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Abstract

During the propagation of an optically smoothed laser beam through a warm
plasma the speckle field pattern and the corresponding speckle intensity distribution
is modified in time and along the laser propagation direction. It is shown here that
the laser plasma interaction can change the character of speckle statistics from an
initially exponential-type limit law to a Weibull type law. The Weibull distribution
is characterized by a power-law type behaviour in a limited interval of the random
variable, which is, in the present case, the speckle intensity. The properties of the
speckle distributions are studied using methods of extremal and order statistics. The
scattering instability process (here stimulated Brillouin forward scattering) causing
the change in speckle statistics has an onset behaviour associated with a ‘critical
gain’ value, as pointed out in work by Rose & DuBois (1993 b). The saturation of
the instability process as a function of intensity explains the limited interval of the
Weibull type speckle distribution. The differences in the type of the speckle statistics
are analyzed by using ‘excess over threshold’ methods relying on the Generalized
Pareto Distribution (GPD), which clearly brings to evidence the transition from an
exponential type distribution to the Weibull type distribution as a function of the
instability gain value, i. e. from the regime below critical gain to values above the
critical gain.

Key words: Laser-Plasma Interaction, Extreme value Theory, Statistical Optics, Non-Gaussian

Statistics, Speckles, Stimulated Scattering
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1 Introduction

So-called optically "smoothed" laser beams with speckle structure are characterized by
well-known Gaussian statistics for the speckle intensity. Propagation of such beams
through an active medium like a warm plasma causes modifications to the speckle statis-
tics, both as a function of time and of space. The extremal statistics of laser speckle fields
is of crucial importance to understand the onset of non linear phenomena in optics and
laser-plasma interaction. Speckle patterns of laser fields generated by optical smoothing
techniques contain very intense speckles with peak intensities having many times (typi-
cally at the order of ten) the mean intensity of the field pattern. Since these smoothing
techniques aim to generate Gaussian statistics for the field values (Cecotti et al., 1995),
the abundance of intense speckles decreases following an exponentially decreasing law
(Rose & DuBois, 1993a; Garnier, 1999).

The spatial and temporal evolution of laser fields in laser plasma interaction, or more
generally in active media, can change the initial distribution of laser speckles along the
propagation through the plasma. The notion of non-Gaussian statistics has been evoked
for the distribution functions derived from speckle field patterns due to the influence of
non linear processes like self-focusing (Lushnikov & Vladimirova 2010) and/or stimulated
scattering (mostly stimulated Brillouin forward scattering) (Grech et al. 2006 and 2009,
Depierreux et al. 2009, Malka et al. 2003, Schmitt & Afeyan 1997).

By exploring the functional behaviour of the tail of the distribution function, one
can distinguish between Gaussian and non-Gaussian statistics. From experimental or
numerically determined data, it is however not always evident to conclude which of the
three possible types of law of extremal statistics is relevant (Fisher & Tippett, 1928):
the ‘Gumbel’ (or double exponential) law for Gaussian statistics, or the ‘Weibull’ or the
‘Fréchet’ law for non Gaussian statistics. The extreme value distribution of Fréchet or
Weibull type both decrease slowlier (as a function of the random variable, here speckle
intensity) than a law of exponential-type ("heavy tails" versus "light", exponential tails).
So-called "heavy tail" behaviour from Lévy statistics, for instance, with a power law
dependence in the tail, belongs to the basin of the Fréchet law, and has been investigated
in the context of amplifying random media ( Montina et al. 2009, Barthélemy et al. 2008,
Wiersma 2008).

In laser plasma interaction, however, the potential non linear processes generally sat-
urate with increasing laser intensity. This applies in particular to self focusing and to
stimulated scattering. As we shall see later, due to saturation, heavy tail behaviour may
be limited to an interval of speckle intensity, and not – like for the above-mentioned cases
of Lévy statistics – for the entire tail of the distribution up to the limit of resolution.

Non linear phenomena, like stimulated scattering usually increase with intensity and
can therefore be extremely sensitive to even small changes in the speckle intensity, leading
eventually to a critical behaviour. Heavy tail behaviour due to modified speckle distri-
butions is therefore of particular interest to estimate the risk of increasing deviations
(variance) between different realizations, i. e. from "shot to shot" in experiments.

For the case of Stimulated Raman Scattering, Rose and Mounaix (2011) have recently
shown evidence for explosive behaviour in spite of diffraction. Berger et al. (1993) have
observed in numerical simulations ‘hard tail’ behaviour in the intensity distribution which
they attribute to filamentation. Mounaix and Divol (2002) have shown that the cumula-
tive response of Stimulated Brillouin Scattering, based on the independence of speckles
(“independent hot spot model”), can spread enourmously around a critical gain value
associated with the scattering process.
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Extremal statistics allows to determine the reliability in the speckle distribution,
mostly pertinent in the high-intensity tail of the distribution. From order statistics one
can determine the probability with which the n-th most intense speckle of a pattern with
nsp speckles can be found at the intensity In (hence, I1, standing for the intensity of the
most intense speckle, see e. g. our previous work Hüller & Porzio (2010)). As men-
tioned before, the speckle distribution laws of standard laser smoothing techniques follow
Gaussian statistics; the law describing extremal statistics is consequently the Gumbel
(double exponential) law. Non linear phenomena can provoke non-Gaussian statistics due
to strong enhancement of the role of speckles at elevated intensity for certain observables,
like the total response of the scattered light (Mounaix and Divol, 2002; Hüller, Porzio
& Robiche, 2013), as will be discussed later on. The distribution function associated
with this processes appears hence to be “stretched” in the tail, with respect to the lin-
ear distribution F̄ (I), so that the probability to encounter speckles at higher intensities
is significantly increased in the interval around I1, where the intensity I1 is defined by
nspF̄ (I1) ≡ 1 (i.e. I ≃ lnnsp where F̄ ∼ exp(−I/〈I〉)).

In this article we show that smoothed laser beams originating from a standard, optical
smoothing technique can exhibit a Weibull-type distribution in a limited interval of the
speckle peak intensity I, for values of I that are indeed high enough to produce undesirable
effects.

