Le Centre de Physique Théorique (CPHT) réunit des chercheurs dont les activités couvrent un large spectre de la Physique, tant dans ses aspects fondamentaux qu'appliqués.
Le CPHT est une unité mixte de recherche (UMR 7644) du Centre National de la Recherche Scientifique (CNRS) et de l’Ecole polytechnique. Au niveau du CNRS, il est rattaché à l’Institut de physique. Le CPHT a également un partenariat avec le Collège de France.
Le CPHT, dirigé par Jean-René Chazottes, directeur de Recherche au CNRS, est implanté sur le campus de l’Ecole Polytechnique à Palaiseau, dans le bâtiment 6 et dans l'aile 0 du bâtiment 5. Le secrétariat se situe dans le Bâtiment 6, bureaux 06.1046 et 06.1045. 

Adresse postale : 
Ecole Polytechnique 
91128 Palaiseau cedex 

Tél. Secrétariat : 01 69 33 42 01

Pour écrire un email à un membre du laboratoire : prenom.nom@polytechnique.edu



Xiang ZHAO soutiendra publiquement ses travaux de thèse le jeudi 25 novembre 2021 à 10h00 au CPHT, Salle de conférence Louis Michel.

Titre de la thèse : "Aspects of Conformal Field Theories and Quantum Fields in AdS"
Directeur de thèse : Balt Van Rees

Participer à la réunion Zoom pour la soutenance de thèse :
Meeting ID: 870 6848 6326
Passcode: 245657

Composition du Jury

(1) Christopher BEEM, Associate Professor, Oxford University (Rapporteur)
(2) Nikolay BOBEV, Associate Professor, KU Leuven (Rapporteur)
(3)Costas BACHAS, Directeur de Recherche, ENS (Examinateur)
(4) Christoph KOPPER, Professeur, Ecole Polytechnique (CPHT) (Examinateur)
(5) Eric PERLMUTTER, Assistant Professor, Saclay (IPHT) (Examinateur)
(6) Balt VAN REES, Professeur, Ecole Polytechnique (CPHT) (Directeur de thèse)


"This thesis studies the structure and the space of conformal field theories (CFTs), and more generally various properties of conformal correlation functions. It extends into multiple directions, both perturbative and non-perturbative, local and non-local, with and without supersymmetry.
The first aspect concerns the conformal correlation functions in d-dimensional spacetime and their relation to flat-space S-matrices in (d+1)-dimensional spacetime. The connection is built up by considering a quantum field theory (QFT) in a fixed (d+1)-dimensional Anti-de Sitter (AdS) background and sending the radius of the AdS curvature to infinity. That is, the central object to study is the flat-space limit of QFT in AdS. The analysis starts from taking the flat-space limit of the building blocks of Witten diagrams, namely the bulk-boundary and bulk-bulk propagators. This analysis leads to conjectural generic prescriptions to extracting flat-space physics from conformal correlators. Interestingly, the intuitional picture that a Witten diagram simply reduces to the corresponding Feynman diagram does not always hold, and the origin of this discrepancy lies in the bulk-bulk propagators: they could have two different flat-space limits. One of the limits always exists and reduces to Feynman propagator, while the other, when present, can diverge in the flat-space limit. This observation is tested by explicit examples, including fourpoint scalar contact, exchange and triangle Witten diagrams and the conjectures are expected to work whenever the scattering energy is large enough.
The second aspect studies the classification problem of conformal defects. The goal is to partially answer the question: given a bulk CFT and consistency conditions such as crossing symmetry and unitarity, what are the allowed conformal defects with a non-trivial coupling to the bulk? Analytic bootstrap techniques are applied to study a simplified version of this problem where in the bulk only a single free scalar field is considered. Analysis of various three-point functions among bulk and defect fields leads to the conclusion that almost all the n-point correlation functions of defect fields are completely fixed up to a potentially unfixed one-point function. This analysis also leads to an intermediate result in which it is proven that the n-point correlation functions of a conformal theory with a generalised free spectrum must be those of the generalised free field theory."

