Soutenance de thèse

 

Hepeng Yao (groupe Matière condensée)

Soutiendra publiquement ses travaux de thèse intitulés


"Strongly-correlated one-dimensional bosons in continuous and quasiperiodic potentials"

dirigés par Laurent Sanchez-Palencia

Soutenance prévue le mardi 20 Octobre 2020 à 14h00

Lieu : viso conférence via zoom (https://us02web.zoom.us/j/83369858239?pwd=MXBybjV1MmJRNFNIR1pvSnpMZ25MZz09)

Abstract

We investigate the properties of one-dimensional bosons in various types of systems, focusing on the phase transitions or crossovers between different quantum degeneracy regimes. Combining quantum Monte Carlo with other standard techniques such as exact diagonalization and thermal Bethe ansatz, we can compute the behavior of 1D bosons in different cases where the results are still lacking. First, in the case of harmonically trapped continuous bosons, we provide a full characterization of a quantity called Tan's contact. We show that the contact exhibits a maximum versus temperature and that it is a signature of the crossover to fermionization in the strongly-interacting regime. Secondly, we study the localization and fractal properties of 1D ideal gases in shallow quasiperiodic potentials. We determine the critical localization properties of the system, the critical potential, mobility edges and critical exponents which are universal. Moreover, we calculate the fractal dimension of the energy spectrum and find it is non-universal but always smaller than unity, which shows the spectrum is nowhere dense. Finally, we move to the study of the interacting case. With the quantum Monte Carlo calculations, we compute the phase diagram of Lieb-Liniger bosons in shallow quasiperiodic potentials. A Bose glass, surrounded by superfluid and Mott phases, is found. At finite temperature, we show that the melting of the Mott lobes is characteristic of a fractal structure and find that the Bose glass is robust against thermal fluctuations up to temperatures accessible in experiments.

Jury

Rapporteurs:
Guillaume Roux (Université Paris-Saclay)
Ulrich Schneider (University of Cambridge)

Examinateurs :
Thierry Giamarchi (University of Geneva)
Anna Minguzzi (Université Grenoble Alpes)
Hanns-Christoph Nägerl (University of Innsbruck)

Directeur de thèse :
Laurent Sanchez-Palencia (CPHT, Ecole Polytechnique)

 

Indéfini