The article is organized as follows: In section 2 we recall model equations and distribu-
tions arising from order statistics. Approximations are deduced to analyze the behaviour
of densities following the value of the gain G of stimulated scattering inside speckles. A
particular analysis is devoted to the Variance in subsection 2.2. In section 3.1 we recall
the theoretical basis and the ’Excess over Thresholds’ methods, which we apply to our
model to deduce the nature of the distribution function and its departure from Gaussian
statistics. In section 4 we analyze to which type of limit law belong the speckle distribu-
tion functions obtained from our model and from numerical simulations, as a function of
the gain parameter of stimulated scattering. Section 5 concludes the article. Technical
computations are presented in an Appendix.

2 Model Equations

In Refs. Hüller and Porzio (2010) and Porzio and Hüller (2010) we have derived the
probability density in intensity for speckles from order statistics. For the k-th speckle in
order of its peak intensity I, where k =1 is the most intense of – in total – nsp speckles,
the probability density function (pdf) is given by

fk(I) =
nk
sp

Γ(k)
e−nspe−I−kI ,

where the intensity I is already normalized to the space averaged intensity of the beam
〈I〉 (here hence 〈I〉 ≡1). In a subsequent publication (Hüller, Porzio & Robiche, 2013) we
have shown that in a warm plasma, the speckle statistics is modified by plasma induced
smoothing due to the stimulated Brillouin forward scattering (SBFS) process.

2.1 The non linear speckle distribution and its pdf

The SBFS process induces a non linear modification of the distribution of speckles which
can be expressed by taking into account the amplification in the peak intensity of each
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k−th order speckle. In contrast to the linear initial pdf fk(I), we denote it here as f
(G)
k (I);

it is given by

f
(G)
k (I) =

1

N
(G)
k

nk
sp

Γ(k)
eGmin(I,I∗)e−nspe−I−kI

where G is the standard gain factor for the spatial amplification of stimulated scatter-
ing, here SBFS (see Hüller, Porzio and Robiche, 2013; Pesme, 1993); I∗ stands for the
intensity value from which on the stimuated scattering process is saturated. It means
that the scattering seed level εseed cannot be amplified beyond the level of the ‘pump’
wave intensity, i. e. εseed exp(GI) ≤ εseed exp(GI∗) ≡ 1. The normalisation N

(G)
k of the

pdf is given by N
(G)
k =

∫∞

0
(nk

sp/Γ(k))e
Gmin(I,I∗)e−nsp exp(−I)−kIdI. Numerical simulations

of plasma induced smoothing clearly confirm the features of this distribution, so that we
use the distribution for further evaluation and to analyse it with respect to its maximum
domain of attraction (MDA). ( see paragraph 4 )

In the following we work out simplified expressions for the probability density f (G)(I)
corresponding to the complementary distribution (also named tail distribution) function
F̄ (G)(I), defined as

F̄ (G)(I) = 1− F (G)(I) = n−1
sp

nsp
∑

k

∫ ∞

I

f
(G)
k (I ′)dI ′ . (1)

This function respresents the complementary distribution sufficiently well at least for
I ≫1 (say I >4). In order to derive the pdf of the non linear distribution we will make
use of the well-known identities for the diverse types of gamma functions, which will
be needed for the following expressions, Γ(x) =

∫∞

0
e−ttx−1dt , Γ(a, x) =

∫∞

x
e−tta−1dt,

γ(a, x) =
∫ x

0
e−tta−1dt =

∑∞
n=0(−1)nxa+n/[n!(a + n)] , and Γ(a, x) = Γ(a, 0) − γ(a, x) =

Γ(a)− γ(a, x) and for k integer γ(k, x) = (k − 1)!
(

1− e−x
∑k−1

n=0 x
n/n!

)

.

The probability density f (G)(I) as well as the distribution F (G)(I), following Eq. (1),
can then be expressed as follows:

f (G)(I) = e−nspe−I

eGmin(I,I∗)

nsp
∑

k=1

e−kInk
sp

Dk(G, 0)
, (2)

F̄ (G)(I) =

nsp
∑

k=1

Dk(G, I)

Dk(G, 0)
≡

nsp
∑

k=1

nk
sp

Dk(G, 0)

∫ ∞

I

dI ′e−nspe−I′

e−kI′+Gmin(I′,I∗) , (3)

with

Dk(G, I) ≡











nG
sp

[

Γ(k−G, nspe
−I∗)−Γ(k−G, nspe

−I)
]

+ eGI∗γ(k, nspe
−I∗) for I < I∗

eGI∗ γ(k, nspe
−I) for I ≥ I∗ .

(4)
Note that the normalizing denominator Dk(G, 0) yields Dk(G = 0, 0) = γ(k, nspe

−I) for
the linear case G =0. In order to understand the non linear modification of the pdf f (G)

and the distribution F (G), it is instructive to develop Eqs. (2-3) for the particular cases
G = 1/2 and G = 3/2, see Appendix, and for cases with integer values of the gain G,
namely

f (G)(I) ≡ f (G)
a (I) + f

(G)
b (I) for G ∈ N (5)

≃ e−nspe−I

eGmin(I,I∗)

(

G∈N
∑

k=1

e−kInk
sp

Dk(G, 0)
+ nspe

−(G+1)Iensp−G−1(nspe
−I)

)

,
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Figure 1: Complementary speckle distribution F̄ (G)(I) in the high intensity tail. The
total number of speckles considered here is nsp = 2300, so that the most intense speckles
has its expectation value at I1/〈I〉 = log(2300) + γE ≃8.3. The onset of saturation is
at I∗ =11 here. Subplot (a) shows the cases G =1/2 (green line), 1 (blue), 3/2 (red),
and 2 (yellow-green). Subplot (b) shows only the cases G =1 and 3/2, but distinguishes
contribution from all speckles (blue and red line, respectively), and from the most intense

speckles F̄
(G)
a (yellow and green line, respectively).