The third aspect studies the interplay between analyticity in spin in CFTs and supersymmetry. Operator spectrum in a general unitary CFT is expected to be captured by a function analytic for spin J>1, and the operators are organised into various Regge trajectories. The presence of supersymmetry in general extends the region of analyticity in spin. The 6d N=(2,0) superconformal field theories (SCFTs) is considered as a concrete example, in which analyticity in spin is expected to hold down to J>−3. Detailed analysis of the four-point function of the the stress tensor supermultiplet uncovers an unexpected interplay between unprotected and protected multiplets: the stress tensor multiplet can be found on a long (unprotected) Regge trajectory when analytically continued to spin J=−2. In this study a general iterative bootstrap program is also established, which applies to all SCFTs that have a chiral algebra subsector.



La Journée des Thèses du CPHT a lieu à l'amphi Becquerel dans le grand hall le vendredi 26 novembre 2021.


9h - 10h30

Sabine Harribey (A quick review of melonic CFTs - visio)
Jean-Gabriel Thiriet (Non-modal hydrodynamic stability analysis of ablation flows relative to inertial confinement fusion)
Matthieu Vilatte (Geroch method from holography fluid/gravity)
Ephraim  Bernhardt (Topology and disorder)
Yorgo Pano (Celestial holography)
Frederick del Pozo (Quantum field theory for topological superconductors)
David Rivera Betancour (Aspects of fluids and flat holography)

11h - 12h30

Filippo Sottovia (Can hydrodynamics correctly describe instabilities in superfluids? A holographic approach)
Gabriele Casagrande (The Swampland program and SUGRA inflationary models)
Erik Linner (Electronic correlations in incommensurate materials)
Long Zou (Propagation of ultra-fast laser pulse and filamentation in the air)
Benjamin Bacq-Labreuil (Exploring the physics of strongly correlated copper oxyde systems)
James Boust (Magnetism in correlated f-electron intermetallics)
Mohamed Rekhis (Toroidal alfven eigenmodes destabilisation by energetic particles in tokamaks)

14h - 15h30

Julian Legendre (Topological properties of the kagome lattice and light-matter systems)
Majdouline Borji (Perturbative renormalization of the semi-infinite phi_4^4 theory with flow equations)
Adrien Loty (Constraints on effective theories of quantum gravity)
Renaud Garioud (Perturbation theory for symmetry-broken systems: application to the Néel phase transition)
Marcos Gonzalez (Jet quenching in heavy ion collisions)
Zhaoxuan Zhu (Two-dimensional cold atoms in a quasicrystal lattice)
Jan Schneider (Out-of-equilibrium dynamics in long-range interacting many-body physics)

16h -16h50

Nahuel Barrios (Perturbative study of long-distance non-abelian gauge theories - visio)
Balthazar de Vaulchier (Wavefunction of the universe)
William Focillon (Mechanical properties of the nucleon in the scalar diquark model.)
Pauline Besserve (Unraveling strongly-correlated materials’ properties with noisy quantum computers)



!! Changement de lieu : La soutenance aura finalement lieu dans la salle de conférence du Centre de Mathématiques Laurent Schwartz 

Anh-Dung Le soutiendra publiquement ses travaux de thèse le vendredi 19 novembre 2021 à 14h30 au CPHT, Salle de conférence Louis Michel.

Titre de la thèse : "Statistical properties of partonic configurations and diffractive dissociation in high-energy electron-nucleus scattering"
Directeur de thèse : Stéphane Munier

Composition du Jury

(1) Stéphane Munier, CNRS (France), Directeur de thèse
(2) Yuri Kovchegov, The Ohio State University (USA), Rapporteur
(3) Tuomas Lappi, Jyvaskyla University (Finland), Rapporteur
(4) Nestor Armesto, Universidade de Santiago de Compostela (Spain), Examinateur
(5) Cédric Lorcé, Ecole polytechnique (France), Examinateur
(6) Grégory Schehr, CNRS (France), Examinateur


