Chargé de recherche au CNRS

Equipe de recherche : Matière condensée 


Adresse CPHT, Ecole Polytechnique, 91128 Palaiseau cedex, France
Tél. 01 69 33 42 54
Fax 01 69 33 49 49
Contact michel.ferrero@polytechnique.edu
Bureau Aile zéro, pièce 1012

Recherches actuelles

Systèmes fortement correlés, Modèles de spins frustrés

Mon domaine de recherche se situe en physique théorique de la matière condensée. Je m’intéresse en particulier à des systèmes qui présentent de fortes corrélations électroniques (cuprates supraconducteurs) et à des modèles effectifs de spins frustrés (modèles de dimères quantiques).

Recent Publications

Sun C, Ray U, Cui Z-H, Stoudenmire M, Ferrero M, Chan GK-L.
Finite-temperature density matrix embedding theory.
Physical Review B. 2020;101:075131
DOI: 10.1103/PhysRevB.101.075131

Vucicevic J, Ferrero M.
Real-frequency diagrammatic Monte Carlo at finite temperature.
Physical Review B. 2020;101(7):075113.
DOI: 10.1103/PhysRevB.101.075113.

Kim M, Mravlje J, Ferrero M, Parcollet O, Georges A.
Spin-Orbit Coupling and Electronic Correlations in Sr2RuO4.
Physical Review Letters 2018;120(12):126401.
DOI: 10.1103/PhysRevLett.120.126401

Moutenet A, Georges A, Ferrero M.
Pseudogap and electronic structure of electron-doped Sr2IrO4.
Physical Review B 2018;97(15):155109.
DOI: 10.1103/PhysRevB.97.155109

Moutenet A, Wu W, Ferrero M. 
Determinant Monte Carlo algorithms for dynamical quantities in fermionic systems. 
Physical Review B 2018;97(8):085117.
DOI: 10.1103/PhysRevB.97.085117

Scheurer MS, Chatterjee S, Wu W, Ferrero M, Georges A, Sachdev S.
Topological order in the pseudogap metal.
Proceedings of the National Academy of Sciences of the United States of America. 2018;115(16):E3665-E72.
DOI: 10.1073/pnas.1720580115.

Vucicevic J, Wentzell N, Ferrero M, Parcollet O.
Practical consequences of the Luttinger-Ward functional multivaluedness for cluster DMFT methods.
Physical Review B 2018;97(12):125141.
DOI: 10.1103/PhysRevB.97.125141

Wu W, Scheurer MS, Chatterjee S, Sachdev S, Georges A, Ferrero M.
Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model.
Physical Review X. 2018;8(2):021048.
DOI: 10.1103/PhysRevX.8.021048.

Wu W, Ferrero M, Georges A, Kozik E. 
Controlling Feynman diagrammatic expansions: Physical nature of the pseudogap in the two-dimensional Hubbard model. 
Physical Review B 2017;96(4):041105.
DOI: 10.1103/PhysRevB.96.041105

Kim M, Nomura Y, Ferrero M, Seth P, Parcollet O, Georges A.
Enhancing superconductivity in A(3)C(60) fullerides.
Physical Review B 2016;94(15):155152.
DOI: 10.1103/PhysRevB.94.155152

Delange P, Ayral T, Simak SI, Ferrero M, Parcollet O, Biermann S, et al.
Large effects of subtle electronic correlations on the energetics of vacancies in alpha-Fe.
Physical Review B 2016;94(10):100102.
DOI: 10.1103/PhysRevB.94.100102

Aichhorn M, Pourovskii L, Seth P, Vildosola V, Zingl M, Peil OE, et al.
TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials.
Computer Physics Communications 2016;204:200-208.

Parcollet O, Ferrero M, Ayral T, Hafermann H, Krivenko I, Messio L, et al.
TRIQS: A toolbox for research on interacting quantum systems.
Computer Physics Communications 2015;196:398-415.

LeBlanc JPF, Antipov AE, Becca F, Bulik IW, Chan GKL, Chung CM, et al.
Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms.
Physical Review X 2015;5(4):041041.

Kozik E, Ferrero M, Georges A.
Nonexistence of the Luttinger-Ward Functional and Misleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like Models.
Physical Review Letters 2015;114(15):156402.

Preprints on cond-mat

PhD Thesis

Doctor Philosophiae in Condensed Matter Theory at the International School for Advanced Studies (SISSA), Trieste, Italy. Thesis: Competing mechanisms in strongly correlated systems close to a Mott insulator. Supervisor: Prof. Michele Fabrizio. Thesis defense: October 2006.