with en(x) = exp(x)Γ(n + 1, x)/n! which approaches en(x) ∼ exp(x) for n ≫ x. In

the intensity interval I < I∗, i.e. before saturation of amplification, the term f
(G)
b (I) =

nspe
−I−nsp exp−Iensp−G−1(nspe

−I) is practically independent of G, except for the missing
terms of the first (i.e. the most intense) maxima. For the complementary distribution

F̄ (G), the same holds for the part F̄
(G)
b (I) =

∫∞

I
f
(G)
b (u)du, being well approximated by

F̄
(G)
b (I) ≃ exp(−I) for I∗ > I > 1,

F̄ (G)(I) ≡ F̄ (G)
a (I) + F̄

(G)
b (I) ≃

G∈N
∑

k=1

Dk(G, I)

Dk(G, 0)
+ e−I , for G ∈ N . (6)

For I > I∗, the contribution F̄
(G)
b (I) has a faster, but still exponential decrease, and can

be neglected with respect to F̄
(G)
a (I). The terms f

(G)
a (I) =

∑G
k=1(. . .) and F̄

(G)
a (I) =

∑G
k=1 Dk(G, I)/Dk(G, 0), for which the speckle order k (intensity decrease with order) is

less or equal G, k ≤ G, consitute hence the non linear part of the pdf and the distribution,
respectively, due to an enhancement of the probability to find the most intense speckles
at still higher intensity. The complementary distribution F (G)(I) is ‘stretched’ in the
high-intensity tail, i.e. the probability to find intense speckles at intensities higher than
in absence of the plasma is considerably increased for I∗ > log(nsp), and F (G)(I) therefore
exhibits clearly a non exponential decrease, as illustrated in Figures 1. As can be observed
in the Figures, there is a drastic change in the functional behaviour of distributions
between the domains G < 1 ≤ k and G ≥ k ≥1.

In the Appendix we develop also approximate expressions for f (G)(I), for cases of the
gain coefficient G with half-integer values, such as G =1/2, 3/2.
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2.2 Variance

Although the number of speckles in the high-intensity tail of the distribution is small, the
impact of a modified distribution function on physical observables in the regime around
and above the critical gain G =1 is important. Moreover, the fluctuations between dif-
ferent realizations of speckle patterns will be particularly pronounced. For this reason we
also calculate here moments to the pdf of the modified speckle distribution, and compute
the variance of the speckle intensity which is an important measure to estimate the dif-
ferences arising in different realisations of speckle patterns gouverned by the distribution
FG(I). Our results in Ref. (Hüller, Porzio & Robiche 2013) show that in particular for
gain values G close to the critical value G =1 the variance can be surprisingly high.

In order to evaluate moments of the pdf it is easier to perform a change of variables
by replacing the variables nsp, I, and I∗, by x = nsp e−I , and x∗ = nsp e−I∗ , as we have
done in the Appendix. The approximate expression of the pdf for f (G)(I) → f̃ (G)(x) then
reads

f̃ (G)(x) = e−x

(

nG

G−1
∑

k=1

xk−G

Dk(G, 0)
+

nG

Dk=G(G, 0)
+ xen−G−1(x)

)

for x > x∗ i.e. I∗ > I ,

= e−x

(

(
n

x∗
)G

G−1
∑

k=1

xk

Dk(G, 0)
+

nG(x/x∗)G

Dk=G(G, 0)
+ x(

x

x∗
)Gen−G−1(x)

)

for x < x∗ .(7)

The expression written in this form distinguishes between three contributions: the sum
term, over k = 1 . . . G − 1, of the first contribution contains the peak term(s) (only if
G > 1), the second one is the contribution for G = 1 only, and corresponds to a plateau-
like behaviour as a function of intensity I, while the third contribution is essentially of
linear nature and decreases in intensity I. This 3rd contribution as expressed here, since
it was derived from order statistics, is only valid for large enough speckles intensities, say
I > 3. It over-estimates the pdf in the low-intensity part.

Consequently, only the two first contributions alter the momenta of the distribution
for different values of the gain G. They primarily contribute to the change in the variance
as a function of G. For the interval x < x∗ (or I > I∗) all the terms have powers of
x/x∗ < 1, and therefore are rapidly decreasing.

From the pdf we determine the variance, Var(I) in I to the expectation value 〈I〉 ≡
E(I) of the speckles, Var(I) = E(I2) − E(I)2, via an approximate calculation, keeping
only the dominating (i.e. peak and plateau) term(s). By definition, the second moment
of a probability density function (pdf) of I is given, in our notation, by

E(I2) =

∫ ∞

0

I2f (G)(I)dI =

∫ n

0

(log
n

x
)2f̃ (G)(x)

dx

x
.

Taking for the pdf f̃ (G)(x) for even integer values of G, the peak term in the above sum
is reached for k = G/2, and for odd integer G, two equal peak terms, for k = [G/2] and
k = [G/2] + 1 have to be considered.

Hence, for most interesting case G = 1, one obtains with the leading term,

E(I2)|G=1 ≃
∫ n

ne−I∗

(

log
n

x

)2 ne−x

Dk=1(G = 1, 0)

dx

x

An approximate expression for the variance with G = 1 is hence given by

Var|G=1(I) =

∫ n

ne−I∗
(log

n

x
)2

ne−x

Dk=1(G = 1, 0)

dx

x
−
(∫ n

ne−I∗
log

n

x

ne−x

Dk=1(G = 1, 0)

dx

x

)2

,

6



0.0 0.5 1.0 1.5 2.0 2.5
G

1.0

1.5

2.0

VarHGL

Figure 2: Variance computed from the model pdf given by Eqs. (2) and (7) as a function
of the gain G for the cases: (blue line) nsp =2300, I∗ =11 and (red) nsp =3000, I∗ =15.

involving three integrals
∫

x−1e−xdx,
∫

x−1(log x) e−xdx, and
∫

x−1(log x)2 e−xdx, which
can be expressed in terms of the Γ(a, x) function and its derivatives: Γ(a, x) =

∫∞

x
e−tta−1 dt,

∂aΓ(a, x) =
∫∞

x
e−tta−1 log t dt, ∂2

aΓ(a, x) =
∫∞

x
e−tta−1(log t)2 dt.