"In the high-energy scattering of a quark-antiquark color dipole off a hadron, the quantum states of the former are represented by a stochastic set of dipoles generated by a binary branching process, in the so-called color dipole model of quantum chromodynamics (QCD). It was found that there is a profound connection between this QCD description and the branching-diffusion processes studied in statistical physics from which different properties of the scattering in the high-energy regime are revealed. Our work in this thesis is aimed to exploit the cross-fertilization between QCD and statistical physics to study the detailed partonic content of the Fock states of a color dipole subject to high-energy evolution in the scattering off a large nucleus. We also produce predictions for diffractive dissociation in electron-ion collisions, based on the QCD dipole picture. In the first place, the scattering events of a color dipole, when parameters are set in such a way that the total cross section is small, are triggered by configurations containing large-transversesize dipoles. The latter are due to rare partonic fluctuations, which look different as seen from different reference frames, from the rest frame of the nucleus to frames in which the rapidity is shared between the projectile dipole and the target nucleus. It turns out that the freedom to select a frame allows to deduce an asymptotic analytic expression for the rapidity distribution of the first branching of the slowest parent dipole of the set of those which scatter, which provides an estimator for the correlations of the latter. In another aspect, the study implies the importance of the characterization of particle distribution near the extremal particles, referred to as the \tip", in the states generated by the QCD dipole branching, and more generally, by any one-dimensional branching random walk model. To this aim, we develop a Monte Carlo algorithm to generate the tip of a binary branching random walk on a real line evolving to a predefined time, which allows to study both rare and typical configurations. The above statistical description proves advantageous for calculating diffractive cross section demanding a minimal rapidity gap Y0 and the distribution of rapidity gaps Y_{gap} in the diffractive dissociation of a small dipole off a large nucleus, in a well-defined parametric region. They are the asymptotic solutions to the Kovchegov-Levin equation, which was established more than 20 years ago to describe the diffractive dipole dissociation at high energy. Additionally, we present predictions for the distribution of rapidity gaps in realistic kinematics of future electron-ion machines, based on the numerical solutions to the original Kovchegov-Levin equation and of its next-to-leading extension taking into account the running of the strong coupling. The outcomes for the former reflect in a qualitative way our asymptotic analytical result already at rapidities accessible at future electron-ion colliders."



Une collaboration internationale impliquant des chercheurs du CPHT a mis en évidence une nouvelle technique de génération d'impulsions brèves de lumière visible. En injectant un laser infrarouge dans une fibre creuse, des chercheurs de l'Institut National de la Recherche Scientifique (Canada) ont en effet pu créer des impulsions très courtes de lumière visible à la sortie, sans avoir besoin de les comprimer. Cette technique tire partie du caractère multimode de la fibre pour favoriser le transfert de l'énergie infrarouge vers le visible.

Arnaud Couairon, directeur de recherche CNRS au CPHT et Jeff Brown (post-doctorant au CPHT de 2016 à 2019) ont participé à élaborer le modèle théorique de ce phénomène avec leurs collaborateurs de l'Université de Louisiane (USA) et l'Université Heriot-Watt (Écosse). Leurs travaux ont été publiés dans la prestigieuse revue Nature Photonics.



Le 1er séminaire des jeunes chercheurs du CPHT aura lieu le 27 octobre 2021 à 15h00 à la Salle de conférence Louis Michel avec trois présentations par les doctorants :

Majdouline Borji : Perturbative renormalization of the semi-infinite massive scalar field theory using the flow equations

Pauline Besserve : Unraveling correlated materials’ properties with noisy quantum computers

William Focillon : Potential Linear and Angular Momentum in the Scalar Diquark Model

Le séminaire sera suivi d'une goûter.



Thibaut coudarchet soutiendra publiquement ses travaux de thèse le 30 septembre 2021 à 14h00 à l'Ecole polytechnique, Amphi Lagarrigue.

