). Therefore the ex-
pansion of the steady-state representation of Egs. (2), de-
rived in Ref. 28,

1\ M a®, M
—_—_—] —— —— — + ‘u s
( M) dx ox dx

reveals the leading term in powers of the velocity in the
frame of the acoustic wave v = M — 1. Here, M is defined
as the Mach number of a flow assuming 7; € T, [u(v) = 1],

@ 1( 820_5?@_,)_1(1_U_ 1 )av

(A3)

"ax_i “ax dx 2 1+v Ix

1 dv
z—i(vz—v3+v4—--~)(—9;. (A4)
The rhs in Eq. (A4) is an estimate for the error indicated
above by O(?). The only nonlinearity in the “simple wave
equation” Eq. (A2), vd,v, balances the force terms. The
next-order nonlinear contribution, (1/2)v%d,v, was disre-
garded and causes any harmonic expansion based on Eq.
(A2) to become erroneous with increasing order. Recog-
nize that, without any dissipative term, the case of a linear
sound wave, M = 1, Eq. (A3) cannot describe the situa-
tion adequately unless the ion inertia is included.

APPENDIX B: ITERATIVE DETERMINATION OF THE
FUNDAMENTAL IAW AMPLITUDE

The inversion of Eq. (18),
wy=w{"=p[1/(1 - P*)],
can be achieved iteratively by using a convergent expansion

G+ D__ 7
Wi =W T T I A= PTG
.1
=W pUTD (B1)

with j as the iteration step, P(/)({) as the recursive func-
tion, and P’ = 9P N /3. One starts with P“)(L/E)
= P(D). For large enough j, P/ should converge, which
implies P* = PU+ D = PN andw{/+ D ~ wl) = w,.

APPENDIX C: INTEGRAL EVALUATION FOR
REDUCED SPATIAL AMPLIFICATION

Using the approximation in Eq. (26b) to replace the
function P in Eq. (24), the integral results in

JR dIl s dIl G
2 (1011 A +s21011) -
The first term on the LHS, see Eq. (24a), is well known.

With the photon flux conservation Eq. (22) one yields the
second integral,

(C1

R dI
Lz 1+SIA—R+1) 1

2 2(a2_R)A1/2 Ao

SAT2 arctanA+(1+R)(1_R+2a2), >0, X

[1—R+22—(~A)2[1+ R+ (—A)?] (C2)
A<Q,

S(cA P O R 2 (MR R (= A7

with A = (4/S) — (1 — R)2% It corresponds to the IAW nonlinearities and causes the spatial amplification for the gain

parameter G to be less efficient.

APPENDIX D: COMPARISON OF NUMERICAL SCHEMES

TABLE 1.

Standard system
(envelope equations)

Extended model

Ion Acoustic Wave
(a) Initial condition
Density fluctuations due to thermal noise

Small amplitude on thermal
noise level

Small propagating perturbation in
potential ¢ or density »

(b) Boundary conditions

Vanishing amplitude at x =0
(without importance for heavily damped IAW’s)

Intrinsically given by the initial profile
and the definition of the Lagrangian mesh,
In case of charge separation additional
conditions equations (14) for Poisson’s equation

Electromagnetic Wave
(a) Initial conditions

For incident wave:
Level of lasers pulse at t =0

Initial boundary conditions, equivalent
to standard model
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TABLE 1. (Continued.)

Standard system
(envelope equations)

Extended model

For backscattered wave:
small amplitude on thermal
noise level

together with

integration over the initial profile

(b) Boundary conditions

For incident wave:
Laser pulse as a function of ¢
atx=0

For backscattered wave:
Noise level at the rear side x =L
or reflection

Superposition of incident and
backscattered wave at x = 0, Eq. (152)

Transmitted light level at x = L, Eq. (15b),
superposed by counterpropagating light
wave (optional, not considered here).
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