Based on our model, we have determined the variance Var(G) for two parameters sets,
namely with nsp =2300 and I∗ =11 as well as nsp =3000 and I∗ =15 showing the increase
of the variance as a function of the gain G in the interval 0≤ G ≤2.5 due to the increasing
peak value of the most intense speckles. The increase in the variance with G is due to
the contributions of the leading terms, as discussed above, i. e. due to the most intense
speckles. The expectation value (in peak intensity) of the most intense speckles grows
rapidly with G, so that already few intense speckles can rise the variance significantly.

3 How to determine the type of statistics

The "non-linear" speckle distribution and its density derived in Eq. (2-3) on the basis of
order statistics, for a laser speckle pattern under the influence of stimulated scattering,
follow our preceding work Ref. (Hüller, Porzio & Robiche 2013),Eqs. (31) and (33),
in which we also have presented simulation results supporting the model results. Both
the distribution from the model and from the simulations show a clear departure from
an exponential decrease in the high-intensity tail, for for G ≥1. This behaviour can be
observed in a limited interval in the vicinity of the expectation value of the speckle peak
intensity I1 ≃ log(nsp) + γEuler (γEuler = .5772).

While a power-law-like behaviour in the tail of complementary distributions is a clear
signature of non-Gaussian statistics, it has still to be distinguished between the two types
of non-Gaussian limit laws of the extremal behaviour, namely the Weibull or Fréchet laws
(Montina et al., 2009; Wiersma, 2008).

The distinction between the different limit laws needs careful analysis of the data
for which, however, mathematical methods have been derived allowing to determine the
correct type.

For distributions for which a power law behaviour fits in the tail up to the highest
measurable value of the variable (here, the intensity) it is plausible to identify the Fréchet
law as limit law (Montina et al., 2009; Wiersma, 2008). In cases, however, when the distri-
bution exhibits non-exponential behaviour only in a limited interval, like the case shown
in Figs. 1,computed from our model, the distribution has to be carefully determined, in
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particular the lower bound of the relevant interval.
Fot this reason we examine here the character of the distribution functions on the

basis of well-established theory (Pickands 1975, Embrechts et al. 1997).
A good method to plausibly demonstrate the type of statistics is to determine the

behaviour by fitting "excesses over a threshold" (Embrechts et al., 1997). This is done on
the basis of the generalized Pareto distribution (GPD) for the conditioned distribution
function F̄th(y) evaluated at the ‘threshold‘ (‘th‘) speckle intensity Ith that has to be
suitably chosen. Then, once the type of Pareto distribution for the conditioned Fth is
known, it is possible to deduce the nature of the underlying distribution F .

3.1 Excess over threshold and Limit theorems

For the distribution function F (I), with F̄ ≡ 1−F denoting the complementary distribu-
tion function, we determine the ‘excess over threshold’ probability F̄th(y). This conditional
probability is the probability P (I > Ith+y) that the speckle intensity I is larger than the
value Ith + y knowing that I is larger than the threshold intensity Ith, i. e. P (I > Ith).
As a function of the distribution F̄ and for y ∈ R

+, it can be expressed as

F̄th(y) ≡
P (I > Ith + y)

P (I > Ith)
=

F̄ (Ith + y)

F̄ (Ith)
. (8)

It has been shown in Refs. Pickands (1975), Balkema and DeHaan (1974), and in the
review of Embrechts et al. (1997)), that for a suitably chosen large threshold value Ith, the
conditional distribution Fth tends toward ha,c the generalized Pareto distribution(‘GPD’,
see below ) if and only if the (unconditioned) distribution F (I) is in the maximal domain
of attraction of ’the generalized extreme value distribution’ Hc, with the same parameter
c :

Hc(y) =

{

exp{−(1 + cy)−1/c} for c 6= 0

exp{−e−y} otherwise, i.e. c = 0
, (9)

requiring y > 1/c if c > 0, and y < −1/c if c < 0; for the case c = 0 with y ∈ R this
yields the Gumbel (limit) law, which corresponds to Gaussian statistics.

The three corresponding cases for the generalized Pareto distribution ha,c with a > 0
following the value of c ∈ R , are :

hc,a(y) =











(

1 + cy
a

)−1/c
for c > 0 and y < ∞ ,

e−y/a for c = 0 and y < ∞ ,
(

1− |c|y
a

)1/|c|
for c < 0 and 0 < y ≤ a

|c|
.

(10)

In our case, following Pickands (1975), we find that F̄th(y) can be given in very good
approximation by hc,a with c < 0, so that F belongs to the extreme value attraction basin
of a Weibull law with the same value c < 0. It is important to remark in this case that for
y > a/|c|, hc,a is no longer defined, and the conditioned probability F̄th(y > a/|c|) = 0.
Therefore the interval for a Weibull-type distribution is limited. Physically this is due to
the fact that the non linear process that leads to our distribution F (I) saturates in I, and
therefore the interval is limited in I where the Weibull distribution applies.

For distributions that can be described with such a type of functions for the case c <0,
a particular property is that, approaching a certain finite value yF = |a/c| < ∞ of the
variable y (in our case the speckle intensity above Ith ), the (unconditioned) distribution
has a power-law dependence in the vicinity of I ∼ IF ≡ Ith + yF . This feature can be
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expressed, via the distribution function F (I) and its corresponding probability density
f(I) = F ′(I), as

lim
I→IF
I<IF

(IF − I)f(I)

F̄ (I)
→ α , (11)

with IF = Ith + yF , and with f(I) being the probability density belonging to F̄ (I), hence
f (G)(I) ≡ dF (G)(I)/dI in our particular case. The upper bound of the interval at y = yF
marks the end point of the theoretical distribution, yF ≡ supy∈R{F (y) < 1}, namely the
value in y where the conditioned distribution Fth (= 1− F̄th) reaches Fth(y = yF ) ≡ 1 (or
F̄th(yF ) =0).