Titre de la thèse : Théorie des cordes : brisure de supersymétrie, stabilisation des modules et aspects cosmologiques
Directeur de thèse : Hervé Partouche

Mots-clés : Théorie des cordes,Brisure de supersymétrie,Modules,Cosmologie

Participer à la réunion Zoom pour la soutenance de thèse :
30 sept. 2021 02:00 PM Paris
Zoom link:
ID: 817 8741 0532

Composition du Jury

M. Hervé PARTOUCHE, École polytechnique,Directeur de thèse
Mme Mariana GRAÑA,IPhT, CEA/Saclay, Rapporteure
M. Dan ISRAËL,LPTHE, Sorbonne Université, Rapporteur
M. Ignatios ANTONIADIS, LPTHE, Sorbonne Université, Examinateur
M. Augusto SAGNOTTI, École Normale Supérieure de Pise, Examinateur
M. Jan TROOST,LPENS, École Normale Supérieure, Examinateur
M. Toumbas NICOLAOS, Département de physique, Université de Chypre, Examinateur



Philipp Klein soutiendra publiquement ses travaux de thèse le 8 septembre 2021 à 14h00 au CPHT, Salle de conférence Louis Michel.

Title: Topological proximity effect in bilayer systems and stochastic approach to interacting topological phases
Keywords: Topological phases, bilayer model, Mott physics, strongly-correlated phases 
PhD Supervisor: Karyn Le Hur, CPHT Directrice de Recherche et Professeure PCC Ecole Polytechnique

Participer à la réunion Zoom pour la soutenance de these :

ID de réunion : 884 8320 6477

Jury Members (participation via Zoom):
- Sylvain Capponi, Professeur, Toulouse, President du Jury
- Nathan Goldman, Professeur, Universite Libre de Bruxelles (reviewer)
- Mark-Oliver Goerbig, Directeur de recherches CNRS et professeur PCC Ecole Polytechnique, LPS Orsay (reviewer)
- Thierry Jolicoeur, Directeur de Recherches CNRS, CEA Saclay
- Luca Perfetti, Professeur, LSI Ecole Polytechnique
- Timan Ziman, Directeur de Recherches CNRS, Institut Laue Langevin
- Silke Biermann, Professeure Ecole Polytechnique, Invited

Ancien élève de l’École normale supérieure de Cachan, Charles Marteau a étudié la physique théorique au master de l’École normale supérieure de Paris et les mathématiques fondamentales au master de Sorbonne Université. Il a rejoint le groupe de théorie des cordes en automne 2017, comme étudiant en thèse sous la direction de Marios Petropoulos, sur le thème Structures de bord et fluides holographiques en gravité.

L’arrivée de Charles Marteau dans l’équipe a coïncidé avec le développement d’une nouvelle thématique, l’holographie gravité / théorie de jauge en espace-temps asymptotiquement plat, dans laquelle était impliqué un autre étudiant, Luca Ciambelli. Ensemble, ils ont défriché la structure sous-jacente à la version fluide/gravité de l’holographie plate, à savoir la dynamique des fluides carrolliens, version ultra-relativiste de l’hydrodynamique. Fort de cette collaboration fructueuse, Charles Marteau a poursuivi son travail de thèse dans de nombreuses directions. On peut résumer les avancées principales de ses travaux comme suit : (i) l’extension de la correspondance fluide/gravité au cas plat qui a nécessité la conception ab initio de l’hydrodynamique carrollienne ; (ii) une étude exhaustive de la gravitation tridimensionnelle et ses applications dans les fluides en deux dimensions ; (iii) enfin l’application des concepts carrolliens à l’étude de la dynamique de l’horizon des trous noirs.

Durant sa thèse, Charles Marteau a effectué plusieurs séjours à l’étranger, en Europe et aux EU, pendant lesquels il a développé ses propres collaborations avec d’autres doctorants ou post-doctorants. L’ampleur du travail accompli ainsi que son indépendance en tant que jeune chercheur apparaissent à travers ses publications : neuf articles dont quatre sans son directeur de thèse et signés avec un jeune collaborateur. Son mémoire est un assemblage de ses sept premiers articles, mis en perspective par un texte introductif qui permet de situer le contexte et d’introduire les notions générales de symétries asymptotiques et de géométrie carrollienne.

Charles Marteau est actuellement chercheur post-doctoral à l’Université de Colombie Britannique à Vancouver où il poursuit son activité au sein du groupe de Gordon Semenoff.

Actualité sur le site de l'Ecole polytechnique : Etudier la gravitation quantique avec le principe holographique