Condensed Matter

Silke Biermann's group: Electronic Structure

Antoine George's group

Karyn Le Hur's group: Complex Quantum Systems and Quantum Information

Laurent Sanchez-Palencia's group


Coordinator : Silke Biermann 

  • Permanent staff

Steffen Backes
Michel Ferrero 
Antoine Georges
Karyn Le Hur
Leonid Pourovskii
Laurent Sanchez-Palencia
Alaska Subedi

  • PhD students :

Benjamin Bacq-Labreuil
James Boust
Julien Despres Philipp Klein
Julian Legendre
Alice Moutenet
Jan Schneider
Jakob Steinbauer
Marcello Turtulici
Louis Villa
Fan Yang
Hepeng Yao

  • Post-docs :

​Sumanta Bhandary
Anna Galler
Joel Hutchinson
Hankim Kang
Giacomo Mazza
Thomas schäfer
Jaehoon Sim
Fedor Simkovic



Research activities:

The research activities of the condensed matter group are devoted to the theory of correlated quantum systems, covering the whole spectrum from crystalline materials, mesoscopic or nanoscopic systems to ultracold atom gases and systems coupling matter and radiation. We aim at

  1. Identifying and describing emergent collective behaviour arising from the interactions in fermionic or bosonic systems;
  2. Characterizing novel quantum phases of matter (including their topological properties) and the associated quantum phase transitions;
  3. Understanding structural, spectral, magnetic and transport properties of correlated systems.

An important aspect of our work is the development of theoretical approaches to tackle such systems. We make use of a wide panel of techniques, including analytical approaches (e.g. mean field theory, Bethe ansatz, Yang-Yang theory, bosonization, renormalization group analysis, slave-rotor techniques...) and large-scale numerical simulations for many-body systems (e.g. dynamical mean field theory (DMFT), exact diagonalization, quantum Monte Carlo, density matrix renormalization group (DMRG) and matrix-product states,...) and within an ab initio framework (density functional theory (DFT) and density functional perturbation theory, ab initio many-body perturbation theory (“GW approximation”), constrained random phase approximation techniques...).