Distributions resulting from the GPD method with negative c are hence associated
with Weibull distributions. In a neighborhood of I = Ith + yF , for I → IF , I < IF , (see
Embrechts et al. (1997) pp. 152-154) the unconditioned distribution F belongs to the
corresponding maximum domain of attraction of the Weibull law Ψα,

Ψα(I) = e−(−I)α , (12)

which is qualitatively different from the domain of attraction of the Gumbel law ∼
exp{−e−I}, to which exponential type distributions from Gaussian statistics belong. From
the limit theory, it follows that the power law with an exponent α can be established in
the vicinity of I = IF , but only in the branch I → IF , I < IF , namely

F̄ (I) ≃ K(IF − I)α for IF > I > IF −K−1/α , (13)

in which the coefficient K is related the lower bound of the interval of validity of this
approximation, namely I > IF −K−1/α. The exponents of the generalized Pareto distri-
bution in Eq. (10), for the case c < 0, and of the limit law Eq.(12) are linked (Embrechts
et al., 1997); in the ideal limit case, this would yield α = −1/c .

In the following we will evaluate the coefficients c, a in Eq. (10) and K and α in Eq.
(13) from the distribution of Eq. (3).

4 Results

We have hence examined the distributions following our model, Eqs. (3) for different
values of the gain parameter G, namely for G = 1, 1.5, 2, and for G =0.5 < 1. Following
what has been explained in the previous paragraph, two approaches can be used to find
fits to power laws according to the observed features, using
(i) the GPD from ‘excess over threshold’ theory, Eq. (10), or
(ii) to directly seek for a fit to Eq. (13).

Examining Fig. 1 graphically, one can observe exponential decrease of the distribution
in the low-intensity and the very high-intensity tail as a function of I. In between both
exponential regimes the distribution is obviously non exponential, but it is not evident to
clearly identify where the transition toward the high-intensity tail takes place. Therefore
approach (ii) is not the first choice, but can be used once the coefficient found from
approach (i) have been determined. One would use Ith and yF (if existing) from (i) and
seek for the power exponent α in Eq. (13), and eventually verify the equivalence between
the respective coefficients as discussed in section 3.1.

For two sets of the parameters nsp and I∗ we have computed the distribution function
and determined the coefficients using approach (i). The results are displayed in Table 1,
2, 3, and 4.
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gain G 1/2 1 3/2 2

c .036 ±.04 -0.80 ±.01 -1.83 ±.02 -2.32 ±.05
a 1.6 ±.05 4.3 ±.15 6.4 ±.25 9.0 ±.5
Ith 8.0 ±.2 11.3 ±.2 12.0 ±.2 11.5 ±.2
yF = |a/c| - 5.1 ±.2 3.5 ±.7 3.9 ±.3

Table 1: Summary of the parameters for the GPD fit as
a function of gain values G for nsp =3000 and I∗ =15.

gain G 1/2 1 3/2 2

c .05± .02 -.41 ±.03 -.69 ±.11 -1.1 ±.05
a 1.28 ±.03 2.3 ±.03 3.1 ±.03 4.03 ±.03
Ith 6.85 ±.15 8.25 ±.12 8.25 ±.25 8.2 ±.25
yF = |a/c| - 6.0 ±.4 5.1 ±.3 3.5 ±.4
Table 2: Summary of the parameters for the GPD fit as
a function of gain values G for nsp =2300 and I∗ =11.

We have first determined the conditioned distribution F̄th by varying the threshold
intensity Ith and seeking for convergence in the values of c and a of the fit to the function
hc,a(y) of Eq. (10). The value of Ith can be assumed to be in the vicinity of log nsp and
has to be chosen as Ith < I∗ (since otherwise non linear effects will already be saturated).
Pickands in Ref. Pickands (1975) suggests a method to determine the value of c based
on specific quantile values of F̄th(y), namely by determining the values y1 and y2 where
F̄th(y1) =50% and F̄th(y2) =25% such that c = log(y2/y1 − 1)/ log(2).

Numerical algorithms allow, however, to more reliably find the values of c and a by
searching the best fit of hc,a(y) to F̄th(y). This is what we have done to obtain the values
in Tables 1 and 2. The fit to F̄th(y) = 1 − Fth(y) is shown in Fig. 3 for the particular
case G =3/2, nsp =3000 (or log nsp ≃ 8), and I∗ =15. The values for c and a are stable
with respect to the choice of the threshold value in the vicinity of Ith ∼ 10 ± 1 at least,
being close to the expectation value I1 = log nsp + .5772 of the peak intensity of the most
intense speckle (determined from order statistics, Ref. Hüller and Porzio (2010).

The width of the intensity interval corresponding to a Weibull law is given by yF =
|a/c| if c < 0, so that a Weibull-type distribution is found in Ith

<
∼ I < IF = Ith+ yF . The

values found here (I >
∼ Ith) are great enough to reasonably guarantee convergence toward

the Weibull law.
The results show a clear distinction between the case G =0.5 < 1 and the other cases

with G ≥1 : for G =0.5, the value of c is very small so that the behaviour, as a function
of the excess parameter y, is not significantly departing from an exponential decrease,
while there is a clear non-exponential behaviour for G ≥1 in the interval yF > y >0. For
the function hc,a of the GPD a finite upper limit of this interval exists due to negative
value of c, simply due to the fact that otherwise the probability for y > yF would exceed
100%. The tail of the conditioned distribution F̄th shows a smooth decrease for y ∼ yF ,
instead of an abrupt behaviour of hc,a at yF , corresponding to the end of validity of the
Weibull law. Beyond yF (or I>∼IF ) the distribution is again of exponential type because
of the onset of saturation.

10



We observe a clear and systematic decrease of the coefficient c with the gain value G,
starting from a small value |c| ≪1 for G <1. As exposed in the previous paragraph, it
follows that the exponent of the power law behaviour corresponding to Eq. (13), namely
α = −1/c, hence decreases with increasing G, explaining a flattening of the distribution
F̄ (I) in the interval Ith

<
∼I < IF . Both the flattening and the great enough intensity values

imply the onset of a heavy tail distribution function which has to be seen as a ‘caveat’
for extremal statistics, eventually causing undesirable effects.

In addition to the method with approach (i), where we determined the coefficients to
the function Eq. (10) via fitting to the conditioned distribution F̄th, we have also directly
analyzed the distributions F̄ (I) – computed from Eq. (3) for the different G-values – with
respect to the power law of Eq. (13). As input to get obtain a best fit, we have used the
values of IF = Ith + yF from Tables 1 and 2. The results of the fit for the coefficients α
and K are listed listed in the Tables 3 and 4.

gain G 1/2 1 3/2 2

α = 1/|c| ≫ 1 1.24 ±.02 0.54 ±.05 0.43 ±.02
K 0.12 ±.02 0.45 ±.05 0.55 ±.15
Ith 8.0 ±.2 11.3 ±.2 12.0 ±.2 11.5 ±.2
Ith + yF no limit 16.3 ±.5 15.5 ±.5 15.5 ±.5

Table 3: Summary of parameters of the Weibull type
power law valid in the limit Ith

<I < IF = Ith + yF . Here
nsp=3000 and I∗ =15, corresponding to Table 1.

gain G 1/2 1 3/2 2

α = 1/|c| ≫ 1 2.5 ±.2 1.45 ±.2 0.9 ±.15
K .015 ±.005 .1 ±.07 .25 ±.07
Ith 6.85 ±.15 8.25 ±.12 8.25 ±.25 8.2 ±.25
Ith + yF no limit 14.3 ±.6 13.3 ±.5 11.7 ±.6

Table 4: Summary of parameters of the Weibull type
power law valid in the limit Ith

<I < IF = Ith + yF . Here
nsp=2300 and I∗ =11 corresponding to Table 2.

The values determined via both approaches – i. e. approach (i) with the GPD method
with Eq. (10) and via approach (ii) using the power law expression Eq. (13) – prove to be
consistent, in particular what concerns the interval where the Weibull type distribution
has to be considered.

For the interval I < IF −K−1/α the distribution keeps the characteristics of an expo-
nential distribution, meaning that smaller intensity speckles still obey Gaussian statistics.
The consistency with the power-law dependence in a limited interval is also illustrated
graphically in Figures 3, 4, 5, and 6. In Fig. 3 the power-law according to the function
Eq. (10) is directly compared with the conditioned complementary distribution F̄th for
the example case with G = 3/2, in Fig. 4, for the same case, we show the comparison
between the complementary speckle distribution F̄ (I) and the power law deduced via the
GPD in a linear scale, while in Figures 5 and 6 the comparison between the computed
complementary distributions and the power law according to Eq. (13) is depicted in log

11



scale for G =1, 3/2, and 2. One can see that the values for each F̄th fit very well to the
power law curves ∼ K(IF − I)α for the values and intervals indicated in Tables. 3 and 4.

As in Ref. Hüller, Porzio, and Robiche (2013) we have performed 2-dimensional (2D)
simulations with the code Harmony2D (Hüller et al., 2006 and 2013) for the same
parameters as in the computation of F̄th from Eq. (3) for nsp =2300, I∗ =11, and for
G =1 and 3/2. The distributions are determined from snapshots from the speckle field
pattern taken from a plasma layer of approximately 2.5 times a speckle length, as explained
in Ref. Hüller, Porzio, and Robiche (2013). The simulation results, see Figures 7 and 8,
show very good agreement both with the computation using F̄th from Eq. (3). Evidently,
also the Weibull-type power-law behaviour can be observed in the same speckle intensity
interval.

The good agreement between simulations and our model calculations also confirms
that the upper limit of the power-law distribution cannot be associated with the way
how we model the saturation of the stimulated scattering process in Eq. (3), namely
via the saturation of the exponential growth ∼ exp{Gmin(I, I∗)} in I for I ≥ I∗. In
the simulations the saturation also arises around I ∼ I∗ naturally, but less abruptly.
Therefore, applying the abrupt onset of saturation in a non linear model Eq. (3), instead
of a softer transition avoiding the cusp in the exponential growth at I = I∗, has no
qualitative influence on the result, i. e. on the upper limit in the validity interval of the
Weibull-type power-law behaviour in the distribution.

5 Discussion and Conclusions

In numerous articles based on theoretical and experimental work, the onset of non-
Gaussian statistics in the observed speckle distribution function has been mentioned
(Schmitt & Afeyan, 1997, Grech et al., 2006 and 2009, Lushnikov & Vladimirova, 2010,
Depierreux et al. 2009, Montina et al. 2009). In particular laser beams produced with op-
tical smoothing techniques and propagating through plasmas show a departure from the
exponential-type complementary distribution of the incident beam even behind relatively
short plasma layers.

We have shown here that for laser beams undergoing laser-induced smoothing via
the process of stimulated Brillouin forward scattering (SBFS), this process is responsible
for the modifications in the peak intensity of intense speckles. The resulting speckle
distribution functions are henced “stretched” in their tail, yielding a functional behaviour
different from an exponential-type decrease.

Distribution functions with exponential-type behaviour in the tail and distributions
with power law behaviour, even in a limited interval, have essentially different properties
what concerns extremal statistics due to the strictly different limit laws (Embrechts et al.,
1997).Heavy tail distributions, as those with power law behaviour, may cause strong devi-
ations and an important variance in physical observables from one to another realisation,
leading to desastrous "shot to shot" behaviour.

The speckle distributions analyzed in this work have been computed on the basis of our
model ( Eq. (3)) , and with the help of numerical simulations. The model is limited to the
first layer, in the laser propagation direction, where speckles of equal size (generated by
optical smoothing) undergo stimulated scattering. Multiple scattering, occuring further
inside in longer plasmas (Schmitt & Afeyan, 1997) is not taken into account here. From
the simulation results of a plasma layer, snapshots, corresponding to few realizations of
speckle patterns have been taken to determine the statistics. The simulations results
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confirm the model results.
We have shown in the frame of this work that speckle distributions, modified in a

plasma as a consequence of stimulated forward scattering, may deviate from Gaussian
statistics. By making use of generalized Pareto distributions (GPD), we have identified
power law type distributions under certain conditions: precisely, the distributions dis-
cussed here belong to the Weibull type power law that exhibits heavy tail behaviour. The
inspection of the distribution from our model established here and from previous work, as
well as from numerical simulations, show a clear qualitative change between distributions
found for gain values, G, of SBFS around the critical value G =1. The distributions found
for values G <1 still show an exponential-type decrease, so that speckle distributions for
this regime (G <1) are still governed by Gaussian statistics. For values G ≥1, however,
our analysis clearly shows that a power-law behaviour of the speckle (complementary)
distribution governs a limited interval in the tail, but with an upper limit, beyond of
which the distribution is again of exponential type. The limited interval is associated
with Weibull distributions, not following Gaussian statistics. The upper limit of the in-
terval is due to a saturation of the underlying non linear process, namely stimulated
scattering. We should remind that for different realizations of speckle patterns physical
observables like the scattered field strength can strongly vary with the gain value for G ≥
1, as indicated by the computation of the variance of the speckle statistics as a function
of G.

In presence of temporal smoothing, either introduced via optical techniques (‘Smooth-
ing by Spectral Dispersion’ (SSD), ‘Induced Spatial Incoherence’ (ISI), etc.) or induced
by the plasma itself, speckle distributions will evolve, and particularly the tail of the
distribution will be altered. Sufficiently fast smoothing, such that the correlation time
(Mounaix et al., 2000) is short compared to the instability process (here forward SBS),
may avoid a vigorous onset of the instability and hence the formation of heavy tail dis-
tributions. The plasma can take itself the function of an active smoothing medium in
altering the effective speckle size further inside the plasma (Schmitt & Afeyan, 1997) and
with a succesive decrease of the correlation time (Depierreux et al. 2009).

In absence of temporal smoothing or in case of relatively long correlation times of the
smoothing method, heavy tail speckle distributions may occur for sufficiently high laser
intensity (see above condition for the SBFS gain).

While we have used ‘excess over threshold’ methods to analyze speckle distributions
modified by stimulated scattering in laser plasmas, those methods can be more generally
applied to determine the nature of speckle statistics from experimental and simulation
data.
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Appendix: simplified expressions for the pdf and its mo-

ments

In this Appendix we drop, for simplicity, the subscript in nsp, standing for the total
number of speckles: we write hence n instead of nsp. The probability density (pdf) in Eq.
(2)

f (G)(I) = e−ne−I

eGmin(I,I∗)

(

n
∑

k=1

e−kInk

nG(Γ(k −G, ne−I∗)− Γ(k −G, n)) + eGI∗γ(k, ne−I∗)

)

can be approximated for entire values of G, G ∈ N
∗, by

f (G)(I) = e−ne−I

eGmin(I,I∗)

(

G
∑

k=1

e−kInk

Dk(G, 0)
+ ne−(G+1)Men−(G+1)(ne

−I)

)

(14)

where ne−(G+1)Ien−(G+1)(ne
−I) is the approximation kept for the part of the sum in f (G)(I)

of Eq. (2) starting with n = G+ 1, namely

∑n
k=G+1

e−kInk

Dk(G,0)
=

n
∑

k=G+1

e−kInk

nG(Γ(k −G, ne−I∗)− Γ(k −G, n)) + eGI∗γ(k, ne−I∗)

∼
n
∑

k=G+1

e−kInk

nGγ(k −G, n)
∼

n
∑

k=G+1

e−kInk

nGΓ(k −G)

where em(x) =
∑m

j=0 x
j/j! is the truncated exponential series.

For the denominator in these expressions, as defined in Eq. (4), Dk(G, 0), one can
find, by using the approximation of the exponential integral

∫ n

ne−I∗ (e
−t/t)dt ∼ (I∗ −

log n) exp(−ne−I∗) ,

Dk(G, 0) ≃ nG(−1)G−k

(G−k)!

(

[I∗−log n]e−ne−I∗

+e−n
∑G−k−1

m=0
(−1)mm!
nm+1 −e−ne−I∗∑G−k−1

m=0
(−1)mm!

(ne−I∗ )m+1

)

+ eGI∗(k − 1)!
(

1− e−ne−I∗ ∑k−1
m=0

(ne−I∗ )m

m!

)

≃ nG(−1)G−k

(G−k)!

(

(I∗ − log n)e−ne−I∗

+ e−ne−I∗ ∑G−k−1
m=0

(−1)m+1m!

(ne−I∗ )m+1

)

+ eGI∗(k − 1)!
(

1− e−ne−I∗ ∑k−1
m=0

(ne−I∗ )m

m!

)

,

(15)
or in the still more simplified form

D̃k(G, 0) ≃ nG(−1)G−k

(G− k)!
(I∗ − log n)e−ne−I∗

+ eGI∗(k − 1)!

(

1− e−ne−I∗
k−1
∑

m=0

(ne−I∗)m

m!

)

,

(16)
keeping only the dominating terms. Taking ne−I = x and ne−I∗ = x∗, the approximate
expressions for the pdf in the limits I∗ ≥ I, equivalently to x∗ ≤ x, and I∗ < I, equivalently
to x∗ < x, for f (G)(I) → f̃ (G)(x) read

f̃ (G)(x) =

{

e−x(n
x
)G
∑G

k=1
xk

DK(G,0)
+ xe−xen−G−1(x) for x∗ ≤ x (I∗ ≥ I) ,

e−x( n
x∗
)G
∑G

k=1
xk

Dk(G,0)
+ xe−x( x

x∗
)Gen−G−1(x) for x∗ > x (I∗ < I)

(17)
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For the case that the gain G assumes the value of an entire number, the sum in the
expression for the pdf simplifies, such that for x∗ < x we obtain

f̃ (G)(x) = e−xnG

G−1
∑

k=1

xk−G

Dk(G, 0)
+

e−xnG

Dk=G(G, 0)
+ xe−xen−G−1(x) .

The first part of the sum contains, for odd integer G, two neighbouring peak terms of the
same value, for k = [G/2] and [G/2] + 1, and for even integer G, a single peak term for
k = G/2. The second part of the sum yields a ’plateau’-like term, and the last part is
exponentially decreasing.

In terms of x and x∗ the denominators Dk(G, 0) and D̃k(G, 0) are given by

Dk(G, 0) ≃ nG(−1)G−k

(G−k)!

(

(− log x∗)e−x∗

+ e−n
∑G−k−1

m=0
(−1)mm!
nm+1 − e−x∗

∑G−k−1
m=0

(−1)mm!
(x∗)m+1

)

+ ( n
x∗
)G(k − 1)!

(

1− e−x∗
∑k−1

m=0
(x∗)m

m!

)

(18)
and

D̃k(G, 0) ≃ nG(−1)G−k

(G− k)!
(− log x∗)e−x∗

+ (
n

x∗
)G(k − 1)!

(

1− e−x∗

k−1
∑

m=0

(x∗)m

m!

)

. (19)

We express in the following the pdf from the general expression Eq. (2) for selected values
of G.

Approximations of the pdf for selected cases

For G = 1/2 one obtains

f (1/2)(I) ≃ e−ne−I

e(1/2)min(I,I∗)e−I

√
n√
π

(

1 +
n−1
∑

k=1

(2ne−I)k

(2k − 1)!!

)

, (20)

and for G = 3/2

f (3/2)(I) ≃ e−ne−I
e(3/2)min(I,I∗) ne−I

n3/2
∫ n

ne−I
e−t

t3/2
dt(1−e−ne−I∗ )e(3/2)I∗

+
e−ne−I

e(3/2)min(I,I∗)n2e−2I

n3/2
√
π

(

1 +
n−2
∑

k=1

(2ne−I)k

(2k − 1)!!

)

(21)
For the most interesting case G = 1, we obtain

f (1)(I) ≃ e−ne−I
emin(I,I∗)ne−I

n
∫ n

ne−I
e−t

t
dt+ (1− e−ne−I∗ )eI∗

+ e−ne−I

emin(I,I∗)ne−2Ien−2(ne
−I) . (22)

Finally, we give an approximate expression for non-integer G-values :

f (G)(I) ≃ e−ne−I

eGmin(I,I∗)





[G]
∑

k=1

(ne−I)k

nG
∫ n

ne−I
e−t

t1+G−kdt+ eGI∗
∫ ne−I

0
e−t

t1−kdt
+

n
∑

k=[G]+1

(ne−I)k

nGΓ(k −G)



 .

(23)

17



 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 xF 5 6

  11 (=Ith) 12 13 14 15  Ith+yF 16 17

y = (I-Ith)/<I>

I/<I>

Top axis: 1-Fth(I)
bottom axis: (1-|c| y/a)1/|c| for c=-1.8, a=8

K (yF-y)α for K=0.45, α =0.53, yF =4.45

Figure 3: Comparison between the complementary ’excess over threshold’ distribution
function F̄th = 1−Fth deduced from our model, Eq. (1), the generalized Pareto distribu-
tion, following Eq. (10), (1− |c|y/a)1/|c|, and the power law expression K(yF − y)α with
yF = a/|c|, for the case G =3/2, with c =≃ -1.8, a =8., yF ≃4.4, K =0.45, and α =0.53.
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Figure 4: Illustration of non-exponential behaviour of the complementary distribution
F̄ (I) = 1 − F (I) (from our model Eq.(1 )) in the interval between I = Ith (y = 0, top
axis) and I ≡ IF = Ith + yF (y = yF , top axis) where the behaviour can be approximated
by a power-law type function K(yF − y)α deduced from a generalized Pareto distribution
(GPD). Shown is the case of G =3/2 with yF ≃4.4, α ≃0.53, and K ≃0.45, consistent
with the parameters c ≃-1.8, a ≃8 from the GPD.
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Figure 5: Complementary speckle distribution F̄ (G)(I) (multiplied by nsp in the high
intensity tail for the gain values G =1 (blue line), 3/2 (red), and 2 (yellow-green) and
the power laws deduced with the help of the GPD, and taken from Table 4, i.e. G =1 :
α =2.3, IF =13.7; G =3/2 : α =1.45 and IF =13; and G =2 : α =0.85 and IF =11.6.
Solid lines: model; dashed lines: power law following Eq. (13). The total number of
speckles considered here is nsp = 2300. The onset of saturation is set to I∗ =11 here.
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Figure 6: Complementary speckle distribution F̄ (G)(I) (multiplied by nsp in the high
intensity tail for the gain values G =1 (blue line), 3/2 (red), and 2 (yellow-green) and
the power laws deduced with the help of the GPD, and taken from Table 3, i.e. G =1 :
α =0.8, IF =16.4; solid lines: model; dashed lines; power law following Eq. (13); G =3/2:
α =0.54 and IF =15.5; and G =2: α =0.43 and IF =15.4. Parameters nsp = 3000 and
I∗ =15 here.

19



 1

 10

 100

 4  5  6  7  8  9  10  11  12

n s
p 

[ 1
-F

(I
) 

]

I/<I>

G = 1

 
simulation

∝ (IF - I)α

model

Figure 7: For the case G =1: comparison between the complementary distribution of
speckles obtained from simulations of forward SBS (as in Hüller, Porzio, and Robiche
(2013)),the power law dependence F̄ ∝ (IF − I)α, and the model following Eq. (3). The
power law dependence determined via the GPD is valid in the limited interval Ith

<
∼I < IF ,

with IF ≃ 12.2, Ith ≃ 8, and α ≃ 2.25 . . . 2.45. The total number of speckles in the
simulations was nsp = 2300.
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Figure 8: As in Fig. 7, but for G =1.5: comparison between the complementary distri-
bution of speckles obtained from simulations of forward SBS, the power law dependence
F̄ ∝ (IF − I)α, and the model following Eq. (3). The power law dependence is valid in
the limited interval Ith

<
∼I < IF , with IF ≃ 11.7, Ith ≃ 8, α ≃ 1.45 . . . 1.5.
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